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Abstract—Implementation of a commercial application to a
grid infrastructure introduces new challenges in managing the
quality-of-service (QoS) requirements, most stem from the fact
that negotiation on QoS between the user and the service provider
should strictly be satisfied. An interesting commercial application
with a wide impact on a variety of fields, which can benefit from
the computational grid technologies, is three–dimensional (3-D)
rendering. In order to implement, however, 3-D rendering to a
grid infrastructure, we should develop appropriate scheduling
and resource allocation mechanisms so that the negotiated (QoS)
requirements are met. Efficient scheduling schemes require
modeling and prediction of rendering workload. In this paper
workload prediction is addressed based on a combined fuzzy
classification and neural network model. Initially, appropriate
descriptors are extracted to represent the synthetic world. The
descriptors are obtained by parsing RIB formatted files, which
provides a general structure for describing computer-generated
images. Fuzzy classification is used for organizing rendering
descriptor so that a reliable representation is accomplished which
increases the prediction accuracy. Neural network performs
workload prediction by modeling the nonlinear input-output
relationship between rendering descriptors and the respective
computational complexity. To increase prediction accuracy, a
constructive algorithm is adopted in this paper to train the neural
network so that network weights and size are simultaneously
estimated. Then, a grid scheduler scheme is proposed to estimate
the queuing order that the tasks should be executed and the
most appopriate processor assignment so that the demanded
QoS are satisfied as much as possible. A fair scheduling policy is
considered as the most appropriate. Experimental results on a real
grid infrastructure are presented to illustrate the efficiency of the
proposed workload prediction — scheduling algorithm compared
to other approaches presented in the literature.

Index Terms—Grid computing, workload prediction, neural net-
works, three-dimensional (3-D) rendering.
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I. INTRODUCTION

SEVERAL EMERGING network applications in the areas
of high performance computing or information analysis

cannot be satisfied by the quality-of-service (QoS) requirements
associated with relatively low-bandwidth flows, such as the
Internet. Examples include collaborative visualization of large
datasets or computationally demanding data analyzes, which
usually require data streaming at hundreds or even thousands of
megabits p/s [1]. For this reason, new abstractions and concepts
should be introduced at both the architecture and network level
to allow applications to access and share resources or services
among distributed networks [1]. All these issues are addressed
by using a transparently, integrated, distributing computing
infrastructure, referred as grid, which support the sharing,
interconnection and use of diverse resources in dynamic com-
puting systems that can sufficiently be integrated to deliver the
desired QoS [2]. Although computational grid has been initially
developed to solve large-scale scientific research problems, it
is expected to be applied for several high computational load
demanded commercial applications. Implementing, however,
a commercial application to a grid infrastructure introduces
new challenges in managing the QoS requirements [1]. An
interesting commercial application with a wide impact in many
fields, is three-dimensional (3-D) image rendering [3] which,
however, demands high processing power. For this reason, 3-D
rendering can be solved more feasibly in a grid infrastructure.
This is the fundamental business objective of the European
Grid Resources for Industrial Applications (GRIA) project to
create and evolve a grid testbed and apply it to two distinctive
commercial application areas, 3-D rendering and dynamic
structural analysis [4].

However, to deliver 3-D rendering tasks of very high values
of services, advance resource allocation and scheduling mecha-
nisms should be incorporated. Scheduling is an important issue
in grid capability of delivering commercial applications, such as
the 3-D rendering, since it provides a convenient way to access
the end-to end QoS requirements. This need has been confirmed
by the global grid forum in the special working group dealing
with the area of scheduling and resource management [5]. To
efficiently, however, implement a scheduling and resource allo-
cation management algorithm, modeling of QoS is required and
prediction of the associated parameters.

Modeling and prediction
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1) provide to the users the ability to estimate the service level
needed for their application before or during the negotia-
tion phase of the grid submission process;

2) manage the assignment of application loads to resources
to guarantee delivery of these service levels to the re-
quired standard;

3) implement a recovery model if either the estimation or
delivery of service proves inadequate [6].

Modeling and prediction of QoS parameters is application-de-
pendent since the inherent parameters of a problem, which affect
the final outcome, should be identified [7]. For this reason, mod-
eling should be performed to a specific class of applications, such
as the 3-D image rendering, which is one important commercial
application due to its wide impact to a variety of fields. Workload
prediction and modeling of ray-tracing algorithms has been re-
ported in [8]. In this work, it is confirmed that the time complexity
is less dependent on the number of objects, but more on the ob-
ject size. In [9], a modification of the previous approach has been
adopted to avoid double intersection tests for objects that cross
voxel boundaries. In addition, a scaling factor has been added to
account for an early ray termination due to intersection with an-
other objects. The work of [10] estimates the average probability
for a ray to be intersected with an object in a cell, accomplished
by the projected area of the box enclosing the objects in a cell,
while an algorithm to estimate the cost of ray tracing in a scene is
presented in [11]. The method assumes an octtree spatial subdi-
vision and the cost per voxel is predicted. The cost of ray tracing
using adaptive spatial subdivisions has been studied in [12], by
analyzing the probability that a ray intersects an object. Other ap-
proachesimprovetheefficiencyofradiosityandMonteCarloirra-
diance rendering algorithms using parallel/ hierarchical methods
and multiple important sampling respectively [13], [14].

