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Abstract 

In this papec we propose a mathematical game, called the 
ball-arrangement game (BAG). A game with a direrent set of 
rules (e.g., permissible moves) gives rise to a direrent network, 
and the algorithm that solves the game gives rise to a routing al- 
gorithm in that network. Based on the insights provided by BAG, 
we propose several new classes of symmetric and modular net- 
works, called super Cayley graphs, that have optimal (interclus- 
ter) diameters and average (intercluster) distances, small (inter- 
cluster) node degrees, high bisection bandwidth, strong embed- 
ding capabilio, and optimal communication algorithms given 
their (intercluster) node degrees. 

1 Introduction 
In this paper, we introduce a mathematical game called the ball- 
arrangement game (BAG) and we use an interesting analogy to 
design several new classes of interconnection networks and their 
algorithms. In the ball-arrangement game, we are given k balls, 
each stamped with a number. Different balls may be assigned 
the same or different numbers. The goal of the game is to re- 
arrange the balls so that the numbers on the balls appear in a 
desired order. At each step the player can take an arbitrary ac- 
tion from a set of d permissible moves, each being a particu- 
lar permutation of the balls. The set of permissible moves re- 
mains the same throughout the game, independent of the cur- 
rent configuration of the balls. If the k balls have different num- 
bers, then there are k !  possible configurations of the balls (i.e., 
states) when playing the game. If we view each of the states as 
a network node and a permissible move leading from one state 
to another as a directed link connecting the nodes correspond- 
ing to those two states, then a network with k !  nodes results, 
where each node has d outgoing links. In other words, the net- 
work can be obtained by drawing the state transition graph for 
the corresponding ball-arrangement game with specified move- 
ments. One can then relate playing a ball-arrangement game to 
routing in the corresponding network, where the initial and final 
states correspond to the source and destination nodes and the se- 
quence of movements performed to solve the game corresponds 
to the sequence of links along the routing path. Since the in-/out- 
degree of the derived network is upper bounded by the number d 
of permissible moves and the diameter is the maximum number 
of steps required to solve the game, we generally prefer to select 
a small number of permissible moves that allow us to solve the 
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game in a small (or optimal) number of steps for any initial and 
final states. 

A k-dimensional star graph, k-star [ 1, 21, is a well-known 
network that has a number of desirable properties, such as de- 
gree, diameter, and average distance smaller than those of a 
similar-size hypercube, symmetry properties, strong embedding 
capability, and fault tolerance properties. A variety of efficient 
algorithms have been proposed for star graphs and various prop- 
erties have been investigated in the literature [3,4,5, 10, 13, 14, 
20, 21, 23, 25, 27, 28, 351. A k-star is derived from a special 
case of the ball-arrangement game where each ball has a distinct 
number and at each step the player can interchange the leftmost 
ball with an arbitrary ball [ l ,  21. Akers, Harel, and Krishna- 
murthy presented a simple and efficient algorithm to solve the 
game in at most L3(k - 1)/2] steps [ l ,  21. Therefore, the de- 
gree of an N-node k-star is k - l = O(log/loglogN) and the di- 
ameter is [ 3 ( k -  1)/2] = O(log/loglogN), both of which are 
sublogarithmic. Moreover, it can be shown that the diameter of 
a star graph is optimal within a factor of 1.5 + o( 1) ' from a 
universal lower bound given its node degree [32]. In [2], Ak- 
ers and Krishnamurthy develop a group-theoretic model, called 
the Cayley graph model, for designing and analyzing symmetric 
interconnection networks. A Cayley graph can be defined by a 
corresponding permutation group, which corresponds to a ball- 
arrangement game where different balls have different numbers. 
In [2], Akers and Krishnamurthy showed that Cayley graphs 
are vertex-symmetric and that most vertex-symmetric graphs 
can be represented as Cayley graphs; it was also shown that 
every vertex-symmetric graph can be represented as a Cayley 
coset graph. In [31, 371, we derived an analogous result show- 
ing that every graph corresponds to a certain ball-arrangement 
game. Both the Cayley graph model and the Cayley coset graph 
model have been used to derived a wide variety of interesting 
networks for parallel processing and have since received con- 
siderable attention [2,9, 11, 12, 15, 18,26,32]. Many networks 
can be formulated by simple ball-arrangement games and that al- 
gorithms for networks derived from a similar set of moves can 
usually be developed in a unified manner. We have also used the 
underlying idea of the ball-arrangement game to derive a vari- 
ety of efficient networks that have certain desirable properties 
[31, 32, 33, 34, 36, 371. 

Although the star graph has many desirable properties, its 
node degree is still too large when the network size is large. 
The reason is that the corresponding ball-arrangement game per- 
mits k - 1 moves for rearranging the balls so that degree O(k)  = 
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O(logN/loglogN) is required. To reduce the node degree, we 
have to find a ball-arrangement game with fewer permissible 
moves, which, collectively, can still sort the balls to any de- 
sired order in a small number of steps. Recently, we proposed 
the Balls-to-Boxes game, which is a special case of the ball- 
arrangement game, where k = nl+ 1 balls with distinct numbers 
are placed in 1 boxes, each having n balls, except for a ball left 
outside these boxes [32]. At each step, the player in the Balls- 
to-Boxes game can interchange the leftmost box with an arbi- 
trary box or interchange the outside ball with an arbitrary ball 
in the leftmost box. When 1 = O(n) ,  the number of permissi- 
ble moves is O(1) = O(&) = O(dlogN/loglogN) so the de- 
gree of the resultant network, called the macro-star network, is 
considerably smaller than that of a star graph of the same size. 
In contrast to interchanging the leftmost ball with an arbitrary 
ball in the game for star graphs, we in general have to move the 
box containing the ball to the leftmost position before the two 
balls can be interchanged. For networks of practical size in the 
near future (e.g., N 5 lo! x 3.6. lo6), the degree of macro-star 
networks is only 5 or smaller, which is even smaller than the de- 
gree of some constant-degree networks, such as 3-D meshedtori 
and pyramids. We have showed that the diameter of a macro- 
star network is also sublogarithmic and is optimal within a factor 
of 1.25 + o( 1) from a universal lower bound, given its node de- 
gree. We have also showed that no networks with similar node 
degree can execute multinode broadcast (MNB) and total ex- 
change (E) tasks [7, 29, 301 in time that is much better than 
macro-star networks. 

