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Network optimization problems 

 Network optimization problems 

 Simple : shortest-path, max-flow, minimum spanning tree … 

 Difficult (hard): integer multicommodity flow, graph coloring, traveling salesman, 

Steiner trees … 

 Optimization problems encountered in Optical Core Networks 

 Most of them are difficult! 

 Network planning and operation: resource allocation problems 

 resources= space (transponders, regenerators, cross-connections, links, fiber-

cores), frequency (wavelengths or spectrum slots), time 

 Routing and Wavelength Assignment (RWA)  & impairment-aware RWA  

 Routing  and Spectrum Allocation (RSA) & Modulation Level, and Spectrum 

allocation (RMLSA) 

 Traffic grooming, time scheduling,  hierarchical clustering of nodes, etc 
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Complexity 

 Which algorithm is efficient? How do we define efficiency? 

 Time and Space Complexity 

 “worst case” vs. “actual case” 

 Efficient ≡ polynomial time algorithms: the number of primitive operations 

that is needed to obtain the solution for any input instance Ι of the problem 

is bounded by a polynomial on the size of the input Ι 

 Not efficient ≡ non-polynomial (exponential) algorithms 

 A problem is provably “difficult” or “hard” if it belongs to the class of NP-

complete problems, for which no polynomial time algorithms are known 
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Planning and operating optical networks 

 Planning phase (offline – static RWA) 

 Simultaneously optimize all connections (Combinatorial optimization) 

 Network Evolution - Operational phase (online –dynamic RWA) 

 Serve one or a set of connections – Re-optimize 

Operational PhasePlanning Phase

Network Topology Traffic Matrix

[     ]0 1 0 2 0

….

1 1 0 1 0

Offline RWA algorithm
Time

(s1,d1) (s2,d2) (s3,d3) (s5,d5)

Arrivals

Departures

(s4,d4)

Online RWA algorithm

(serve connections 

one-by-one)

Network Utilization State

Initial Network 

Setting
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In this tutorial 

 

 Present general algorithms and techniques that can be used to 

solve network optimization problems 

 

 Focus on resource allocation problems in standard WDM and 

flexgrid optical networks and present examples of applying the 

general techniques to solve the specific problems 
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Outline 

 Generic optimization methods  

 Linear Programming, Integer Linear Programming 

 Meta-heuristics 

 Heuristics 

 Standard WDM networks 

 Planning 

 Physical layer impairments 

 Network evolution 

 Flexgrid optical networks 

 Planning 

 Physical layer impairments 

 Network evolution 
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Linear Programming (LP) 

Linear Optimization (LP) Problem 

            minimize     cT . x  

            subject to   A . x ≤ b, x = (x1,...,xn) ∈ Rn,  

where c is a n-dimension vector, Α is a mxn matrix, and b is a m-dimension vector 

 Linear objective and linear constraints 

 Local minimum is also a global minimum 

 The solution space is a n-dimension convex polyhedron 

 The optimal solution (minimum) is a vertex of the polyhedron 

 LP problems are solvable in polynomial time 

 Simplex (exponential time worst case), Ellipsoid algorithm (first 

polynomial), Interior point algorithm 

 Simplex is vastly used (good average running time) 

 

 

Maximize 

3x1+2x2
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LP modeling of simple problems 

Maximum Flow 

Input: Demand (s,t), links capacities uij 

Variables: xij flow over link (i,j) 

 

Maximize v 

Subject to 

sj

j

x v  

0, for all orij ji

j j

x x i s t     

it

i

x v   

0 , for all links ( , )ij ijx u i j   

     Multicommodity Flow 

 

 

 

 

     
     What if we ask for integer flows; 

1
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Flows (s, t, d)

(1 ,2, 3)

(2, 4, 5)

(4, 2, 3)4
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4

86

Input: Demand flows f  (sf,tf,df), links capacities uij 

Variables: f

ijx  flow of flow demand f over link (i,j) 

 

Minimize   0 

Subject to 

for all links( , )f

ij ij

f

x u i j  

for all flows 
f

f

s j f

j

x d f  

for all flows 
f

f

i t f

i

x d f   

for all ,f f

i j j k f f

i k

x x j s t    

 

Input:  

Demand (s,t),  

Link capacities uij 

 

Variables: 

 xij flow over link (i,j) 

Input:  

Flows f  (sf,tf,df),  

Link capacities uij 

 

Variables: 

 f

ijx  flow of  f over link (i,j), 

f

ijx R  
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cost
3x1 + 2x2

cost
3x1 + 2x2

Integer Linear Programming (ILP) 

 Integer variables x 

        minimize     cT . x  

        subject to   A . x ≤ b, x = (x1,...,xn) ∈ Ζn 

 The general ILP problem is NP-complete 

 Exhaustive search 
 

Techniques to improve average exec time (but still exponential worst case) 

Branch-and-bound, Cutting planes 

 

35

(?,?,?,?)