These approaches, however, are based on specific rendering
algorithm characteristics and cannot be extended to other ren-
dering schemes or modifications of the applied ones. In addi-
tion, they do not exploit the complexity of the synthetic scene.
To overcome these difficulties in this paper, several descriptors
are extracted to represent the scene complexity. Then, a model
is adopted to map the synthetic scene complexity with the work-
load characteristics. Linear models cannot efficiently predict the
workload of 3-D rendering algorithms, since there is no a simple
linear relationship, which associates the rendering parameters
to the respective computational cost [3]. Alternatively, predic-
tion can be preformed using nonlinear simplified mathematical
models such as functions of exponential or logarithmic type and
then estimate the model parameters to fit the data. However,
these approaches present satisfactory results only in case of data
that follow a predetermined function type, which is not the case
of 3-D rendering algorithms. For this reason, a neural network
architecture is adopted in this paper to perform the nonlinear
mapping of the extracting descriptors to rendering workload
since it can be proved that a neural network model can approxi-
mate any nonlinear function within any degree of accuracy [15].
For this reason, neural networks have been extensively used for
modeling highly nonlinear complex problems, such as advanced
resource allocation mechanisms [16], video traffic prediction
[17], and nonlinear dynamic systems [18]. However, the pre-
diction accuracy of a neural network architecture depends on

1) organization of the extracted descriptors;
2) network structure and size;
3) training algorithm adopted.
Usually, the extracted descriptors are organized into classes

using a binary classification scheme, i.e., each descriptor is
allowed to belong only to one class. In a binary classification,
however, it is possible for two descriptors to assign into different
classes if they are located on opposite sides of a class boundary.
This is, for example, the case of noise in the descriptors. An
alternative descriptor organization is to permit each descriptor
to belong to several (or even to all) classes but with a different
degree of membership. One way to estimate the membership
grade is to use probability theory by exploiting the descriptor
statistics [19]. Another way refers to fuzzy classification, which
models the possibility of an event, i.e., to which extent an event
can occur [20]. Fuzzy classification provides a more meaningful
representation of the extracted descriptors, closer to the human
perception. Furthermore, fuzzy classes are not restricted by the
additivity property as the probabilities (they must add together
to one). Fuzzy classification of the obtained descriptors has been
applied inmanyapplications,suchasvisualcontentretrieval [21].
In addition, combination of neural networks with fuzzy classi-
fication increases the prediction accuracy. More specifically, in
[22]aneuralnetwork-basedfuzzymodel isadoptedforpredicting
transient stability inpowersystems,while [23]acombinedneural
network fuzzy model is used for time series prediction.

Furthermore, the network size affects its performance [24],
[25] and [26]. Particularly, a small network is not able to
approximate complicated nonlinear functions [24], [25], while
an unnecessarily large network overfits the data and thus it
cannot generalize well [26]. For this reason, training algo-
rithms, which simultaneously estimate network weights and
size, are presented, such as constructive or pruning methods
[15], [24], [25]. Usually, constructive approaches present a
number of advantages over other methods used for network
size selection. More specifically, in a constructive scheme, it
is straightforward to estimate an initial size for the network.
Furthermore, in case that many networks of different sizes
provide acceptable solutions, the constructive approach yields
the smallest possible size [24].

The rendering descriptors are obtained by parsing a Ren-
derMan Interface Bytestream (RIB) formatted file, which pro-
vides a general structure for describing a synthetic world. RIB
format includes information about the object geometric primi-
tives (such as cylinder, cone and sphere), object transformation,
object material and texture, number of light sources, rendering
algorithm parameters and in general any detail used for creating
the rendered images.

Two different types of descriptors are considered. The gen-
eral and the object descriptors. General descriptors refer to the
entire synthetic world, such as the image resolution, the number
and type of light sources and general-purpose parameters of the
rendering algorithm used. Instead, object descriptors concerns a
specific synthetic geometry, such as the object geometrical com-
plexity, surface texture and material used. As we have stated
above, the extracted descriptors are organized in a fuzzy classi-
fication and then fed as input to a feedforward neural network
architecture, to predict the rendering workload. A constructive
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Fig. 1. Adopted grid infrastructure. (a) Client side. (b) Server side.

algorithm is adopted in our case to train the network, which
optimally estimates a) the most appropriate network size, i.e.,
number of neurons and b) the respective network weights [24].
This method belong to the category of constructive algorithms
that only the weights of the new added neuron are estimated,
yielding to low computational load and storage requirements
compared to other techniques. Furthermore, the constructed net-
work size is independent from the size of the training samples
as happens with other approaches [27].

This paper is organized as follows. In Section II, the pro-
posed grid infrastructure used in the experiments is described.
In Section III, the basic parameters affecting the rendering per-
formance is analyzed along with the RIB format used to orga-
nize the extracted descriptors. Section IV refers to the workload
estimation, including the fuzzy organization of the extracted de-
scriptors and the neural network based modeling. The adopted
fair scheduling algorithm is analyzed in Section V. Finally, ex-
perimental results and comparisons with other models are pre-
sented in Section VI, while Section VII concludes the paper.