Based on the insight provided by the ball-arrangement game, 
we obtain a number of new-networks that further improve the 
properties of macro-star networks. In particular, some of the de- 
rived networks have diameter smaller than that of a macro-star 
network of the same size by a factor of 1.25. The resultant net- 
works form a subclass of (directed) Cayley graphs and will be re- 
ferred to as super Cayley graphs. Super Cayley graphs are sym- 
metric and modular, and generally have node degree that is con- 
siderably smaller than that of a similar-sized star graph. They 
come at various sizes and degrees, which are determined by pa- 
rameters l (the number of boxes) and n (the number of balls in a 
box). In this paper, we propose nine classes of novel super Cay- 
ley graphs which have their respective advantages. The diame- 
ters of macro-star and complete-rotation-star networks with 1 = 
O(n)  (to be referred to as balanced networks) are optimal within 
a factor of 1.25 + o(1) from a universal lower bound given 
their node degrees; the diameters of balanced macro-rotator, 
complete-rotation-rotator, macro-IS, and complete-rotation-IS 
networks are optimal within a factor of 1 + o( 1). The average 
distances of the preceding six subclasses of super Cayley graphs 
proposed in this paper are all optimal within a factor of 1 + o( 1) 
from a universal lower bound given their node degrees. 

The intercluster degrees of super Cayley graphs are small, 
leading to high link bandwidth when implemented as multi- 
ple chip-multiprocessors (MCMP) [36], where a chip contains 
multiple processors on it and multiple such chips are intercon- 
nected together to build a parallel system. Also, the interclus- 
ter diameters and average intercluster distances of suitably con- 
structed super Cayley graphs are asymptotically optimal. More- 
over, the bisection bandwidths of many super Cayley graphs 
are higher than those of hypercubes and k-ary n-cubes. These 
characteristics indicate that super Cayley graphs can achieve 
high performance for communication-intensive tasks such as to- 
tal exchange and random routing when they are implemented as 

MCMPs (see [36] for more details). 

2 The ball-arrangement game (BAG) 
and associated algorithms 

As described in the introduction there is an interesting relation- 
ship between network topologies and the ball-arrangement game 
and between algorithms that solve the game and algorithms that 
perform routing in the corresponding networks. In this section, 
we start by describing a particular instance of the game, called 
the Balls-to-Boxes game, and then generalize it to obtain the 
ball-arrangementgame (BAG) with boxes and distinct balls. We 
also propose several rules and algorithms to solve the game. 

2.1 The balls-to-boxes game and algorithm 
Balls-to-Boxes Game [32]: 

We are given 1 boxes, each of which is assigned 
a distinct color in { 1,2, ..., I } ,  and k = nl+ 1 balls. 
k - 1 of the balls are partitioned into 1 groups of 
size n, each of which is assigned a distinct color 
in { 1,2, ..., I } ,  while the remaining ball is assigned 
color 0 and does not belong to any group. Ini- 
tially, k - 1 of the balls are mixed together in the 
1 boxes, so that each box contains n balls (of differ- 
ent colors, in general), and one ball is left outside 
the boxes. At each step the player can take one of 
the following actions: 

( I )  exchange the outside ball with one of the balls 

(2)  exchange the lefmost box with any of the 

The goal of the game is to rearrange the balls 
and the boxes so that each ball ends up in a spe- 
cijic position in the box that has the same colol; ex- 
cept fo r  the ball with color 0 that ends up outside 
the boxes. Also, the boxes should be sorted so that 
the box of color i, i E { 1,2, ..., I } ,  appears in the 8h 
position from the lejl. 

in the lefmost box, or 

other boxes. 

Note that there are N = (nl+ l ) !  distinct configurations (i.e., 
placements of balls to boxes), and n + 1 - 1 possible moves from 
one configuration to another. At any time in the game, the ball 
that is currently outside all boxes will be called the outside ball, 
while the box currently at position 1 will be called the lefmost 
box. A ball that is currently in a box of color different than its 
own color, or a ball that is at a wrong position in a box of the 
same color (in a Balls-to-Boxes game) will be referred to as a 
d i e  ball. A box that contains at least one dirty ball will be re- 
ferred to as a dirty box. A ball or box that is not dirty will be 
called clean. It is easy to verify that the following algorithm 
solves the Balls-to-Boxes game. 

Balls-to-Boxes Algorithm 

e Phase 1 

- Case 1.1 : If the outside ball has color 0: 
* 1.1.1: If all boxes are clean, go to Phase 2; If the 

leftmost box is clean, exchange it with a dirty 
box and go to Step 1.1.2. 
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* 1.1.2: Exchange the outside ball (which has 
color 0) with any dirty ball in the leftmost box 
and go to Step 1.2.1. 

- Case 1.2: If the outside ball has color c # 0: 
* 1.2.1: If the color of the leftmost box is different 

than c,  then swap the leftmost box with the box 
of color c and go to Step 1.2.2. 

* 1.2.2: Put the outside ball at its correct position 
-in the leftmost box (which has color c) ,  take the 
ball occupying that position outside, and go to 
Phase 1. 

Phase 2 Now all boxes are clean (they contain balls of the 
correct color, placed at their correct positions), but they 
may not be in the correct order. To put them in the cor- 
rect order so that box of color i is placed at position i ,  the 
following algorithm is run: 

- 2.1: If all boxes appear in the correct order, then 
stop; otherwise, go to Step 2.2. 

