IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

393

A Conflict Sense Routing Protocol
and Its Performance for Hypercubes

Emmanouel A. Varvarigos and Dimitri P. Bertsekas, Fellow, IEEE

Abstract—We propose a new switching format for multiprocessor networks, which we call Conflict Sense Routing Protocol. This
switching format is a hybrid of packet and circuit switching, and combines advantages of both. We initially present the protocol'in a
way applicable to a general topology. We then present an implementation of this protocol for a hypercube computer and a particular
routing algorithm. We also analyze the steady-state throughput of the hypercube implementation for random node-to-node

communications.

Index Terms—Packet and circuit switching, hypercubes, random one-to-one communications, throughput.

1 INTRODUCTION

T HERE are two general switching formats, circuit switch-
ing and packet switching, that are used in network com-
munications. Circuit switching combines many well-known
advantages, but is seriously inefficient. The inefficiency is
related to the allocation of a link to a message for more time
than required. Packet switching on the other hand is effi-
cient in terms of link utilization since a link is used when-
ever there is a packet that wants to cross it, but has a num-
ber of drawbacks especially when the buffer space per node
is limited and packets must occasionally be dropped.

A solution that has been proposed is deflection routing
(see [5], [2], [6], [10]). With deflection routing, packets are
misrouted instead of dropped. This works well for several
networks (for example, hypercubes, Manhattan street net-
works), but not for all (for example, its throughput for the
shuffle exchange network is low; see [8]). Networks not
having enough path redundancy will most probably be
unsuitable for deflection routing. Cut-through routing [71
and, its variation, wormhole routing [4] is another interesting
alternative for multiprocessor communications, but some
theoretical problems are still unresolved. The possibility of
deadlock cannot be ruled out for both deflection [9] and
wormhole routing [4], unless special precautions are taken.
In practice, most data networks and many multiprocessor
systems currently use packet or circuit switching. However,
for many applications, it is unclear which one of the two is
preferable, since each has relative advantages at exactly the
same areas where the other has disadvantages.

In this paper we introduce a new switching format,
which we call Conflict Sense Routing Protocol (or CSR proto-
col), and is a hybrid of circuit and packet switching. With
this protocol, a packet can enter the network only after

o L.A. Varvarigos is with the Department of Electrical and Computer Engi-
neering, University of California, Santa Barbara, CA 93106.

o E-mail: manos@ece.ucsb.edu.

o D.P. Bertsekas is with the Laboratory for Information and Decision Science,
Massachusetts Institute of Technology, Cambridge, MA 02139,

Manuscript received Sept. 11, 1992; revised May 30, 1993.
For information on obtaining reprints of this article, please send e-mail to:
transcom@computer.org, and reference IEEECS Log Number C96048.

having reserved its route (links and buffer space). This re-
sembles circuit switching. A packet, however, reserves a
resource only for the slot (or slots) during which the re-
source will be used. In particular, a link on a packet’s route
can be used by other packets while the given packet is 11s-
ing other links on its route. This resembles packet switching
since the links and the buffer space are used on a demand
basis.

The CSR protocol is more efficient than circuit switching,
because in circuit switching the entire path of a packet is
reserved as the packet is traveling on any one link of the
path, and additional overhead is needed to “tear down” a
circuit after all transmissions of the circuit have been com-
pleted. A major advantage of the CSR protocol over packet
switching is that it avoids the waste of resources due to
dropping packets that have been transmitted for several
hops. In multiprocessor systems with thousands of proces-
sors the buffer space per node is usually small, making
dropping of packets a serious problem when packet
switching is used. To deal with the possibility of dropped
packets it is necessary to use some acknowledgment sys-
tem. In parallel computers it is typically impossible to pig-
gyback acknowledgments on the opposite direction traffic
(in a network of thousands of processors a particular pair of
processors rarely communicates), while the use of separate
acknowledgment packets increases the network load sig-
nificantly. To make things worse, acknowledgments may
themselves be dropped increasing the delay and compli-
cating the implementation. The CSR protocol that we will
propose does not use acknowledgments as a feedback
mechanism. Once a packet enters the network, it knows
that it will arrive at its destination because it has already
reserved the resources required along the way.