II. GRID INFRASTRUCTURE

Fig. 1 presents a block diagram of the adopted infrastruc-
ture used to apply 3-D rendering algorithms in grid computing.
As can be seen, the architecture is discriminated into two main
parts; the client side architecture [see Fig. 1(a)] and the server
side architecture [see Fig. 1(b)]. This grid infrastructure has
been implemented in the framework of GRIA and a Grid Appli-
cation Toolkit and Testbed (GridLAB) European Union funded
projects. The main module of the client side is the load char-
acterization/prediction. On the other hand, the grid scheduler
constitutes the heart of the server side architecture. These two
modules collaborate with each other and enhance the capability
of the grid infrastructure in delivering commercial applications
in a way that satisfies the negotiated QoS requirements. On the
contrary, in the current grid architecture the assigned tasks are
served using a first come, first serve policy.

The main parts of the adopted grid architecture at the client
side are summarized as follows.

A. Grid Application

This module provides an interface required for interacting the
user with the grid infrastructure. The interface is designed to

control a collection of grid services for the user desktop, i.e.,
the deadlines of the submitted tasks, the task priorities and so
on.

B. Workflow Enactor

This is an intermediate module with interacts with all mod-
ules at the client side. The workflow enactor is responsible for
activating each time an appropriate module at the client side.

C. Load Characterization/Prediction

This module is responsible for modeling and predicting the
task workload characteristics. This information is then provided
to the architecture of the server side along with the associated
task deadlines so that an appropriate scheduling scheme is ac-
complished.

D. Grid Access Authorization

The authorization module checks whether the user is autho-
rized to access the grid resources and on which terms.

E. Grid Service Proxy

This module instantiated by the workflow enactor to handle
invocation of remote grid servers, either in the application or in
the negotiation steps.

On the contrary, the main parts of the grid infrastructure at
the server side are the following.

F. Grid Scheduler

The scheduler is the heart of the server architecture and deter-
mines when and at which processor the submitted tasks should
be executed so that the demanded QoS parameters are satisfied
as much as possible. The scheduler uses information obtained
by the load characterization/ prediction module and the current
resource availability.

G. Negation Service

In case that the demanded QoS parameters of the submitted
tasks can not be satisfied (i.e., the task deadlines are violated),
the negotiation service is activated to inform the users for the vi-
olation and ask them whether they are willing to submit the task
with the supported by the grid infrastructure QoS parameters.
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H. Resource Manager

This module is responsible for sending the submitted tasks
for execution in the grid clusters.

As can be seen from the above mentioned architecture, the
load characterization/prediction and the grid scheduler modules
perform probably the most significant jobs in the successful de-
livering of tasks. For this reason, these two modules are de-
scribed in more detail in the following.

III. 3-D RENDERING DESCRIPTORS

As we have stated in Section I, to predict the 3-D rendering
workload, several descriptors are extracted, which characterize
the complexity of the synthetic world. For describing the syn-
thetic world, however, a RIB encoded file is used. Thus, de-
scriptor estimation is accomplished by parsing a RIB encoded
file.

A. Encoding and Estimation of Rendering Descriptors

The purpose of the RIB format is to provide a general struc-
ture for describing a synthetic world. Particularly, it offers the
possibility of reconstructing any geometric primitive, such as a
cone, a sphere, a disk, and so on and it allows the performance
of several transformations on each primitive. Thus, any compli-
cated 3-D object is constructed by an appropriate combination
of geometric primitives and transformations. RIB format also
encodes additional useful information for 3-D rendering, such
as object surface characteristics, the number, intensity, location
and type of light sources, image resolution and so on. Further-
more, RIB also describes the rendering algorithm used along
with the values of the associated parameters.

An example of a RIB file is presented in Table I of a syn-
thetic world that consists of a cylinder. The cylinder surface is
“shiny,” characterized by diffuse reflection of 0.2 [3]. The state-
ment “WorldBegin” defines the “begin” of the synthetic world,
while the statement “WorldEnd” the “end” of it. In this example,
the ray tracing algorithm has been used for 3-D rendering with
maximum level of tree rays equal to four (4) as indicated by the
command line “option “render” integer max raylevel [4].” Per-
spective projection is adopted, while the image resolution is of
200 150 pixels as results from “format” statement.

B. Three-Dimensional Rendering Descriptors

The extracted descriptors used to predict the 3-D rendering
workload can, in general, be classified into two main categories.
The first type of descriptors refers to general characteristics of
the synthetic scene, such as the image resolution, the number
and type of light sources and general-purpose parameters re-
lated to the rendering algorithm used. We call these descriptors
general descriptors. The second type concerns descriptors re-
lated to a specific synthetic geometry and primitive characteris-
tics, such as the object complexity, surface texture and material
used. We call these descriptors object descriptors.

RIB format provides a convenient way for discriminating
general and object descriptors. Particularly, most of rendering
descriptors are encoded using the statements “option” and “at-
tribute.” The command line “option” applies to the entire scene
and thus encodes general descriptors. Instead, the command

TABLE I hskip3pt
EXAMPLE OF A RIB FILE FORMAT

line “attribute” applies to a specific geometry corresponding to
object descriptors.