(1,?,?,?) (4,?,?,?)(2,?,?,?) (3,?,?,?)

UB=408 436 814 440

(1,2,?,?) (1,3,?,?) (1,4,?,?)

UB=480 706 408

(1,4,2,3) (1,4,3,2)

UB=408 554

best solution

(2,1,?,?) (2,3,?,?) (2,4,?,?)

436

(2,4,1,3) (2,4,3,1)

436 608
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LP and ILP relation 

 Assume a “difficult” ILP problem 

 LP-relaxation: solve the ILP without demanding integer variables 

 Can be solved in polynomial time 

 Gives the lower (upper) bound for the ILP minimization (maximization) 

problem. Branch & bound technique uses this feature 

 If the solution is integer, then it is optimal for the initial ILP problem  

 Luck ?  

 Hint: there are certain techniques and rules to write LP formulations 

that can increase the probability to obtain an integer solution 

 If integer-optimal is not found: rounding methods, such as randomized 

rounding, can yield good approximate solutions 
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Convex Hull 

 The same set of integer solutions can be described by different sets of constraints  

  Convex hull: the minimum convex set that includes all the integer solutions 

 Given the convex hull, an LP algorithm can obtain the optimal ILP solution in polynomial time  

 The transformation of an n-dimension polyhedron to the corresponding convex hull is difficult  

(used in cutting planes technique) 

 Good ILP formulation: the feasible region defined by the constraints is tight to the convex hull 

 A large number of vertices consist of integer variables: increases the probability of obtaining an 

integer solution when solving the corresponding LP-relaxation of the initial ILP problem 
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Meta-heuristics 

 Iteratively try to improve a candidate solution with regards to a given metric 

 Do not guarantee to find an optimal, as opposed to exact methods (like ILP) 

 A meta-heuristic typically defines:  

 The representation or encoding of a solution  

 The cost function 

 Iterative procedure 

 Meta-heuristic types 

 Local search: iteratively make small changes to a single solution 

 Constructive: construct solutions from their constituting parts 

 Population-based: iteratively combine solutions into new ones 

 However, these classes are not mutually exclusive and many algos combine them 

 Popular meta-heuristics: Genetic/evolutionary algorithms, ant colony 

optimization, tabu search, simulated annealing 
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Heuristics 

 Heuristic: simple, fast, and can find good enough solutions 

 Depending on the problem, a heuristic can be optimal  

(but not for the majority of problems that we face) 

 Greedy : at each step make a choice that seems good (towards a local 

optimum), with the hope of finding a global optimum 

 Combinatorial problems can be solved by allocating resources one-

by-one to demands 

 Routing problems: shortest-path, k-shortest paths (weight= #hops, or 

distance) 

 Wavelength assignment:  random, first-fit, least used, most used 

wavelength 

 Slot assignment: similar to wavelength assignment, but can take into 

account the size of voids created 
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Single and Multi-objective optimization 

 Most problems are formulated as single-objective optimization problems 

e.g. minimize #transponders, or # wavelengths, or energy consumption, etc. 

 What if we want to optimize more than one metric 

e.g. minimize both the #transponders and #wavelengths 

 No single solution simultaneously accomplishes the two 

 Non-dominated or Pareto front: the set of solutions that cannot be improved in 

one objective without deteriorating their performance in at least one of the rest 

Objective 1 
(#transponders) 

O
b

jective 2
 

(#w
avelen

gth
s) 

 Use single objective methods 

 Scalarizing: use a single-objective defined as a  

weighted combination of the multi-objectives 

 minimize: (w . #transponders) + [(1- w) . # wavelengths)] 

 weighing coefficient w controls the dependence on each metric 

 Use multi-objective methods 

 types: no preference, a priori, a posteriori and interactive 
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Outline 