Another advantage of the CSR protocol is that it pro-
vides a “built-in” flow control mechanism. Flow control is
necessary in packet switching to slow down transmissions
when congestion arises in' order to reduce dropping of
packets. Flow control protocols in a multiprocessor com-
puter cannot be the same wiih the ones of a general data
network, where the nodes are bigger and the buffering is

0018-9340/96%05.00 ©1996 IEEE

694

cheap. Such protocols will not work well for massively par-
allel computers with little buffer space per node. For exam-
ple, a window flow control scheme [1] with a window of
small size is inefficient when the roundtrip delay is large
relative to the transmission time of a packet. On the other
hand, making a window large requires too much buffer
space for the storage of unacknowledged packets, which is
a scarce commodity in parallel computers, and an estimate
of the roundtrip delay, which is not always easy.

The livelock problem, where a packet circulates in the
network without ever reaching its destination cannot occur
with the CSR protocol; a packet that enters the network is
guaranteed to arrive at its destination with a finite delay.
Also, as described in Section 5, the CSR protocol does not
suffer from the deadlock problem. A livelock (or a dead-
lock) may arise with deflection routing (or with wormhole
routing, respectively), unless special measures are taken.
Also, as explained in Section 5, the CSR protocol is more
fair than other switching formats.

We initially present the CSR protocol in its generality.
The description that we give is independent of the network
topology, the routing algorithm used, and the buffer space
available. We then specialize the CSR protocol to the case of
a hypercube network of processors with buffer space only
for the packet being transmitted. We focus on a particular
routing algorithm, where packets traverse the hypercube
dimensions in descending order. The node switches as-
sumed by this routing algorithm are simple and inexpen-
sive blocking switches, instead of cross-bar switches. The
throughput of the unbuffered case is evaluated for various
traffic loads through an approximate analysis, and is found
very satisfactory. For the routing algorithm and the buffer
that we assume, the protocol guarantees that every packet
that enters the network arrives at its destination after ex-
actly d slots, where d is the diameter of the hypercube.

The organization of the paper is the following. In Section 2,
we describe the CSR protocol in its generality. In Section 3,
we describe a particular CSR implementation for a hyper-
cube network of processors. In Section 4, we evaluate the
throughput of this implementation. In Section 5, we com-
pare the CSR hypercube implementation to other switching
formats and routing schemes, we discuss implementation
issues, and we conclude the paper.

2 DESCRIPTION OF THE CSR PRoTOCOL

In this section we present the CSR protocol for a general
topology, and describe the data structures that are neces-
sary for its implementation. A pair (s, I) will represent the
Ith link of processor s, and d will represent the diameter of
the network. We assume the existence of a routing algo-
rithm which, for each source s and destination v, finds a
path leading from s to v, and provides a way to resolve con-
flicts among packets requiring the same link. The only
property that the routing algorithm has to satisfy is that the
links traversed by a packet 2, and the time instants these
links are used do not depend on packets that entered the
network after . We call such a routing algorithm future
oblivious. Future oblivious algorithms can be deterministic,
probabilistic, distributed, or even adaptive. For example, an

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

algorithm that gives priority to a given packet over packets
that entered the network earlier is not future oblivious,
while one that gives priority to a packet over packets that
entered later is future oblivious.

Each link (s, I) of the network is assumed to have a link
buffer and an entry buffer, denoted by 9, and &, respec-
tively. Entry buffers form the interface of a processor with
its router and can store only new packets. A packet enters
(or is accepted to) the network when it moves from an entry
buffer to the corresponding link buffer. A link buffer can be
used only by packets already accepted to the network, and
can hold up to K] packets, in addition to the packet being
transmitted. We assume that all packets require one time
unit for transmission over a link, and a single buffer space
for storage.

We define a flit (from “flow control unit”) as the smallest
number of bits which can contain routing information, or
else the minimum number of bits which can be accepted or
rejected by a link buffer (the term flit was used, with a
slightly different meaning, by Dally [3]). A typical size of a
flit is 64 bits. Flits are used in parallel computers that sup-
port wormhole routing (for example the J-machine, see [3]),
and are similar to the set-up messages used in circuit
switching. We assume that a node has a way to distinguish
control flits from actual data.