Another important issue, which affects the rendering work-
load, is the algorithm used to render a synthetic scene. It is clear
that different types of algorithms affect the rendering work-
load in a different way. In this paper, we are dealing with the
ray tracing, radiosity and Monte Carlo irradiance analysis algo-
rithms since they are the most commonly used 3-D rendering
schemes. For each type of algorithm, different descriptors are
extracted and then used for the workload prediction. All these
parameters are supported by the RIB encoded file.

Tables II–IV present the correspondence between the main
descriptors of the three investigated algorithms and the respec-
tive encoding of the RIB format. There are also some other de-
scriptors, which affect the rendering computational complexity
but are not coded with the statements “option” and “attribute.”
Such descriptors include the type of object material and the as-
sociated illumination model, the object geometrical complexity
and the image resolution. The encoding of these descriptors is
shown in Table V.

IV. WORKLOAD ESTIMATION

A. Fuzzy Organization

In contrast to general descriptors, object descriptors cannot
directly be included in a feature vector, since the number of ob-
jects is not constant and varies from scene to scene. This would
result in feature vectors of different size, making direct compar-
isons between different scenes practically impossible. A simple
way to overcome this difficulty is to classify each object de-
scriptor into predetermined classes by constructing histograms.

In a binary, however, classification scheme, it is probable for
two similar descriptors to assign to different bins (classes) if
they are located on opposite sides of a class boundary. In this
way, two descriptors are treated either identical or different.
To overcome the aforementioned difficulty, an alternative
framework should be used, which allows for each descriptor to
belong to several (or even all classes) but with a different degree
of membership. One way to estimate the membership degree
is based on an a posteriori probability classification scheme,
by exploiting the descriptor statistics [19]. Another method is
to apply fuzzy classification to the extracted descriptors [20].
While, probability expresses the likelihood of an outcome,
fuzziness refers to the possibility of an event, i.e., models to
which extent an event can occur. A minimum requirement of
probabilities is additivity property that is the probabilities must
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TABLE II
DESCRIPTORS OF THE RAY TRACING RENDERING ALGORITHM AND THE RESPECTIVE ENCODING IN THE RIB FORMAT. THE “[ ]” INDICATES THE

RESPECTIVE DEFAULT VALUES

TABLE III
MAIN DESCRIPTORS OF THE RADIOSITY RENDERING ALGORITHM AND THE RESPECTIVE ENCODING IN THE RIB FORMAT. THE “[ ]” INDICATES THE

RESPECTIVE DEFAULT VALUES

TABLE IV
MAIN DESCRIPTORS OF THE MONTE CARLO RENDERING ALGORITHM AND THE

RESPECTIVE ENCODING IN THE RIB FORMAT. THE “[ ]” INDICATES THE

RESPECTIVE DEFAULT VALUES

add together to one. However, this does not hold with fuzzy
membership degrees. In addition, fuzzy classification provides
a more meaningful representation of the extracted descriptors,
which is closer to the human perception while it is independent
from the descriptor statistics.

Let us denote as , with elements the descriptors used
for the th object. Thus,

(1)

where is the size of vector . We then assume that each ele-
ment is classified into classes (partitions) by means of
membership functions. Let us denote as
the partition to which the th element of , i.e., , belongs.
The degree of membership of to the partition is then es-
timated by the membership function . We further as-
sume that all elements are normalized in the interval [0 1].
Variable refers to the bin of the th element of vector .

The exact type and shape of membership functions
can be greatly varied and in general depends on the specific
problem [20]. Some interesting types are the triangular with
50% overlap, the quadratic and the cubic ones, which are pre-
sented in Fig. 2. In all the above cases, “symmetric” functions
have been used since there is no reason to give more importance
to a specific class. The actual type of membership functions and
the number of partitions are estimated to maximize the pre-
diction accuracy as explained in the section of the experimental
results.

Gathering all bins for , a multidimensional
class is constructed as , which indicates
the bin (class) to which vector is classified.

Taking into consideration the degree of membership
of the element to the bin , the degree of

membership of vector to a particular class is estimated
using the following

(2)

Using (2), we can construct the histogram bin of a specific
class , by taking into account the effect of all object descrip-
tors, , to the bin .

(3)

Thus, the fuzzy histogram is created as

(4)

with .

B. Workload Prediction

Let us denote in the following as the feature vector, which
include all general and object-based descriptors. Feature vector

affect the computational load by a nonlinear relationship mod-
eled as

(5)

where is the respective computational cost and the non-
linear relationship. Index of corresponds to a particular
rendering algorithm, denoted in (5) as . In our experiments,
the rendering algorithms of the ray tracing, radiosity method and
Monte Carlo irradiance analysis have been applied. The main
difficulty of (5) is that the input-output relation is actu-
ally unknown. Modeling of is performed through a feed-
forward neural network architecture, since it can approximate
any nonlinear function within any degree of accuracy ([15, pp.
208–213, 249]). In our case, a neural network of one hidden
layer and an output layer of one neuron has been adopted. Linear
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TABLE V
OTHER DESCRIPTORS AND THE RESPECTIVE ENCODING IN THE RIB FORMAT. THE “[ ]” INDICATES THE RESPECTIVE DEFAULT VALUES

Fig. 2. Different types of membership functions. (a) Quadratic (solid line), the function of order ten (dashed line) and the triangular (dotted line). (b) Trapezoid
membership functions with slope 
 = 3 (or 71.5 ) (solid line) and 
 = 7 (or 81.9 ) (dashed line).

activation function is used for the output neuron, since rendering
workload can be any real value.