 Generic optimization methods  

 Linear Programming, Integer Linear Programming 

 Meta-heuristics 

 Heuristics 

 Standard WDM networks 

 Planning 

 Physical layer impairments 

 Network evolution 

 Flexgrid optical networks 

 Planning 

 Physical layer impairments 

 Network evolution 
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Motivation 

 Improve efficiency of current systems through better resource allocation  

 Algorithms for next generation systems (higher rate WDM, MLR WDM, 

flexgrid) 

OFC 2013 16 
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WDM optical networks 

 Wavelength Division 

Multiplexing (WDM) 

 
 

 

 WDM switches 

 Switched entity: wavelength 

 Opaque (OEO) 

 Transparent  (OOO)  

 Reconfigurable add-drop 

multiplexers (ROADM) 

 

 

1 
1 

2 
2 

n n 

Optical 

Fiber 

Wavelength 

Multiplexing 

Wavelength 

 De-Multiplexing 

 

Receiver Transmitter 
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Lightpaths 

 WDM: communication through lightpaths 

 Lightpath: 

 Route (path) 

 Wavelength 

 Discrete wavelength assignment 

 Wavelength continuity 

(when no wavelength conversion is available) 

 Routing and Wavelength Assignment (RWA) 

 

1

2

3

4

6

5

7

1

2

3

Wavelength Routers:

Lightpaths:

OXC 

OXC 

OXC 

OXC 

OXC 

OXC 
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WDM networks evolution 

 Past: Opaque (point-to-point) – Transponders at each node 

 Move from Opaque to Transparent networks.  Reduce the transponders 
 Gains in cost (CapEx and OpEx) 

 Transparent lightpaths: physical layer impairments 

 Solution 

 Impairment aware routing and wavelength assignment (IA-RWA)  
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Planning WDM networks 

 Input: Network topology, traffic matrix 

 Output: routes and wavelengths (RWA) 

 Network layer: Satisfy traffic and minimize the number of used 

wavelengths 

 Constraints: 

 Discrete wavelength assignment 

 Wavelength continuity 

Optical 
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IP Router 

WDM 

Optical 
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IP Router 
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Optical 
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IP Router 

WDM Optical 
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IP Router 

WDM 

Optical 
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IP Router 

WDM 

Optical 
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IP Router 
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Optical 
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IP Router 

WDM 

Optical 
X - Connect 

IP Router 

WDM 

Optical 

X - Connect 

IP Router 

WDM 

Optical 

X - Connect 

IP Router 

WDM Optical 

X - Connect 

IP Router 

WDM 

Optical 

X - Connect 

IP Router 

WDM 

Optical 

X - Connect 

IP Router 

WDM 

Optical 

X - Connect 

IP Router 

WDM 

Optical 

X - Connect 

IP Router 

WDM 

Optical 

X - Connect 

IP Router 

WDM 

Optical 

X - Connect 

IP Router 

WDM 

Optical 

X - Connect 

IP Router 

WDM 

Optical 
X - Connect 

IP Router 

WDM 

Optical 
X - Connect 

IP Router 

WDM 

0 1 2 1 0 1

1 0 1 1 0 1

0 1 0 1 1 1

1 0 1 0 2 0

2 1 0 1 0 1

0 2 1 1 1 0

 
 
 
 
 
 
 
 
 



Routing and 

Wavelength 

Assignment (RWA) 
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RWA algorithms 

 Joint RWA or decomposed R+WA 

 Joint RWA ILP formulations: path and link formulations 

 Path formulation 

 Pre-calculate all or a set of paths for each demand 

 Variable: xp,w is1 if the specific path p and wavelength w is selected 

 Constraints: flow constraints only at source node, discrete wavelength 

assignment constraints, no need for wavelength continuity constraints 

 Link formulation 

 Variables: xdlw is 1 if demand d is served by link l and wavelength w  

 Constraints: flow constraints at source & intermediate & destination nodes, 

(including wavelength continuity), discrete wavelength assignment constraints,  

 

 

 Large number of meta-heuristics and heuristics in the literature 

21 OFC 2013 
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Physical Layer Impairments (PLI) 

 Linear and non-linear PLI impairments 

 Interest from an algorithmic perspective:  

 Intra-lightpath or inter-lightpath (interference) 

 Intra-lightpath PLIs:  ASE, PMD, CD, SPM 

 Interference PLIs:  intra-and inter-channel XT, XPM, FWM 

 Depend on modulation format, transponder technology, etc. 