A packet stored at an entry buffer sends a flit before en-
tering the network in order to reserve the resources that it
will need. This flit reserves a resource (link or buffer) only
for the slots during which it will need it. A flit generated at
an entry buffer follows the same path that the packet would
follow, that is the path provided by the underlying routing
algorithm of the network. Flits are treated one at a time by a
link on a FCFS basis. If two flits arrive at the same time the
order in which they are considered is found arbitrarily, for
example at random. Flits that fail to reserve a link are
blocked on the spot.

Let /2 be an upper bound on the time required for a flit
to travel a distance of 4 links, where d is the diameter of the
network. We can take

£=2kdz, o)
with
F
T = W +7v,
where F is the length of a flit in bits, W is the bandwidth of
a link measured in bits per unit of time, yis an upper bound
on the propagation and processing delay of flits, and k is
the buffer size for packets per link. This is because if a flit is
not blocked, it can be delayed by at most k — 1 other flits on
a particular link. The parameter £ is of critical importance,
and it will be seen in what follows that the CSR protocol
makes sense primarily when £ is small relative to the
transmission time of a packet.

The time axis is divided into alternating control intervals
of length S units of time, where flits are routed and reser-
vations are made, and fransmission intervals of length equal
to one unit of time where packet transmissions actually take
place (see Fig. 1). A control interval is divided into a forward
and a backward phase, each of length 4/2. During the for-

VARVARIGOS AND BERTSEKAS: A CONFLICT SENSE ROUTING PROTOCOL AND ITS PERFORMANCE FOR HYPERCUBES 595

ward phase {lits travel from their source to their destina-
tion, reserving links and buffer space. After /2 time units
all flits have either arrived at their destination or have been
blocked (see Appendix for a proof). In the backward phase
flits travel in the opposite direction, carrying feedback in-
formation to the source. A way to ensure that flits will not
collide on links in the backward phase, is to transmit a flit
on a link at time (2kd — i — 1)z in the backward phase, if it
was transmitted on the same link (in the opposite direction)
at time iz in the forward phase, for i =0, 1, ..., kd — 1 (see
Appendix). In this way the feedback is 100% reliable. For a
general network and a general routing algorithm, storage
for at most kd 6 flits per node, where J1is the in-degree of a
node, is sufficient (see Appendix). If blocked flits do not
have have to return to the origin (and therefore do not have
to be stored), the storage requirements at the nodes for flits
are considerably reduced. For the hypercube CSR imple-
mentation that we will give in Section 3, we will see that
storage space for just one flit per link is adequate.

1 slot

1 unit of time

Fig. 1. The time axis divided into slots. A slot consists of a control in-
terval of length 3 and a transmission interval of equal to one unit of
time.

Flits that have been blocked carry negative acknowl-
edgments (or NACKs for brevity), while flits that have
made all the necessary reservations carry positive acknowl-
edgments (or ACKs). A NACK prevents the packet from
entering the network during the transmission interval of
the current slot. This saves bandwidth since such a packet
would be dropped, if transmitted, at exactly the same link
where the flit was blocked. This is the reason we call the
protocol conflict sense routing protocol: it senses a conflict
before it actually happens. The control interval serves as a
“microscopic,” inexpensive rehearsal of what would hap-
pen if the packet was transmitted. In this way, after a feed-
back delay of Stime units, each entry buffer knows whether
the packet (if any) that it holds can be transmitted without
being dropped, or not.

The way the reservations are made and the data struc-
tures required for this purpose are described next. For

every link queue Qf there is a list Lf , called reservation list,

whose elements represent future transmission intervals.
The first element represents the next transmission interval.
At the end of a transmission interval, the first element of

the list is deleted. The element of £ which corresponds to

the tth transmission interval (transmission intervals are
counted with respect to the present control interval) is de-

noted by Lt], and is composed of two fields, denoted by
£7 [t] link and L‘; [t]_buffer . In case there is no buffer space
at the links except for the packets currently under transmis-
sion, the two fields collapse into one. The field L? [t] link is

equal to one if the link (s, /) has already been reserved for
the #th transmission interval, and zero otherwise. The field

LIt]_buffer takes integer values between zero and the
buffer size K;. It is equal to the number of buffer spaces of
Q; already reserved for the tth transmission interval.