Constructive Neural Network Training: A constructive algo-
rithm has been adopted in this paper to estimate network weights
and size, since usually the constructive approaches present a
number of advantages over other methods, such as pruning tech-
niques, used for network size selection. This is due to the fact
that in a constructive scheme, among many networks of dif-
ferent sizes that provide acceptable solutions, the smallest one
is chosen [24].

Several constructive algorithms have been proposed in the lit-
erature for simultaneously estimating the network weights and
size. In general, the constructive algorithms can be classified
into three main categories. The first approaches train the whole
network completely after its hidden neuron addition [28], [29].
However, these schemes yield a high computational load, which
depends on the optimization algorithm used for training and the
network size [27]. The second approach simplifies the optimiza-
tion problem by assuming that the hidden units already existing
in the network are useful in approximating part of the desired
(target) function [24]. Thus, the weights feeding these hidden
units can be considered fixed and allow only the weights con-
nected to the new hidden unit to vary. As a result, a significant
reduction of the number of weights that should be optimized is
accomplished, yielding to a reduction of computational load and

storage requirements. The third category concerns memoriza-
tion methods [30], [31]. The main concept of these algorithms
is to train the whole network only for the “easy” training pat-
terns, while using memorization for the “hard” or “novel” pat-
terns. However, these methods tend to produce networks that
potentially grow linearly with respect to the size of the training
set [27].

In this paper, the constructive algorithm proposed in [24] has
been adopted to train the neural network. This method belongs
to the second category of constructive algorithms, i.e., training
only the new added neuron. This is due to the fact that it yields
low computational load and storage requirements compared to
other techniques. Furthermore, it yields a network of small size
despite the complexity of the target function and possible noise
in the training samples.

V. GRID SCHEDULER

The purpose of a scheduling algorithm is to determine the
“queuing order” and the “processor assignment” for a given task
so that the demanded QoS parameters, i.e., the task deadlines,
are satisfied as much as possible. The “queuing order” refers to
the order in which tasks are considered for assignment to the
processors. The “processor assignment” refers to the selection
of the particular processor on which the task should be sched-
uled.
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A. Queuing Order Selection

In the proposed grid architecture, two approaches for queuing
order selection have been adopted, which are described in the
following. The first algorithm exploits the urgency of the task
deadlines, while the second is based on a fair policy.

1) Urgency-Based Algorithms: The most widely used
urgency-based scheduling scheme is the earliest deadline first
(EDF) method, also known as the deadline driven rule [32].
This method dictates that at any point the system must assign
the highest priority to the task with the most imminent deadline.
The concept behind the EDF scheme is that it is preferable to
serve first the most urgent tasks (i.e., the task with the earliest
deadline) and then serve the remaining tasks according to their
urgency.

2) Fair Completion Time: The above mentioned queuing
order selection algorithm does not make any attempt to handle
the tasks requesting for service in a fair way. For example, tasks
with relative urgency may be favored against the remaining
tasks, regardless of the respective workload. In addition, using
an EDF scheduling scheme, there is no motivation for a user
to specify an honest deadline, since tasks of late deadlines are
given low priority. To overcome the aforementioned difficulties,
an alternative approach is presented in this section, by handling
tasks requesting for service with respect to their fair completion
times.

The fair completion time of a task is found by first estimating
its fair task rates using a Max-Min fair sharing algorithm [33].
For this reason, initially, the task demanded rates are estimated
as follows

(6)

where refers to the workload of the th task requested
for serving, estimated by the load characterization/prediction
module. corresponds to the task deadline, while the
represents the grid access delay, and it can be viewed as mean
delay required for the th task to access the total grid capacity.
Thus, includes the communication delays and delays stem
from grid resource availability to execute the respective task
[34].

In case of congestion, the computational rate allocated to a
task may be smaller than the demanded rate , and thus vio-
lation of the task deadline is accomplished. The fair scheduling
algorithm attempts to degrade the QoS experienced by the tasks
(as measured by the computational rate allocated to the task, or
the amount of time by which the deadline is missed as a per-
centage of ) in a fair way.

Particularly, based on the task demanded rates , the task
fair rates are calculated using the Max–Min fair sharing al-
gorithm [33]. In the max-min fair sharing, all users are given an
equal share of the total resources, unless some of them do not
need their whole share, in which case unused resources are di-
vided equally among the remaining “bigger” users in a recursive
way. Using the task fair rates, the fair completion times of the
tasks are estimated as follows [34]

(7)

Fig. 3. Implemented grid topology.

where can be thought of as the time at which the task would be
completed if it could obtain constant computational rate equal
to its fair computational rate starting at time . It is should be
mentioned that finishing all tasks at their fair completion times
is unrealistic, because grid is not a single computer that can be
accessed at any desired computational rate and uniform delay

. However, the fair completion times are used to perform the
queuing order of the task in a fair way. In particular, the tasks are
ordered for execution with respect to their earliest fair comple-
tion times. For this reason, we call this scheme fair completion
time (FCT) queuing order selection in the following.