 Coherent transponders compensate for chromatic dispersion (CD) 

  Lightpath feasibility: Quality of Transmission (QoT)  

 Use threshold(s) to judge the feasibility of lightpaths 

 Separate metric for each PLI 

 Single metric: Bit Error Ratio (BER), Q factor 
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RWA + physical layer 

Input: 

      Network topology, traffic matrix,  

Physical layer models and parameters  

(link and OXC model) 

 Output: routes and wavelengths 

 Network layer - RWA: Satisfy traffic and 

minimize the number of used wavelengths 

 Physical layer - IA: use lightpaths with 

acceptable quality of transmission 

IA-RWA cross-layer optimization 

Node

SMF
Pre-DCM DCF

Node

Post-DCM
SMF

N-1 spans

N-th SMF 

span

NodeNode

SMFSMF
Pre-DCMPre-DCM DCFDCF

NodeNode
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X-Connect 
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X-Connect 

IP Router 
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Optical 
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X-Connect 
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 
 
 
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IA-RWA algos classification 

Based on where IA is applied 

 RWA + (separate) PLI 

verification module 

 IA in either R or WA 

 Joint IA-RWA (IA in RWA 

formulation) 

R: Routing decision

WA: Wavelength Assignment

RWA: Routing and Wavelength Assignment

PLI: Physical Layer Impairments

R
PLI 

verification
WA

R WA
PLI 

Verification

RWA
PLI 

Verification

Case A-1

Case A-2

Case A-3

R with PLI 

constraints
WA

R
WA with PLI 

constraints

Case B-1

Case B-2

Case B-3

R with PLI 

constraints

WA with PLI 

constraints

R with PLI 

constraints

PLI 

Verification

R

WA

WA with PLI 

constraints

PLI 

Verification

R with PLI 

constraints

WA with PLI 

constraints

PLI 

Verification

Case C-1

Case C-2

Case C-3

R WA
PLI 

Verification
RWA with PLI 

constraints
RWA with PLI 

constraints

PLI 

Verification
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 Indirect 

e.g. constraint the path length, # of hops 

 Direct 

e.g. use analytical models for ASE 

 

 Worst-case assumption 

calculate PLIs as if all wavelengths are utilized 

 Actual case 

calculate PLIs based on the lightpaths that are (or  

will be) established 

Based on how PLIs are accounted for 
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IA-RWA algorithm example 

 Input: topology, traffic matrix, link and OXC models  

 Output: lightpaths that are QoT feasible 

 Algo: based on LP-relaxation, path formulation, 

direct IA,  actual case, IA in the formulation 

 RWA need integer variables (ILP): NP-complete 

    (lightpaths cannot bifurcate) 

 LP-relaxation - float variables: P 

 Integer solution  optimal ! 

 Fractional solution  rounding  maybe 
suboptimal 

 Proposed LP-relaxation formulation 

 optimal integer solution with high probability 

 Piecewise linear cost function 

 Random perturbation technique 

 

Traffic Matrix Λ

Network Topology G=(V,E)

Number of Available Wavelengths W

k

RWA formulation

LP relaxation

Rounding

Round a fractional variable to 1 and re-execute Simplex

Solution

Routed lightpaths, blocking 

Integer 

Solution?

Simplex

yes

no

Candidate paths

Calculate the k-shortest paths for all connections (s,d) for which 

Λsd≠0

Feasible?

yes no

Integrality is not further increased

Increase the number of available wavelengths and go to Phase 2

Once the solution has been found we remove the additional 

wavelengths (blocking >0)

Phase 1

Phase 2

Phase 3

Phase 4

Fixing

Fix the integer variables up-to now and re-execute Simplex
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LP formulation and flow cost function 

 
 

1

l
l l

l

w
F f w

W w
 

 

             Cost function 

 Increasing and Convex 

 Approximated by a piecewise linear function with 
integer break points   

 Tight (close) to convex hull formulation 

 Simplex finds integer optimal solution with high 
probability 

A. Ozdaglar, D. Bertsekas, Transactions on Networking, 2003 

Parameters: 

 s,d V: network nodes 

 wC: an available wavelength 

 l E: a network link 

 pPsd: a candidate path 
 

Constant: 