Each flit f carries with it a counter, denoted by ¢, The
counter of a flit generated at an entry buffer is originally set
to one. In the forward phase of a control interval the flit
travels on the path provided by the routing algorithm from
the source to the destination. Let £ be the reservation list
of link (s, 1), respectively, at the time when f is considered
by link (s, 1), where (s, I) is a link on the path of f. We define
T as the minimum integer that satisfies

Cf < T,
LIT]_link =0,

and
LIt]_buffer < K] forallt e fepep+1,.,T=1).

If such a T exists, the link (s, I) is reserved for the Tth
transmission interval by f. A buffer space at Q; is also re-

served for the intervals ¢; up to T — 1. At the same time the
reservation list of (s, [) and the counter of f are updated ac-
cording to

Cf =T+ 1,
LI link =1,
and

L] buffer := Lt]_buffer +1 Vie fepep 1,0, T ~1}.

If a T that satisfies the previous relations does not exist, the
flit is blocked, and the reservation fails. During the back-
ward phase of the control interval such a flit returns to its
source entry buffer by using the reverse path, carrying a
negative acknowledgment (NACK) and freeing the links
and buffer space it has reserved in the forward phase. A
packet which receives a NACK does not enter the network
at the next transmission interval and will retry to make the
necessary reservations at some subsequent control interval, If
on the other hand a flit manages to reach its destination re-
serving all the necessary resources, then at the backward
phase it returns to its source entry buffer as a positive feed-
back. The corresponding packet will enter the network at the
immediately following transmission interval, and will arrive
at its destination after several transmission intervals by using
the links and buffer space already reserved for it. If a packet
that receives a NACK always retries at the next control inter-
val, then the protocol preserves the order of the packets sent
from a particular entry buffer to a destination node.

A last issue that has to be dealt with is the method of re-
cording which packet reserved a link for a particular slot.
One way is to store that information at the intermediate
nodes, by having a third field at £[t] which will record the
sequence number of the packet that reserved (s, I} for the #th
slot. A different approach is to have the bookkeeping in-
formation attached to the packet. This is done by having the

696

flit record the sequence of values c}i) that it takes after each

G0 G-
¢t)

hop i (or, even better, the differences ¢ . In the case

where there is buffer space only for the packet being trans-
mitted the book-keeping information is not needed. Note
that it is not necessary to know which packet reserved
which particular buffer space, since buffer spaces can be
organized as a pool.

We finally note that the CSR protocol shares with other
reservation schemes a generic drawback: for light load and
large g it has larger delay than packet or circuit switching.
For a packet that has to travel k hops this delay is nearly
equal to k units of time with packet switching, k + £ with
circuit switching, and k(1 +) with the CSR protocol. For
heavy load or small 3, the CSR protocol is expected to have
smaller delay than circuit or packet switching, because it
uses links more efficiently (which means higher throughput
and smaller input queuing delay).

3 A HypercuBe CSR ProTocCOL

In this section we will describe a hypercube implementa-
tion of the CSR protocol. We introduce a particular routing
algorithm, which is future oblivious, and superimpose on it
the CSR protocol. This algorithm assumes simple inexpen-
sive switches for the nodes, instead of cross-bar switches.
We start by describing the model assumed for a hypercube
node, and the routing algorithm used.

3.1 The Hypercube Node Model and the Routing
Algorithm

Each node of an N = 2“-node hypercube is represented by a
unique d-bit binary string s;_; s;_, -+- s, There are links be-
tween nodes whose representations differ in one bit. Given
two nodes s and £, s ® ¢ denotes the result of their bitwise
exclusive OR operation and is called the routing tag between
the two nodes. We also denote by ¢, the binary string whose
ith bit is equal to one, and all other bits are equal to zero. A
link connecting node s tonode s @ ¢, i=0,1,...,d -1, is
called a link of the ith dimension. Note that if the ith bit of the
routing tag of a packet is equal to one, then the packet must
cross a link of dimension 7 in order to arrive at its destination.