B. Processor Assignment

Although the above mentioned algorithms select an ap-
propriate order for the task execution, they dot not solve the
problem of “processor assignment,” i.e., at which particular
processor the tasks should be executed. In our case, the earliest
completion time (ECT) scheme is proposed as a solution to the
“processor assignment” problem.

In this approach, we assume that each task occupies 100%
of the processor utilization for its execution, and thus the max-
imum utilization of a processor is assigned if the tasks are served
in the earliest possible time. Then, the ECT rule selects among
all the available processors of the grid infrastructure, the one
which provides the earliest completion time for the task execu-
tion [34].

VI. EXPERIMENTAL RESULTS

A real grid computing infrastructure has been implemented to
perform the simulations. The general topology has been shown
in Fig. 3 and has been supported under the European research
funded project GRIA. In the adopted infrastructure three main
suppliers to grid resources are involved, each of which consists
of several clusters of different platforms. The 3-D rendering
tasks, which are submitted to the grid infrastructure for pro-
cessing, are provided by a content creator company involved in
the project. The grid clusters are distributed in different Euro-
pean countries. In addition, the software of the infrastructure has
been developed in a Java platform, while the server side archi-
tecture operates in a Linux operation program.

For better clarification of the adopted architecture, let us con-
sider an example, where the content creator (i.e., a user) wishes
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Fig. 4. Examples of the graphical user interface (GUI) used in the experiments in the adopted grid infrastructure. (a) Sign in GUI. (b) The task parameters GUI.
(c) Negotiation service GUI. (d) Job finished GUI.

to submit 3-D rendering tasks for processing. Based on the ar-
chitecture depicted in Fig. 1 (see Section II), initially, the appli-
cation service module is activated to provide a friendly interface
so that the user is able to handle all the necessary information
of the tasks, e.g., to define the task deadlines. In the following,
the workflow enactor is activated to enable the authorization
module and then the workload estimation. All the derived infor-
mation, along with the QoS parameters of the respective tasks
as indicated by the users, are provided to the server side for task
execution. Encryption/decryption schemes are involved in this
phase to protect the privacy of the transferred data.

Fig. 4 present an example of the graphical user interface
(GUI) implemented in the framework of the GRIA project. In
particular, Fig. 4(a) presents the initial GUI, where the type of
application are selected (i.e., rendering), while Fig. 4(b) the
GUI where the task information are defined (i.e., task deadline
or the task workload as predicted by the load characteriza-
tion/prediction module).

At the server side, following the authorization module, the
scheduler is activated to define when and on which processor
the submitted tasks should be executed. In case that violation
of the requested QoS (i.e., deadline) is obtained, the negotia-
tion service module is activated to inform the users and, if pos-
sible, to adapt the requested QoS parameters to those that can
be supported by the grid architecture. The final task execution is
provided by the resource manager, which, based on the informa-

tion derived from the scheduler, submits the tasks for execution.
Fig. 4(c) presents the GUI of “job running” and “job finished,”
respectively, while Fig. 4(d) the GUI for delivering the results.

A. Workload Prediction

To train the neural network, used for workload prediction, a
measurement set is constructed consisting of pairs of rendering
descriptors along with the respective computational complexity.
In our experiments, the computational cost has been normalized
to the CPU speed and the platform that the task is assigned to
be executed to increase the prediction accuracy. Normalization
is performed with respect to a reference synthetic scene imple-
mented on a particular platform. Three measurement sets are
constructed in our case, each of which corresponds to one of
the three investigated rendering algorithms. Then, the measure-
ment sets are randomly partitioned into three disjoint sets; the
training set, the validation set and the test set. The training set
is used to estimate network weights and size. The validation set
is responsible to terminate network training by estimating the
early stopping point [16], while the test set to evaluate the net-
work performance. The 60% of data for each measurement set
comprise the training set, while the rest 40% is equally shared
for the validation and test set. Each measurement set consists of
500 samples of randomly variations of the respective rendering
descriptors and also includes several different synthetic scenes.
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Fig. 5. Network performance, expressed in absolute relative error, versus the
number of hidden neurons over data of training and validation set of the radiosity
method neurons.

The constructive algorithm described in Section IV.B is used
for training the neural network. Fig. 5 illustrates the network
performance versus the number of hidden neurons over data of
training and validation set in case of radiosity rendering algo-
rithm. The network performance is evaluated as the average ab-
solute relative prediction error. As is observed, the error on the
training set decreases monotonically for an increasing number
of hidden neurons. Instead, the error on the validation set de-
creases until ten hidden neurons and then it starts to increase.
This is called early stopping point and is depicted in Fig. 5.