- 2.2: If the leftmost box has color 1 then exchange it 
with any box that is not at its correct position and go 
to Step 2.3. 

- - 2.3: Exchange the leftmost box with the box at the 
irh position and go to Step 2.1. 

Phase 1 of the algorithm requires at most [2.5nlJ + 1 - 1 
steps, while Phase 2 requires [1.5(1- 1)J steps. More details 
concerning the Balls-to-Boxes algorithm can be found in [32]. 

2.2 Description of the ball-arrangement game 
Observe that Phase 1 of the Balls-to-Boxes algorithm results in 
an incorrect order for the boxes, so that additional movements 
are required in Phase 2 to rearrange the boxes, increasing the 
time required to complete the game. A question arises: Is there 
any rule that can keep the order of boxes unchanged (relative to 
each other) when we play the game? In that case Phase 2 can be 
eliminated or simplified. 

One way to achieve that is to modify the Balls-to-Boxes al- 
gorithm so that a box is moved back to its original position after 
it is interchanged with the leftmost box (Phase 1.2.1 of the Balls- 
to-Boxes algorithm). Then, we can skip Phase 2 completely, as- 
suming that the boxes are in correct order at the beginning of the 
algorithm. This modification, however, usually results in longer 
execution time since it leads to a reduction of only O(1) steps 
while requiring about k x nl additional steps. 

Consider rotating the boxes to any position, instead of swap- 
ping them, in a single movement. In this way, the order of boxes 
is preserved (cyclicly), and Phase 2 (i.e., reordering the boxes) 
can be completed in at most one rotation step. Then we can show 
that the balls and boxes can be sorted in about 1.51 fewer steps 
in the worst case. Note that Phases 1.1.1 and 1.2.1 of the Balls- 
to-Boxes algorithm, which exchange the leftmost box and a box 
i ,  should now be replaced by “rotating the boxes until box i ap- 
pears at the leftmost position.” 

Note that when playing this game, the colors of boxes have 
to be in ascending order cyclicly at any given time. Therefore, 
if the boxes appear in incorrect order at the beginning, this game 
cannot be solved by rotating the boxes along. Motivated by this, 
we propose the ball-arrangement game (BAG), which permit 
more flexibility in possible movements than the Balls-to-Boxes 

0 

Figure 1: A ball-arrangement game where boxes are moved by rota- 
tions. The initial state (i.e., source node) is 1 and the final state (i.e., 
destination node) is I = 1234567. The boxes do not have colors at the 
beginning, and are assigned colors 2,3,  and 1 for performing routing. 
Note that ball 1 (i.e., symbol 1) appears at the leftmost position several 
times. 

game, in order to investigate other interesting ways to sort balls 
and boxes. A special case of the ball-arrangement game that in- 
volves I boxes, each having n balls, and a ball outside boxes, is 
described as follows. 

BAG with 1 Boxes and nl + 1 Distinct Balls: 

We are given 1 boxes and k = nl + 1 balls, one 
of which has color 0 and n of which has color i for 
all i = 1,2, ..., 1. These boxes do not have color (at 
the beginning). Initially, k- I of the balls are mixed 
together in the 1 boxes, so that each box contains n 
balls (of different colors, in general), and one ball 
is left outside the boxes. At each step the player can 
take one of the following two types of actions: 

e (1) rearrange the order of the leftmost n + 1 
balls (i.e., the outside ball and the balls in the 
lefmost box), or 

( 2 )  rearrange the order of boxes. 

The goal of the game is to rearrange the balls and 
the boxes so that balls with the same color ends 
up in the same box, with proper order: Also, these 
boxes should be sorted so that the balls of color i, 
i E { 1,2, ..., I } ,  appears in the irh box from the left. 

Note that the boxes do not have colors at the beginning and 
we have the freedom in assigning colors to the boxes so as to fa- 
cilitate the use of algorithms similar to the Balls-to-Boxes algo- 
rithm to solve a game. For example, we can assign box i (of the 
initial configuration) with color ( i  + b - 1 mod I )  + 1 for some 
integer b, then the “rotation of boxes” can completely replace 
Phase 2 of the Balls-to-Boxes algorithm. Figure 1 illustrates an 
example with such permissible moves. 
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Figure 2: A ball-arrangement game where balls are moved by inser- 
tions. The initial state (i.e., source node) is 5342671 and the final state 
(i.e., destination node) is I = 1234567. The assignment of colors to 
boxes is the same as that in Fig. 1. 

2.3 A BAG where balls are moved by insertion 
After playing the Balls-to-Boxes game and the preceding ball- 
arrangement game with rotation several times, we find that the 
ball with color 0 frequently becomes the outside ball (Case 1 . l)  
for some initial configurations of balls, in which case we have to 
waste our time in exchanging it with a dirty ball. This situation 
may happen up to about k/2 times in the worst case and cannot 
be eliminated by any algorithm. Figure 1 gives such an example 
for a ball-arrangement game where boxes are moved by rotation. 
In a Balls-to-Boxes game with the same initial and final config- 
urations, the ball of color-0 will become the outside ball for the 
same number of times. 

In what follows, we introduce a different set of permissible 
moves that can significantly reduce the occurrence of this unde- 
sirable situation: Instead of interchanging the outside ball with 
a ball in the leftmost box, we now let the player “insert” the out- 
side ball to any position of the leftmost box, which also moves 
all the balls that are not on the righthand side of that position to 
the left by one position, and take the original leftmost ball in the 
box outside the box. 