 Λsd: the number of requested connections from node s to d 
 

Variables: 

 xpw: an indicator variable, equal to 1 if path p occupies 

 wavelength w, else 0 

 Fl: the flow cost function value of link l 
 

             RWA LP FORMULATION 
 

minimize : l

l

F  

subject to the following constraints: 
 

 Distinct wavelength assignment constraints,  

 |

1,pw

p l p

x


  for all lE, for all wC 

 Incoming traffic constraints, 

  

sd

pw sd

p P w

x


   , for all (s,d) pairs 

 Flow cost function constraints, 

 
  |

l l pw

p l p w

F f w f x


     

 The integrality constraint is relaxed to 

                         0 1.p wx    
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Physical layer impairments 

 Use impairment analytical models 

from literature 

 On-Off keying – 10 Gbps 

 Inter-lightpath: ASE, PMD, CD, SPM 

 Interference: intra-and inter-channel 
XT, XPM, FWM 

 Quality of Transmission criterion:  

Q-factor (~ BER) 

 

 

 Lightpath acceptable: Qp(w) < 15.5 dB  

 

'1', '0',

'1', '0',

( ) ( )
( )

( ) ( )

p p

p

p p

I w I w
Q w

w w 






I’1’ 

I’0’ 
σ’0’ 

σ’1’ 

BER(Q)= 1
2

 erfc
2

Q 
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 

 

Eye diagram 

(ON-OFF keying 10Gbps) 
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Modeling physical layer constraints in RWA 

 From Qp(w) < 15.5 dB, find for each lightpath 

a bound on the acceptable noise variance of 

interference impairments 

 

 Express interference noise variance with 

lightpath utilization variables (xpw ) 

 Add in our LP formulation a constraint for 

each lightpath 

n0 n1 n2 n3 n4w

l1

ww
w
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{ | endof }

( )pw p p

l p n l

B x S w B


 
 
     
 
 
 



Adjacent channel interference 

K. Christodoulopoulos, K. Manousakis, E. Varvarigos, IEEE/ACM Transactions on Networking,  2010 

Solution: lightpaths that have acceptable interference  acceptable Q 

2 2 2

,'1', ,'1', max,( ) ( ) ( )XT p XPM p pw w w   
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Performance evaluation results 

 DT network topology 

 DT actual traffic matrix of 2009 (scaled to 

capture future traffic) 

 Realistic Link and node-OXC models 

 Realistic physical layer parameters 
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IA-RWA algorithm performance (optimality) 

 Problem instances solved using 

 The proposed LP-relaxation algo 

 ILP 

 100 random traffic instances  

 Zero blocking solutions 

 Using ILP we were able to solve all 

instances within 5 hours up to load ρ=0.7 

 LP-relaxation: the optimality is lost in 2-3 

cases but the execution time is 

maintained low 
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IA-RWA algorithms comparison 

 Compare proposed algorithm (LP-IA-

RWA) with algos by other researchers 

 GA-RWA-Q: genetic algorithm, separate PLI 

– Q verification module 

 S-RWA-Q : one-by-one sequential heuristic, 

separate PLI – Q verification module 

 ILP-WA-LU: ILP, PLIs taken indirectly into 

account 

 LP-IA-RWA algorithm exhibits 

 best wavelength utilization performance  

 the second lower average running time 
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WDM network evolution 

 As the network evolves, established connections are teared-

down and new are established 

 Operational phase 

 Establish new connection one-by-one (or a small set) 

 Penalize re-routing of established lightpaths 

 

 Re-plan (re-optimize) the network  

 Periodically or On-demand 
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Mixed-line-rate (MLR)networks 

 Use advanced RWA algos to account for the different types of TxRx 

with different capabilities and costs 

 More complicated PLIs: cross-rate interference effects 
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



line rates

transponders

 Network with more than one 

rate (various types of TxRx) 

 Higher rate TxRx, more 

expensive, less reach 

 Exploit the heterogeneity 
Serve distant connections with 

inexpensive, low-rate/long-reach TxRx, 

and short-distance high-rate 

connections with more expensive but 

fewer,  high-rate TxRx  
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Outline 

 Generic optimization methods  

 Linear Programming, Integer Linear Programming 

 Meta-heuristics 

 Heuristics 

 Standard WDM networks 

 Planning 

 Physical layer impairments 

 Network evolution 

 Flexgrid optical networks 

 Planning 

 Physical layer impairments 

 Network evolution 
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Are standard WDM networks sufficient for future? 