Fig. 6(a) presents the prediction performance of the proposed
combined fuzzy classification-neural network model for the ray
tracing algorithm. In this figure, the results have been shown for
presentation purposes for the first 25 frames of the test set. The
respective results for the other two investigated rendering algo-
rithms are shown in Figs. 6(b) and (c). The experiments include
different combinations of the rendering descriptors and refer to
different synthetic scenes. It should be mentioned that there is
no correspondence between the experiments of the three inves-
tigated algorithms, since there is no relation of the respective
rendering descriptors. In all cases, the 3-D rendering workload
has been estimated with respect to a reference synthetic scene,
the cost of which has been measured on a PC AMD Athlon 1.60
GHZ of physical memory 128 MB of Linux Suse 2.4 opera-
tion system to be independent from the platform used. As is ob-
served, the proposed scheme accurately predicts the rendering
workload in all the examined cases.

An alternative way to illustrate the prediction accuracy of the
proposed fuzzy-neural network model is to use the fractile dia-
grams or the quantiles-quantiles (Q-Q) plots. According to this
method, the actual cost is plotted versus the predicted one. There-
fore,perfectpredictionliesonalineof45 slope.Theadvantageof
thismethodisthat itshowsallpredictiondifferenceswiththesame
accuracy, regardless of the actual values to be predicted. It can be
seeninFig.7that theQ-Qplotsforthethreeinvestigatedrendering
algorithms lie very close to the line of perfect fit, meaning that the
proposed combined fuzzy-neural network model is a very good
predictor of rendering computational complexity.

Finally, Table VI depicts the average relative prediction error
over all data of the test set (i.e., 100 for each rendering type) for

the three examined rendering algorithms and also compares the
proposed scheme with other models. By examining this table, it
is observed that the proposed fuzzy-neural network model yields
efficient prediction performance in all cases (the worst predic-
tion error is below 8%). In this table, we have also presented
the prediction error obtained without applying the fuzzy clas-
sification scheme, i.e., using only the neural network structure
and a binary organization of the extracted rendering descriptors.
As is observed, the prediction performance deteriorates com-
pared to the one obtained using the fuzzy classification scheme.
In both the aforementioned cases, the neural network has been
trained using the constructive scheme discussed in Section IV.B
so that the network size is appropriately estimated. The effect
of network size on the prediction performance is also shown in
Table VI using a network of three and 25 neurons, respectively.
As can be seen, both small and large size networks deteriorates
the prediction accuracy performance.

Theproposedfuzzy-neuralnetworkpredictor is alsocompared
with other linear and nonlinear models to illustrate the efficiency
of the proposed scheme. In particular, initially, modeling is ac-
complished using a linear predictor, such as the moving average
(MA). In this case, the prediction performance severely deteri-
orates providing unacceptable results since the error per sample
often exceeds the 50%. Another comparison is accomplished by
applying simplified nonlinear models. In particular, in this case,
we have used mixed predictors of polynomial and exponential
type. Although such approach improves prediction performance
compared to the linearcase, it still beyond theobtainedby thepro-
posed fuzzy-neural network scheme.

Comparisons with the works of [10], [12] are also ac-
complished in this Table. Since the approaches of [10], [12]
are valid only for ray tracing rendering, the comparison is
performed only for this type of algorithms. In all cases, the
proposed scheme outperforms the compared ones. In addition,
the proposed neural-network based architecture constitutes a
general framework, which can be applied for other rendering
types and parameters. In Table VI, we also present the pre-
diction accuracy in case that a probability theory is used to
estimate the membership grades, while the neural network is
adopted for the final classification. As is observed, the average
prediction error is less than the binary case but greater than
the fuzzy case. This is due to the fact that fuzzy classification
provides a more robust framework for ambiguity description in
contrast to probability.

The effect of the membership function type and the number
of partitions on the workload prediction performance is shown
in Table VII. In this Table, triangular, trapezoid and quadratic
membership functions have been examined at partitions 5, 10,
15, and 20, respectively. It is observed that the best performance
is accomplished for triangular membership functions at

partitions. The deterioration of the prediction accuracy at
large number of partitions is due to the fact that at these cases
feature vectors of large size are constructed, which complicates
the neural network training.

B. Scheduling

In this section, we present the results concerning the sched-
uling algorithm implemented in the grid infrastructure. More
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Fig. 6. Actual and the predicted computational cost of various experiments for three different types of rendering algorithms. (a) Ray tracing algorithm, (b) the
radiosity algorithm, and (c) Monte Carlo irradiance algorithm.

Fig. 7. Q-Q (Quantiles-Quantiles) plots for (a) the ray tracing algorithm, (b) radiosity algorithm, and (c) Monte Carlo irradiance algorithm.

TABLE VI
AVERAGE PREDICTION ACCURACY OVER ALL EXPERIMENTS CONDUCTED FOR THE THREE TYPES OF RENDERING ALGORITHMS.

COMPARISONS WITH OTHER APPROACHES PRESENTED IN THE LITERATURE

TABLE VII
EFFECT OF FUZZY MEMBERSHIP TYPE AND THE NUMBER OF PARTITIONS TO THE PREDICTION ACCURACY IN RAY TRACING ALGORITHMS

specifically, three different scheduling schemes has been devel-
oped and compared. The first assign the tasks in a first come-first
serve (FCFS) policy. The second scheduling algorithm follows
the earliest deadline first (EDF), while the third scheduling al-
gorithm is based on the task fair completion times (FCT), (see

Section V.A.II). In the FCT policy the tasks are assigned with
the respective fair rates instead of the first two methods where
the demanded rates are used.