To derive an algorithm that solves this ball-arrangement 
game, let us first consider a special case where there is only 
one box ( I  = 1), in order to simplify the problem. At Step 1, 
we compare the outside ball with the rightmost a balls, where 
a E { 1,2, ..., n }  is the largest number such that balls n - a + 
1, n - a + 2, ..., n are in ascending order. We then insert the cur- 
rent outside ball to an appropriate position (i.e., among the right- 
most a + 1 positions) so that the a + 1 rightmost balls are in as- 
cending order. Similarly, at Step t, t = 2, ..., k - a ,  we compare 
the outside ball with the rightmost t + a - 1 balls, and insert it 
in an appropriate position so that upon the completion of Step 
t, the rightmost t + a  balls are in ascending order. These right- 
most t + a balls that are in ascending order will be referred to as 
clean balls (for this particular game), and the remaining will be 
referred to dirty balls. Therefore, at most k - 1 steps are required 
to solve this ball-arrangement game with one box,] since there is 
at least one clean ball at the beginning of the game (a 2 1). 

Let us now consider the general case of this ball- 
arrangement game, where there are I boxes. To solve the game, 
we have to repeatedly “insert” the outside ball into an appropri- 

Figure 3: A ball-arrangement game where balls are moved by inser- 
tions. The initial state (i.e., source node) is 5342671 and the final state 
(i.e., destination node) is I = 1234567. The assignment of colors to 
boxes is different from those in Fig. 1 and Fig. 2, which leads to con- 
siderable reduction in the number of steps compared to that required in 
Fig. 2. 

ate position within the box that has the same color i. The first 
step, of course, is to “bring” the box with same color i to the left- 
most position, by either swapping or rotating the boxes (Phase 
1.2.1), or any other permissible actions of the second type. Let 
ci, i E { 1,2, ..., I}, be the number of rightmost balls that have 
color i and are placed in ascending order within the box of color 
i; that is, ci is the number of clean balls in the box of color i. 
Then, Phase 1.2.2 of the Balls-to-Boxes game is replaced by a 
phase where we “insert” the outside ball into an appropriate po- 
sition among the rightmost ci + l positions in the box of color 

When the outside ball has color 0, we still have to get it out 
of the way by placing it at the (ci + rightmost position in 
a dirty box of color i. This, however, can only happen at most 
1 times (right after a box becomes clean), for a total of 21 - 1 
steps. As a comparison, the previous rules [32] may happen up 
to about k/2 M n1/2 times, for a total of k x nl steps. Thus, we 
have improved the execution time by about kf 2 - 21 steps in the 
worst case by using this set of permissible movements. Figure 
2 illustrates a ball-arrangement game where balls are moved by 
insertions. Figure 3 illustrates another way to solve the game in 
Fig. 2, which uses a different assignment of colors and consid- 
erably reduces the number of steps required. 

1 .  

3 Super Cayley graphs: BAGS with I 
boxes and nl + 1 distinct balls 

In this section, we formally define several communication- 
efficient networks that correspond to games with different sets 
of permissible movements. To provide some intuition and bet- 
ter visualize the network topologies, we first relate the ball- 
arrangement game to network topologies and the algorithm that 
solves a game to the routing algorithm in the corresponding net- 
work. 

For a ball-arrangement game with k balls, there are k! dis- 
tinct configurations (i.e., states), each of which can be visualized 
as a node of a network. Given a set of actions for moving the 
boxes and balls, we can visualize a movement between two con- 
figurations as a link connecting those two corresponding nodes. 
That is, the network can be obtained by drawing the state tran- 
sition graph for the ball-arrangement game. 

If d possible actions are allowed in a ball-arrangement game, 
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then each node in the derived network has d outgoing links con- 
necting it to d other nodes in the network. Sending a packet 
from node X(O) to node X ( ’ )  through link i corresponds to mov- 
ing the boxes or balls according to action i so that the configura- 
tion is changed from X(’) to X ( I ) .  Therefore, we can relate rout- 
ing in the network to sorting boxes and balls in the correspond- 
ing game, where the source and destination nodes corresponds 
to the initial and final configurations, the routing path consists of 
the links corresponding to the actions taken to solve the game, 
and the diameter is the maximum number of steps required to 
solve the game for any initial and final configurations. 

In what follows, we formally define the graphs that corre- 
spond to the games described in the previous section. 

3.1 Macro-star networks 
The MS(1,n) network corresponds to the Balls-to-Boxes game 
with I boxes, each having n balls, and an outside ball. A node 
in the M S ( 1 , n )  network can be represented as a permutation of 
k = n l +  1 distinct symbols, where each symbol can be viewed 
as a ball in the Balls-to-Boxes game. More precisely, a permu- 
tation of k distinct symbols in the set { 1,2, ..., k }  is represented 
by U = U1:k  = uIu2”’uk, where U; E {1,2, ..., k} and U; # U, 
for i # j ,  1 5 i , j  5 k .  On the set of all possible permutations 
of k symbols, we introduce two types of operators (generators). 
The first type of generators corresponds to the actions that in- 
terchange the outside ball with a ball in the leftmost box; while 
the second type corresponds to the actions that interchange the 
leftmost box with another box in the Balls-to-Boxes game. 

Definition 3.1 (Transposition z and Swap Generators z, 
: Given a permutation U = ul:k,  we define the dimension-i trans- 
position generator z, i = 2,3, ..., k, as the operator that inter- 
changes symbol U; with symbol u1 in U I : ~ .  We also define the 
level-i swap generator Si,n as the operator that interchanges the 
sequence of symbols u ( ~ - ~ ) ~ + ~ : ~ ~ + ~  with the sequence of sym- 
bols u ~ : ~ + I  in u1:k. where 2 5 i 5 I and k = nl+ 1. 

In what follows, we will use S; instead of S;,n, suppressing 
the dependence on n, unless explicitly stated otherwise. More 
details concerning the preceding generators and the definition, 
structure, example, and properties of macro-star networks can 
be found in [31,32]. 

3.2 Super Cayley graphs 
In this subsection we present the definition of super Cayley 
graphs, which are derived from the ball-arrangement game. 