 WDM networks 

 To support increased capacity demands: 10Gbps  40 and 100 Gbps 

 ITU fixed spectrum grid: all connections get 50 GHz (wavelength) 

 Inefficient use of resources 

 Desired system: fine-granular, flexible 

 

 Flexgrid optical networks 

•  6.25 or 12.5 GHz slots 

•  Slot coupling capabilities 

FP7 IP project 

WDM network 
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Flexgrid optical network 

 Spectrum variable (non-constant) 

connections, in contrast to 

standard WDM 

 Prototypes reported 

 Spectrum flexible OXCs 

 Spectrum flexible transponders 

 2 flexibility degrees: modulation 

level and spectrum used 

 
Benefits 

 Finer granularity, spectrum savings, higher spectral efficiency 

 Enable dynamic spectrum sharing: statistical multiplexing gains 
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Planning flexgrid networks 

 Input: Network topology, traffic matrix, physical layer models 

 Proposed approach: describe TxRx feasible configurations with  

(reach-rate-spectrum-guardband-cost) tuples 

 Output: Routes and spectrum allocation RSA 

(and also the modulation-level used - RMLSA) 

 Minimize utilized spectrum and/or number of transponders, and/or… 

 Satisfy physical layer constraints 
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Flexgrid TxRx and PLIs 

 Flexgrid TxRx: tunable in spectrum and modulation level 

 Describe flexgird TxRx feasible configurations with  

 (reach-rate-spectrum-guardband-cost) tuples 

 Account for physical layer impairments 

 Account for spectrum- and modulation-format adaptation 

 Enable constant and non-constant guardband connections 

 Enable the use of multi-type TxRx with different capabilities 

 Can be also used for single- and mixed-line-rate WDM (fixed-grid) networks 

!! 

 Need to translate the WDM (fixed-grid) TxRx specs to the specific input 

 e.g. A 10,40,100Gbps MLR network with reaches 3200,2300 and 1500 km and 

relative costs1, 2.5 and 5, respectively, can be described with the following tuples:  
(10 Gbps-3200 km,50 GHz,0,1), (40 Gbps-2300 km,50 GHz,0,2.5), (100 Gbps-1500 km,50 GHz,0,5) 
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RSA vs. RWA 

 Flexgrid networks have more flexibility degrees  

 Modulation level  

 # or allocated spectrum slots 

 New formulations are required 

 Link & path formulations (as in RWA) 

 Spectrum slot allocation 

1. Slot-related variables: need constraints to allocate contiguous slots 

+ discrete slot-assignment constraints (similar to RWA) 

2. Super-slot (set of contiguous slots) variables:  need discrete super-

slot assignment constraints 

3. Starting slot variables: need spectrum-ordering of demands to avoid 

slot overlapping 

 #spectrum slots > # wavelengths (could be >>)  

Formulations 1 and 2 that depend on the #slots might scale badly 
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RSA algorithm example 

 RSA algorithm example 

 Places regenerators (translucent network) 

 Decides how to break in more than one connections (if capacity demand 

at required distance> TxRx capabilities) 

 Multi-objective optimization: minimize cost and spectrum utilization 

Scalarization : a weighted combination of the 2 metrics 

 (w . cost) + [(1- w) .spectrum_slots] 

 ILP formulation 

 Path formulation, based on starting slot  

variables 
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RSA ILP algorithm 

 Pre-processing phase 

 Given: Network graph, feasible (rate-reach-spectrum-guardband-cost) 

transmission configuration tuples of the TxRx  

 Calculate for each demand, a set of k-shortest paths 

 Identify the configurations (tuples) that can be used by the transponders 

over a path  define (path-tuple) pairs and calculate the #TxRx, #Reg, 

#spectrum slots required by each (path-tuple) pair 

 A (path-tuple) pair is a candidate solution to serve a demand 

 RSA ILP algorithm selects the (path-tuple) pair to serve each 

demand and allocates spectrum slots 

 Also developed a heuristic that serves demands one-by-one in some 

particular ordering (highest demand first), and uses simulated 

annealing to search among different orderings 
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ILP formulation 
minimize (1 )w S w C     

 

 Cost function definition:  

For all (s,d) pairs, all (p,t)Qsd, all i{1,2,…, Wp,t}, and all mRp,t, 

, , , , ,p m t i p t iS f b  .  