Each link of a node has an entry buffer, which can hold
one new packet. The entry buffer of link i of node s is de-
noted by £(s). The entry buffer is ready to accept a new
packet only if the previous packet has reserved the links it
will need, and positive feedback has been received. A
packet that receives a NACK retries to make the reserva-
tions at the next control interval. An entry buffer holding a
packet for which no positive feedback has been received is
said to be backlogged. New packets arrive at the entry buffer
of a link. New packets arriving at backlogged entry buffers
are discarded.

Each node s has d link queues, each of them associated
with a link of the node. The link queue of link i of node s is
denoted by Q(s). A link queue is composed of two buffers
which can hold only one packet each. The first buffer is
called forward buffer, denoted by Q/(s), and is used only by
packets which must cross the ith dimension. The second
buffer, denoted by Q/(s), is called internal buffer, and is

|IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

used only by packets which do not need to cross the ith
dimension. The queues of the nodes are linked in the fol-

lowing way; the internal buffer Ql.o(s) is connected to link
queue Qi 1ymoa a(8) of the same node and the forward buffer
Q} (s} is connected to quetie 9 104 4(5 D €) of the neighbor

node s @ ¢; (see Fig. 2). This router organization results in
node switches which are simpler, faster, and less expensive
than cross-bar switches (see the comments on the node
model in Section 5).

Q,?s)

node s+te,

entry buffers

Fig. 2. Two neighbor nodes of a five-dimensional hypercube.

The routing algorithm is the following. A new packet
generated at a node selects a link, say link /, with equal
probability independently of its destination and competes
for one of the two buffers of the Ith link queue, Q,(s) or

Qf(s), depending on whether it must use the /th dimension
or not. The packet traverses the dimensions in descending
(modulo d) order, starting from the random dimension 1. In
particular, consider a packet which arrives at queue 9Q/(s) of

node s, either from buffer Qg +Dmoda8) of s, or from buffer
Q(lm)modd(s ® e,,,) of the neighbor node s ® ¢,,,, or from

the entry buffer £(s). The ith bit of its routing tag is
checked, and depending on whether it is equal to one or

zero, the packet claims buffer Qi] (s) in order to be trans-

mitted to queue Q04 4(s © €) of the neighbor node s ® ¢,
or it claims buffer Q°(s) in order to be internally passed to

the next link queue 9 ;)04 4(s) of the same node. If two
packets require the same link and there is not enough
buffer space at the link, one of them is dropped. We will
only analyze the case where each link buffer has space for
only one packet, the one being transmitted. Note that when
the CSR protocol is superimposed on the routing algorithm,
packets are not dropped due to collisions: the flit of one of
the packets that collide returns to its source carrying a
NACK, preventing the packet from entering the network.

3.2 Superimposition of the CSR Protocol on the
Hypercube Routing Algorithm

In this subsection we describe how the CSR protocol is su-

perimposed on the hypercube routing scheme of the previ-

ous subsection. The unit of time is taken as the time re-

quired for the transmission of a packet over a link. The pa-

VARVARIGOS AND BERTSEKAS: A CONFLICT SENSE ROUTING PROTOCOL AND ITS PERFORMANCE FOR HYPERCUBES 697

rameter 4 here is the time (in units of time) required by a
flit to travel a distance of 2d links (recall our assumption
that each link has buffer space for only one packet, so fis
given by (1) with k = 1). The time axis is divided into slots,
each of which has duration 1 + f units of time. During the
first time units, the flits are transmitted to make reserva-
tions for the new packets that want to enter the network.
During the remainder of the slot the old packets and the
new packets that have made the necessary reservations are
transmitted one hop.