Each node of a super Cayley graph is represented as a per- 
mutation of k distinct symbols, where k is the number of balls in 
the ball-arrangement game it is derived from. We define the irh 
super-symbol of node label U as the n-long sequence of symbols 
at positions ( i  - 1)n + 2, (i - 1). + 3, ..., in + 1 in the permuta- 
tion label of node U. On the set of all possible permutations of 
k symbols, we introduce two classes of operators: 

e nucleus generators, which permute in some way the left- 
most n+ 1 symbols (i.e., the leftmost symbol and the left- 
most super-symbol, corresponding to the outside ball and 
the balls within the leftmost box) in the ball-arrangement 

corresponding to moving boxes in the ball-arrangement 
game). 

For example, transposition generators z are nucleus generators 
and swap generators 

A super Cayley graph is a (directed) Cayley graph [2,9, 121 
defined by nucleus generators and super generators. For exam- 
ple, macro-star networks MS(1 ,n)  are Cayley graphs defined by 
n transposition nucleus generators 6, i = 2,3, ..., n +  1, and 1 - 1 
swap generators Si,n, i = 2,3, ..., I .  A super Cayley graph that is 
defined with I super-symbols is called an /-level super Cayley 
graph. 

According to the preceding definition, node U of a super 
Cayley graph is connected to node V by a directed link if and 
only if the permutation label of node V can be obtained from 
that of node U either by permuting the leftmost n + 1 symbols 
of U using one of the nucleus generators in its definition, or by 
permuting super-symbols of U using one of the super generators 
in its definition. Links corresponding to the former are called 
nucleus links; while links corresponding to the latter are called 
inter-cluster links. Clearly, a super Cayley graph is a directed 
Cayley graph [2], whose in-/out-degree is equal to the number 
of generators in its definition. Since any directed Cayley graph 
is vertex-symmetric and regular [2,9, 121, super Cayley graphs 
are vertex-symmetric and regular. Note that in some Cayley 
graphs, such as macro-star networks, each directed link has a 
corresponding directed link that has the same ending nodes and 
opposite direction. These graphs can be viewed as undirected 
Cayley graphs [2], by merging each pair of such directed links. 

3.3 Definitions of several generators and super 
Cayley graphs 

In what follows we formally define several other super Cayley 
graphs, which corresponds to the ball-arrangement game that 
uses different moves. Before doing so, we introduce some op- 
erators, which will be useful in defining these networks. These 
generators corresponds to the actions that insert the outside ball 
into the leftmost box in the ball-arrangement game. 

Definition 3.2 (Insertion Generator I ; )  : Given a permutation 
U = ul:k, we define the dimension-i insertion generator I;, i = 
2,3, ..., k,  as the operator that cyclicly shift the leftmost i sym- 
bols MI:; to the left by one position. 

are super generators. 

In other words, for i = 2,3, ..., k, 

I;(U) = UZ:;UIU;+l:k. 

It can be viewed as inserting the outside ball to the ( i -  
sition of the leftmost box (i.e., the ifh position from the left). 

ing insertion generators. 

po- 

The following generators are the inverse of the correspond- 

Definition 3.3 (Selection Generator I,:’) : Given a permuta- 
tion U = U 1 : k ,  we define the dimension-i selection generator 1,; ’ , 
i = 2,3, ..., k, as the operator that cyclicly shift the leftmost i 
symbols u1:; to the right by one position. 

In other words, for i = 2,3, ... , k ,  

game. 

e super generators, which permute super-symbols without 
changing the contents of each of these super-symbols (i.e., 

It can be viewed as selecting the ifh ball from the leftmost box. 
The last type of generators corresponds to the actions that 

cyclicly shift all the boxes. 
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Definition 3.4 (Rotation Generator R i )  : Given a permutation 
U = U ] : k ,  we define the rotation generator Ri as the operator that 
cyclicly shift the rightmost k - 1 symbols u2:k to the right by ni 
positions. 

Therefore, for i = 2,3, ..., I, we have 

RL(ul:k) = UIUk-in+l:kUI:k-in 

In what follows, we will use R' instead of Ri ,  suppressing the de- 
pendence on n, unless explicitly stated otherwise. We may also 
use R instead of RI. We can see that 

Ri = Ri mod I - - R R . . - R ,  and RiR-'(U) = U .  - 
i mod I 

We are now ready to define various interesting super Cayley 
graphs as directed or undirected Cayley graphs, Insertion, selec- 
tion, and transposition generators will be used as nucleus gener- 
ators, while swap and rotation generators will be used as super 
generators in these super Cayley graphs. 

3.3.1 Star-Based Super Cayiey Graphs 

In this subsection, we define several super Cayley graphs that 
use the n-star as their basic building mo'dule. These networks 
are symmetric, undirected, and can efficiently embed and emu- 
late star graphs and a variety of other important graphs, such as 
trees, meshes, hyprcubes, transposition networks, and bubble- 
sort networks. 

Rotation-star (RS) networks and complete-rotation-star 
(complete-RS) networks are super Cayley graphs derived by the 
ball-arrangement game where boxes are moved by rotation and 
balls are moved by transposition. 

Definition 3.5 (Rotation-Star Networks, RS(I,n)) 
An 2-level rotation-star network based on an (n + 1)-star graph 
is an undirected Cayley graph defined by 

transposition nucleus generators T2, T3, ..., Tn+l and 

a pair of rotation super generators R' , R1-l = R-I. 

Rotation-star networks have constant degree when n = 
O( 1). An RS(2,l) network can be viewed as an efficient degree- 
3 variant of the (1 + 1)-star graph [33]. 

Definition 3.6 (Complete-RS(2, n)) 
An I-level complete-rotation-star network based on an (n + 1)- 
star graph is an undirected Cayley graph defined by 

transposition nucleus generators f i ,  T3, ..., Tn+l and 

0 the complete set of rotation super generators 
R I ,  R ~ ,  ..., R I - ] .  