In the FCFS and EDF policy the tasks either are executed with
their demanded rate, , or are rejected from execution (i.e.,
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Fig. 8. Measure E versus (a) average task workload (b) workload variance, and (c) number of tasks.

Fig. 9. Measure E versus (a) average task workload, (b) workload variance, and (c) number of tasks.

their rate equals zero). On the contrary, in the FCT policy, all
the tasks are executed but with the respective fair rates , which
are less or equal to the demanded rates . Execution with
a rate smaller that the demanded one, means that a violation
of the respective task deadline is accomplished. In this case,
the negotiation phase is activated to inform the user if he/she
is willing to accept the deadline modification.

The efficiency of a scheduling scheme is measure either by
the error of the demanded task rate to the actual rate that the task
is executed, or by the sum of the task rates, that the scheduler
serves.

(8)

where and refers to the demanded and the actual task
rates. The actual task rates equals for the FCFS
and EDF scheduling scheme (depending whether the task are
assigned for execution or not) and for the FCT scheme.

Fig. 8 presents the results obtained by applying the three
aforementioned schemes in case that the are used for mea-
suring the scheduling efficiency, while Fig. 9 in case of .
More specifically, the FCFS, EDF and the FCT are applied for
task ordering selection, in combined with the Earliest Comple-
tion Time (ECT) algorithm for processor assignment (see Sec-
tion V). In all cases the measures and have been evaluated
by a set of 20 independent experiments submitted to the grid in-
frastructure. Figs. 8 and 9 present the results of the measures
and versus

1) average task workload;
2) workload variance;
3) number of tasks.

As is observed in all cases, the smallest error is achieved by the
FCT scheme, with the EDF method comes the second. This is
due to the fact that the FCT policy exploits better the grid re-
sources than the other two approaches. It should be mentioned
that only the FCT queuing order selection algorithm uses infor-
mation of the workload prediction module. However, the work-
load prediction is required for the ECT processor assignment
scheme for all queuing order selection schemes. In case that the
task scheduling is accomplished without ECT processor assign-
ment by distributing, for example, the tasks to the current avail-
able processor, a significant reduction of the scheduling perfor-
mance is observed. This means that the measures and
yield much greater values than the ones obtained by the ECT
approach, verifying that an workload prediction is necessary for
implementing efficient grid resource allocation.

VII. CONCLUSION

Computer graphics and 3-D rendering are an interesting com-
mercial application useful for many fields such as simulation,
design, research, education, entertainment and advertisement.
However, a fundamental difficulty in achieving total visual
realism of synthetic images is the complexity of the real world,
which makes 3-D rendering be computationally intensive. On
the other hand, grid architecture enables the integration of
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diverse services and resources across heterogeneous and geo-
graphically distributed systems and presents them as a single
unified integrated resource. For this reason, 3-D rendering can
be performed more feasibly and reliably in the computational
grid, which is verified by the European GRIA that aims at
creating a grid testbed for 3-D rendering and dynamic structural
analysis [4].

To implement, however, a 3-D rendering algorithm to a grid
infrastructure, an efficient resource allocation management
scheme should be developed to meet the QoS requirements
as specified by the users. Toward this direction, modeling and
workload prediction of 3-D rendering algorithms are required
along with scheduling of the submitted tasks.

In this paper, both aspects are addressed. As far as the ren-
dering workload prediction, a combined fuzzy classification and
neural network model is proposed. Fuzzy classification is used
for organizing rendering descriptors, while neural network for
modeling and predicting the rendering workload. Fuzzy organi-
zation reduces possible noise and simultaneously provides a re-
liable framework for comparing scenes, composing of different
number of synthetic 3-D objects, which results in an increase of
prediction accuracy. Neural network models the unknown non-
linear relation of rendering descriptors to the respective compu-
tational complexity. For network training, a constructive algo-
rithm is adopted in this paper, which simultaneously estimates
network weights and size (i.e., network structure), instead of
using conventional training schemes, such as the backpropaga-
tion, in which the network size is considered a priori known.
Among different constructive approaches, the ones which yields
the minimum computational cost with a simultaneous efficient
performance is chosen.

Three different types of rendering algorithms have been in-
vestigated, the ray tracing, the radiosity and the Monte Carlo
irradiance analysis. For each rendering type, a different neural
network model is constructed, since each algorithm is char-
acterized by different properties and parameters, which affect
the computational complexity in a different way. Rendering de-
scriptors are automatically estimated by parsing RIB formatted
files. RIB format provides a general structure of describing a
synthetic world. Several experimental results on real-life ap-
plications have been conducted to indicate the excellent per-
formance of the proposed combined fuzzy classification-neural
network model for prediction rendering workload. Therefore,
grid scheduling and advance resource allocation mechanisms
can benefit from the proposed predictor accelerating the tran-
sition of grid technologies from scientific collaboration to in-
dustrial and commercial applications.
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