, ,

( , ) sd

p t p t

sd p t Q

C C x


   . 

 Path-tuple pair selection: 

For all (s,d) pairs,

 

,

( , )

1
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p t

p t Q

x


 . 

 Starting frequencies ordering constraints: 
For all (s,d) pairs, all (p,t)Qsd, all mRp,t, all i{1,2,…, Wp,t}, all 

(s’,d’), all (p’,t’)Qs’d’, all m’Rp’,t’ where m and m’ share at least 

one common link, and all i’{1,2,…, Wp’,t’}, 

, , , , ', ', ', ' ', ', ', ', , , , 1,p m t i p m t i p m t i p m t i    
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.
 

 Non-overlapping spectrum constraints:  

For all (s,d) pairs, all (p,t)Qsd, all mRp,t, all i{1,2,…, Wp,t}, all 
(s’,d’), all (p’,t’)Qs’d’ all m’Rp’,t’ where m and m’ share at least 

one common link, and all i’{1,2,…,Wp’,t’} 
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Inputs: 

Λ Traffic matrix that includes the requested demands, where Λsd corresponds to 

the demand (s,d) 

Psd Set of alternative paths for demand (s,d)  

Qsd Set of non-dominated path-tuple pairs for demand (s,d) assuming a translucent 

network setting 

Cp,t Cost of transponders required to serve demand (s,d) using path pPsd and 

tuple tT, that is, using path-tuple pair (p,t) 

Wp,t Number of connections required to serve demand (s,d) using path pPsd and 
tuple tT, that is, using path-tuple pair (p,t) 

bp,t,i Number of spectrum slots required for data transmission without guardband 

for flexgrid lightpath (p,t,i) [lightpath i{1,2,…,Wp,t} of path-tuple pair (p,t)]. 
In particular, if Wp,t=1 then bp,t,i=bt, and if Wp,t>1 then bp,t,i=bt for i
{1,2,…,Wp,t-1} and bp,t,i=

remtb for i= Wp,t. 

gp,t,i: Number of guardband spectrum slots required for the data transmission for 
flexgrid lightpath (p,t,i). In particular, if Wp,t=1 then gp,t,i=gt, and if Wp,t>1 then 

gp,t,i=gt for i{1,2,…,Wp,t-1} and bp,t,i=
remtg  for i= Wp,t. 

Ftotal Upper bound on the number of spectrum slots required for serving all 

connections set to  ,
( , )
max

sd

TOTAL p t
p t Q

sd

F S


  

W Objective weighting coefficient, taking values between 0 and 1. Setting w=0 

(or w=1) minimizes solely the cost of transponders used (or the total spectrum 

used, respectively). 

 

Variables: 

xp,t Boolean variable, equal to 1 if path-tuple pair (p,t)Qsd is used to serve 

demand (s,d) and equal to 0 otherwise. 

fp,m,t,i Integer variable that denotes the starting spectrum slot for flexgrid 

transparent lightpath (p,m,t,i) [lightpath over sub-path mRp,t of 

translucent connection i{1,2,…,Wp,t} of path-tuple pair (p,t)]. If path-

tuple pair (p,t) is not utilized to serve (s,d) then variable fp,m,t,i  is free and 

does not play a role in the solution. Note that fp,m,t,i<Ftotal. 

δp,m,t,i,p’,m’,t’,i’ Boolean variable that equals 0 if the starting frequency fp,m,t,i for flexgrid 

transparent lightpath (p,m,t,i) is smaller than the starting frequency fp’,m’,t’,i' 

for flexgrid lightpath (p’,m’,t’,i'), i.e., fp,m,t,i< fp’,m’,t’,i'. Variable δp,m,t,i,p’,m’,t’,i’ 

is defined only if sub-paths mRp,t and m’Rp’,t’ share a common link. 

S Highest spectrum slot used. 