3.3.2 Rotator-Based Super Cayley Graphs 

In this subsection, we define several super Cayley graphs that 
use the n-dimensional rotator graphs [9] as their basic building 
module. The diameters of these networks are in general smaller 
than super Cayley graphs based on star graphs. In particular, the 

, diameters of macro-rotator and complete-rotation-rotator net- 
works are optimal within a factor of 1 + o( 1 )  given their node 

degree. They are, however, directed and cannot emulate star 
graphs as efficiently as star-based super Cayley graphs. 

Macro-rotator (MR) networks are super Cayley graphs de- 
rived by the ball-arrangement game where boxes are moved by 
transposition and balls are moved by insertion. 

Definition 3.7 (Macro-Rotator Networks, MR(I,n)) : An 2- 
level macro-rotator network based on an (n + 1)-rotator graph 
is a directed Cayley graph defined by 

insertion nucleus generators I,, 13, ..., In+] and 

e swap super generators Sz, S 3 ,  ..., Sl. 

Rotation-rotator (RR) networks and complete-rotation- 
rotator (complete-RR) networks are super Cayley graphs de- 
rived by the ball-arrangement game where boxes are moved by 
rotation and balls are moved by insertion. 

Definition 3.8 (Rotation-Rotator Networks, RR(l,n)) : An 1- 
level rotation-rotator network based on an (n + 1)-rotator graph 
is a directed Cayley graph defined by 

insertion nucleus generators I2,13, ..., In+, and 

0 a single rotation super generators RI. 

Definition 3.9 (Complete-RR(2, n)) : An I-level complete- 
rotation-rotator network based on an (n + 1)-rotator graph is a 
directed Cayley graph defined by 

insertion nucleus generators I2,I3, ..., In+l and 

the complete set of rotation super generators 
RI, R 2 ,  ..., RI-'. 

3.3.3 IS-Based Super Cayley Graphs 

In this subsection, we define several super Cayley graphs that 
use the insertion-selection (IS) network as their basic building 
module. The diameters of these networks are in general smaller 
than super Cayley graphs based on star graphs. In particular, the 
diameters of IS, macro-IS, and complete-rotation-IS networks 
are optimal within a factor of 1 + o( 1 )  given their node degree. 
They are symmetric, undirected, and can efficiently embed and 
emulate star graphs and a variety of important graphs, such as 
trees, meshes, hyprcubes, transposition networks, and bubble- 
sort networks. Their degrees, however, are somewhat larger 
than those of star-based and rotator-based networks. 

The insertion-selection (IS) network is defined as an undi- 
rected Cayley graph derived by the ball-arrangement game with 
one box and an outside ball, where balls are moved by inser- 
tion and selection. Insertion-selection networks can embed star 
graphs of the same size with congestion 1 and dilation 2, and em- 
ulate star graphs of the same size with a slowdown factor of at 
most 2 under any communication model. 

Definition 3.10 (Insertion-Selection (IS) Networks) 
A k-dimensional insertion-selection, k-IS, is an undirected Cay- 
ley graph defined by 

0 insertion generators 12,13, ..., and 

0 selection generators I T ' , I ~ ' ,  ..., 1;' 
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Macro-IS (MIS) networks, rotation-IS (RIS) networks, and 
complete-rotation-IS (complete-RIS) networks are super Cay- 
ley graphs derived by the ball-arrangement game with 1 boxes, 
where balls in the leftmost box are moved by insertion and se- 
lection. The can be viewed as the undirected versions of rotator- 
based super Cayley graphs. 

Definition 3.11 (Macro-IS Networks, MIS(1,n)) : An 1-level 
MIS network based on an (n + 1)-IS network is an undirected 
Cayley graph defined by 

insertion nucleus generators 12, I , ,  ... , & + I ,  

selection nucleus generators I T ' , I y l , . . . , I ; l l ,  and 

swap super generators S2, S3, ..., SI. 

For n = 1, the macro-star MS(f, I), macro-rotator RS(1, I ) ,  
and macro-IS MIS(1,l) are all identical to an ( I  + 1)-star graph. 

Definition 3.12 (Rotation-IS Networks, RIS(1, n) )  
An 1-level RIS network based on an (n + 1)-IS network is an 
undirected Cayley graph defined by 

insertion nucleus generators I,, I 3 ,  ..., In+', 

selection nucleus generators Iy',IT1,...,I;:l, and 

a pair of rotation super generators R' , R-' 

Definition 3.13 (Complete-RIS(1, n)) : An I-level complete- 
RIS network based on an (n + 1)-IS network is an undirected 
Cayley graph defined by 

insertion nucleus generators Iz , I3 ,  ..., In+', 

selection nucleus generators IT ' , IT ' ,  ..., I;:', and 

the complete set of rotation super generators 
R',R2, ..., RI-'. 

3.3.4 Other Super Cayley Graphs 

Note that we can use a subset of rota- 
tion generators R1,R2,  ..., R'-l to generate networks whose cost 
and performance fall between those of rotation-star networks 
(or RR and RIS networks) and complete-rotation-star networks 
(or complete-RR and complete-IUS networks). Moreover, if 
we remove all the links corresponding to nucleus generators, a 
rotation-star network (or RR or RIS network) is partitioned into 
k ! / l  disjoint 1-node rings; if we remove all the links correspond- 
ing to nucleus generators, a complete-rotation-star network (or 
complete-RR or complete-RIS network) is partitioned into k ! / l  
disjoint 1-node complete graphs. We can replace each of these 
disjoint graphs with any connected small graph in order to ob- 
tain networks with desired cost and performance. We have used 
similar strategies in [3 I]  for the design of cyclic networks. 

We can also derive recursive versions of super Cayley 
graphs. For example, we can replace each of the nucleus 
(n + 1)-stars of an MS(1,n) network (or the nucleus (n + 1)- 
IS network of an RIS(1,n)) with a small MS(Z1,nl) network 
(or an RIS(11,nl) network) with llnl = n. The resultant net- 
work is called a recursive M S ( l , l l , n l )  network (or a recur- 
sive RIS(1,ll ,nl) network, respectively) and has node degree 
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Figure 4: Comparison of the node degrees of various intercon- 
nection networks. The parameters of the MS and RR networks are 
(2,2),(2,3),(2,4), (373). 

smaller than that of an MS(l,n) network (or larger than that of 
an RIS(1,n) network, respectively). We can also combine dif- 
ferent types of super generators to design such recursive Cayley 
graphs. We have used similar strategies in [3 1,34,37] for the de- 
sign of recursive hierarchical swapped networks and recursive 
cyclic networks. The details for these networks are omitted in 
this paper. 

4 Topological properties 
In this section, we derive some basic properties of super Cay- 
ley graphs and compare them with those of other popular topolo- 
gies. 

4.1 Degree, diameter, and comparisons 
The diameter of a super Cayley graph is equal to the best possi- 
ble time required to solve the corresponding game for any initial 
configuration of the balls. 

Theorem 4.1 The diameter of a complete-rotation-star net- 
work, complete-RS(l,n), is at most equal to 

[2.5k] + 1 - 4 = @  (1o:::N) - ' 

where k = nl + 1 and N = k! is the number of nodes. 

Theorem 4.2 The diameter of a macro-star network, MS(1, n), 
is at most equal to 

Theorem 4.3 The diameter of a complete-rotation-rotator net- 
work (complete-RR(1,n)) o r  a complete-RIS(1,n) network is at 
most equal to 
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Figure 5: Comparison of the diameters of various interconnection 
networks. The parameters of the MS, RR, and RIS networks are 
(2,219 (2,3),(2,4),(3,3). 

The diameter of a macro-rotator network MR(1,n) or macro- 
insertion-selection network MIS(1,n) is at most equal to 

The number 1 of hierarchical levels in N-node super Cayley 
graphs discussed so far in the paper is 

log N 
= @ (nloglogN) 

The node degree of these super Cayley graphs is mini- 
mized when 1 = @(n) = @ (Jz), leading to the following 
lemma. 

Theorem 4.4 Thenodedegreeofan N-nodeMS(l,n), MR(l,n), 
MIS(1, n),  complete-RS(1, n) ,  complete-RR(1, n),  or complete- 
RIS( I ,  n )  network is minimized and is equal to O ( Jz) if 
and only if1 = @(n). 

Since o(n + I )  = o ( - lbgqzN) for any positive integers n and 
1, the node degree of the above super Caylev Eraphs can take val- 
ues in the range from R (4%) to-0 (a), depending 
on the particular choice of the parameters n and I .  The degrees of 
rotation-star, rotation-rotator, and rotation-IS networks are con- 
stant when n = O( I ) ,  and can take values in the range from O( 1) 
to 0 (a), depending on the particular choice of the param- 
eters n and 1. 

4.2 Optimal diameter and average distance 
In [32], we defined the universal lower bound D L ( N , ~ )  on the 
diameter of a static undirected interconnection network that has 
N nodes and degree d 2 3 as 

2 
DL(N,d) ~Iogd- lN+logd- l ( l -  -). d (2) 

500 
450 - 2-D torus 3-D toru Hypercube 

400 

I 
- 

350 

300 

8 200 

150 

0 '  I I I 
6 12 18 24 

Logarithm of the Number of Nodes 

Figure 6: Comparison of the product of degree and diameter for var- 
ious interconnection networks The parameters of the MS and RR net- 
works are (2,2),(2,3)1(2,4),(3,3). 

Also, for a given graph G, we defined the asymptotic diameter 
to lower-bound ratio 

Theorem 4.5 Any MS, MR, MIS, complete-RS, complete-RR, or 
complete-RIS network has asymptotically optimal diameter: 

Theorem 4.6 The asymptotic diameter to lower-bound ratio of 
an MR(1, n),  MIS(1, n),  complete-RR(l,n), or complete-RIS(1, n )  
'network is a = 1, when 1 = @(n)  [that is, when these super Cay- 
ley graphs are balanced]. 

For 1 = @(n),  an N-node MS, MR, MIS, complete-RS, 
complete-RR, or complete-RIS network has node degree 

and diameter 

2.51og2N + o (  logN ) or 2 log2 N 
log, log, N IoglogN log2 log2 N 

both of which are sub-logarithmic. The asymptotic diameter 
to lower-bound ratios for several balanced super Cayley graphs 
and several interconnection networks of interest are summarized 
in Table 1. 

Theorem 4.7 The asymptotic average distance to lower-bound 
ratio of an M S ( l , n ) ,  MR(l,n), MIS(l,n), complete-RS(l,n), 
complete-RR(l,n), or completeRIS(1,n) network is aA = 1, 
when 1 = @(n) [that is, when these super Cayley graphs are bal- 
anced]. 

Figures 4 and 5 show the node degrees and diameters of var- 
ious network topologies as a function of the network size. For 
network sizes that are expected to be practical in the near future 
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(e.g., N 5 IO! z 3.6. IO6), degree at most equal to 5 is suffi- 
cient for star-based and rotator-based networks, which is smaller 
than constant-degree networks such as 3-D meshedtori, pyra- 
mids, and multigrids; degree at most equal to 7 is sufficient for 
IS-based networks. Super Cayley graphs are also competitive in 
terms of the diameter x degree cost measure as shown in Fig. 6. 

Although diameter and average distance may be less impor- 
tant for networks that use wormhole routing under light traffic, 
they are crucial to network performance under heavy load when 
the networks are pin-limited rather than area limited, a common 
condition in parallel architectures with multiple packaging lev- 
els [6]. In fact, the maximum throughput of a network is in- 
versely proportional to these parameters for any switching tech- 
nology under the constraint of constant pin-outs. More details 
can be found in [32]. 