C Cost of utilized transponders. 
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RSA vs. MLR 

 TxRx capabilities according to (*) 

 Flexgrid vs. MLR network 

 (assuming similar reach-rate capabilities) 

 2 optimization options: optimize 

spectrum (w=1) or cost (w=0.01) 

* A.  Klekamp, R. Dischler, R. Buchali, “Limits of Spectral Efficiency and Transmission Reach of Optical-OFDM Superchannels for 
Adaptive Networks”, IEEE Photonics Technology Letters,  23(20), 2011. 
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Flexgrid network evolution 

 Flexgrid: finer granularity and more flexibility  

(when compared to WDM that have wavelength-level 

granularity, non-tunable transmissions) 

 Flexgrid network evolution differs from WDM 

 Traffic variation can be accommodated at different levels 

 new connection requests 

 traffic variation of established connections, served by tuning  the TxRx 

 Re-optimization: spectrum fragmentation (more severe in flexgrid) 
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Flexgrid network evolution 

 Traffic variations can be accommodated at different levels 
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 1st level: New connection request 

 RSA algo serves the request  

(assign path and reference frequency) 

 2nd level: traffic variation of existing 

connection 

 Spectrum Expansion/Contraction (SEC) 

 If the SEC fails (cannot find free 

additional slots)  trigger RSA to 

setup an additional connection or 

reroute the existing 

RSA

Routing and 

Spectrum 

Allocation 

New connection 
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Dynamic spectrum sharing 

 A connection 

 is assigned a path and a reference frequency 

 utilizes slots around reference frequency 

 expands / contracts its spectrum to follow the traffic variations 

 A slot is assigned to only one connection at a given time instant 

 Slots are shared among connections at different time instants 

Spectrum Expansion/Contraction (SEC) policy 

  
  Slotted spectrum 

(e.g. 6.25 GHz) 
 

  G Guardband slot(s) is (are)  
required between connections 

 

F0
Cs GHz G 

guadband

F0

Cs GHz G 

guadband

G 

guadband

Time t1

Time t2

Reference 

freq

Reference 

freq

Link Slot utilization 
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SEC policies and dynamic RSA algorithm 

 SEC policy examples 

 CSA policy 

 Connection exclusively uses a set of slots 

 No spectrum sharing 

 DHL policy 

 Expansion: use higher spectrum slots, until  

find a used slot, then use lower spectrum slots, opposite when contract 

 Dynamic spectrum sharing 

 Analytical models to calculate network blocking 

 RSA algorithm for serving time-varying traffic 

 Allocates route and reference frequency 

 Takes into account the SEC policy used (through the analytical model) to 

calculate the total average network blocking probability 
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K. Christodoulopoulos, I. Tomkos, E. Varvarigos, “Time-Varying Spectrum Allocation Policies in Flexible Optical Networks”, IEEE JSAC, 2013 
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Performance results 

 Spectrum flexible network exhibits superior performance (DHL is up to 2 orders of magnitude 

better than WDM-RWA case) 

 Dynamic spectrum sharing (DHL policy) reduces the blocking compared to constant spectrum 

allocation (CSA policy) 

 The proposed analytical models are in close agreement with the corresponding simulations 
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 Traffic:  Single connection between every pair of nodes 

 Each connection generates slots according to a birth-death process 

 Network supports T slots, Guardband G=1 slot 

 Compare Spectrum Flexible network to a  WDM system with T/2 wavelengths 
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Network Planning and Operation Tool 

 Consolidate planning and operation algorithms in a software tool:  

 Network Planning and Operation Tool (NPOT) 

 Useful for network operators, equipment vendors and researchers 

  Can be used to investigate several issues : 

 the choice of the optical technology to be used 

 the topology design  

 the placement of optical equipment (e.g., transponders, regenerators, etc) 

at the various nodes 

 the offline or online routing and wavelength (or spectrum) assignment for 

the connection requests 

 account for physical-layer impairments 
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MANTIS – Upatras NPOT 

 MANTIS developed at University of Patras 

 Service (cloud) 

 Desktop application 

 Current MANTIS state 

 Web-page UI 

 Desktop application engine 

 Core application engine 

 Offline RSA algorithm 

 Heuristic and ILP (using CPLEX) 

 Goal: Mantis to be a reference 

to compare network architectures 

 and algorithms  
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Summary 

 General methods to solve optimization problems in networks 

 WDM networks 

 Goal of planning: satisfy traffic and optimize resource usage 

 Physical layer impairments (cross-layer optimization) 

 Network evolution: establish new connections and re-optimize 

 Flexgrid networks 

 Added complexity due to more flexibility degrees 

 Interdependence among reach-rate-spectrum-guardband parameters 

 Traffic variation can be accommodated at different levels 

 Develop novel formulations  

 Network Planning and Operation Tools - Mantis 
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Thank you for your attention! 

Questions ? 
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