4.3 Intercluster diameter, average intercluster 

A parallel computer is typically built from several chips on a 
board, multiple boards in a cabinet, and several such cabinets 
interconnected together. Modules at each level of the packag- 
ing hierarchy have their respective characteristics in terms of the 
number of pins, maximum aredvolume, minimum wire width, 
and the number of wires per link 161. In this subsection, we con- 
sider the case where several nodes (processors, routers, and as- 
sociated memory banks) of a network are implemented on a sin- 
gle chip (see [17] for an example), or more generally, a single 
module (e.g., chip, board, wafer, or multi-chip module (MCM)), 
and several chips are used to build the parallel architecture or 
a higher-level module. We refer to the former type of archi- 
tectures that are built of chip-multiprocessors as multiple chip- 
multiprocessors (MCMP) [ 36). 

We define the intercluster degree of a network as the maxi- 
mum of the average-per-node intercluster links over all clusters. 
We also define the intercluster distance between a pair of nodes 
as the minimum number of intercluster transmissions required 
for routing between them, the intercluster diameter of a network 
as the maximum of the intercluster distance between any pair of 
nodes, and the average intercluster distance of a network as the 
average of the intercluster distances between all pairs of nodes. 
More details concerning the terminology and the properties of 
MCMPs can be found in [36]. In what follows, we investigate 
on these parameters for super Cayley graphs. 

The intercluster degree of a network has a bearing on its im- 
plementation cost and communication performance. If a chip 
contains multiple nodes, a node has off-chip bandwidth w ,  and 
the intercluster degree is d;,  then an off-chip link will have band- 
width w / d ; .  The intercluster degree of a super Cayley graph is 
equal to the number of super generators in its definition, and is 
usually a small number, leading to high bandwidth for its links. 

The proofs for the following theorems and corollaries are 
similar to those in [31,32,37] and are omitted in this paper. 

Theorem 4.8 Assuming that a cluster is composed of exactly 
one nucleus, the intercluster diameter (or average intercluster 
distance) of an MS, MR, MIS, complete-RS, complete-RR, or 
complete-RIS is asymptotically optimal within a factor of 1 + 
o( 1 )  from the corresponding lower bound given its intercluster 
degree if M = log"(') N, where M is the number of nodes in a 
nucleus and N is the network size. The intercluster diameter (or 
average intercluster distance) of an MS, MR, MIS, complete-RS, 
complete-RR, or complete-RIS is asymptotically optimal within 

distance, and bisection bandwidth 

a constant factor from the corresponding lower bound given its 
intercluster degree ifM = log0(') N .  

To obtain networks with optimal intercluster diameters and 
optimal average intercluster distances when the clusters are 
larger, we have to resort to another class of networks derived 
from BAG, called super-index-permutationgraphs [3 1,36,37]. 
The major difference between super Cayley graphs and super- 
index-permutation graphs is that some of the balls for a super- 
index-permutation graph are assigned with the same numbers. 
More details can be found in [3 1,34, 36,371. 

A set B; of links is a bisection of a network if the removal 
of B; partitions the network into two parts that differ in size by 
at most one node. Let B;J ,B; ,J ,  B Q ,  . . . ,B;,J+ denote the band- 
widths of links in partition B;. Then the bisection bandwidth BB 
of a network is given by 

L; 

for all possible bisections i of the network. Bisection bandwidth 
of a network is usually the limiting factor on the performance of 
communication-intensive tasks, such as total exchange and ran- 
dom routing (see [36]). In what follows we derive lower bounds 
on the bisection bandwidths of super Cayley graphs, assuming 
that each chip holds a single nucleus and on-chip links are made 
wide enough so that the bisection bandwidth is derived without 
removing any on-chip links. 

Theorem 4.9 The bisection bandwidth BB of an MS, MR, MIS, 
RS, RR, RIS, complete-RS, complete-RR, or  complete-RIS is 
lower bounded by 

WN 
BB _> - 

where w is the average aggregate off-chip bandwidth of a node 
and Dl,ove is the average intercluster distance assuming that 
each chip holds a single nucleus. 

' 

Since the average intercluster distance of an N-node MS, 
MR, MIS, complete-RS, complete-RR, or complete-RIS is 
@ ( h@l loglogN) , the lower bounds on their bisection bandwidths are 
larger than the bisection bandwidths of hypercubes, CCCs, and 
k-ary n-cubes (see [36] for more details). 

5 Conclusions 
Desirable properties in interconnection networks for parallel 
systems include small average distance, high bisection band- 
width, symmetry, modularity, ease of mapping efficient algo- 
rithms onto them, and reasonable implementation cost. The hy- 
percube and star graph meet most of these requirements, but 
their node degrees and intercluster degrees are prohibitively 
large for networks of medium to large size. The super Cayley 
graphs proposed in this paper form a new class of interconnec- 
tion networks for the modular construction of parallel comput- 
ers. Super Cayley graphs have several desirable algorithmic and 
topological properties, such as high bisection bandwidth when 
implemented as MCMPs, while using nodes of small degree and 
intercluster degree. We showed that suitably constructed super 
Cayley graphs' have asymptotically optimal diameter, average 
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distance, intercluster diameter, and average intercluster distance 
within factors of 1 + o( 1). 

Constant-dilation embeddings of a variety of important 
topologies, such as trees, meshes, hypercubes, star graphs, 
bubble-sort graphs, and transition networks, are available for 
some of these super Cayley graphs. Also, there exist efficient al- 
gorithms for super Cayley graphs to emulate star graphs, leading 
to asymptotically optimal algorithms to execute MNB and TE 
tasks in super Cayley graphs under both the single-port and the 
all-port communication models. In all routing and parallel al- 
gorithms we have developed thus far, the expected traffic is bal- 
anced on all links of suitably constructed super Cayley graphs. 
More details will be reported in the near future. 
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