An entry buffer holding a packet that wants to enter the
network (a new packet or one that is being retransmitted)
sends a flit to the packet’'s destination, containing the
packet’s routing tag. A flit originated at link [is transmitted
during the ith step of the forward phase, i =0, 1, ..., d -1,
over the | — i mod d dimensional forward (or internal) link
of a node, if the (I — i mod d)th bit of its routing tag is a one
(or a zero, respectively), provided that this link has not
been reserved by another packet. At the same time the flit
makes a reservation of that link for the ith subsequent
transmission interval. When two flits try to reserve a link at
the same time and for the same transmission interval, one
of them is selected at random to make the reservation, and
the other is blocked. Flits that find a link already reserved
are also blocked.

When all flits have been blocked or have arrived at their
destination, which happens after at most 4/2 time units, a
backward phase begins. In the backward phase each flit
which was blocked follows the reverse route to its origin
carrying a negative acknowledgment (NACK), and freeing
the links that it had reserved. The NACK will prevent the
corresponding packet from entering the network during the
transmission interval of the current slot. Flits which reserve
all the links to their destination, return in the backward
phase to their origin following the reverse path than the
one followed in the forward phase, and carrying a positive
feedback (ACK). A flit is transmitted over a link at step
2d — i -1 in the backward phase (i =0, 1, ..., d - 1) if it was
transmitted on the same link at the opposite direction dur-
ing step i in the forward phase. In this way there are no
conflicts between flits in the backward phase. After a packet
enters the network, it follows its path knowing that it will
not collide with any other packet; the only information it
needs is its routing tag. If an entry buffer receives a nega-
tive feedback, it tries to make the necessary reservations at
one of the next control intervals. If we require only ACKs to
return to their origins (in this case after a constant delay of
J time units, a NACK is assumed and blocked flits can be
discarded), then even with storage for just one flit per link,
ACKs never get lost.

The preceding hypercube implementation indicates
some of the typical advantages of a CSR protocol. First,
packets that are going to be dropped are not allowed to
enter the network. This prevents congestion from feeding
on itself. Second, the feedback is obtained as soon as possi-
ble. This makes the use of a window of size one possible
and efficient at the same time, and the storage of packets
not yet acknowledged minimal. All packets accepted to the
entry buffer (router) arrive at their destination with con-
stant delay. Whenever a packet is successfully transmitted,

the corresponding entry buffer enables the processor to
insert a new packet, if it has one. Resources are reserved for
as long as they are needed and yet all the advantages of
circuit switching are maintained. The hypercube CSR pro-
tocol example indicates that by using capabilities available
in multiprocessor systems, namely the possibility to effi-
ciently route flits through the knowledge of the topology,
the flow control mechanism becomes easy and efficient.

Note that the control flits can also be transmitted “off”
channel. In a VLSI implementation of parallel computers,
there are usually many wires for each link, and the band-
width of the link is proportional to the number of these
wires. In such systems several bits are transmitted in par-
allel over a link during a clock cycle. In an implementation
of the CSR protocol, one would probably choose to dedicate
one of these wires to the control flits in order to simplify the
design. This corresponds to a kind of FDMA multiplexing
as opposed to a TDMA multiplexing of control information
and data.

4 PERFORMANCE ANALYSIS OF THE CSR
ProTocoL FOR HYPERCUBES

In this section we present an approximate analysis of the
throughput of the hypercube CSR protocol described in the
previous section. We assume that packets having a single
destination are generated at each node, and the destinations
of the packets are uniformly distributed over all the hyper-
cube nodes. Packets are being generated over an infinite
time horizon, and require one unit of time for transmission
over a link. We are interested in the average throughput
when the network reaches steady state. We are also inter-
ested in the associated stability issues. We will limit our
attention to the case where the link buffers have space only
for the packet being transmitted.

Assuming that both the control flits and the data packets
use the same channel, a slot is defined to be equal to 1 + 3
units of time. The probability that the entry buffer of a link
tries to insert a new packet during a slot is called attempt
rate and is denoted by p,. The attempt traffic is the result of
the merging of newly generated packets and retransmis-
sions. Let m be the steady-state average value of the ratio of
the number of backlogged entry buffers to the total number
of entry buffers. Let also g, be the probability of a new
packet arrival at an entry buffer of a link, and g, be the
probability with which a blocked packet retries to enter the
network (by making the necessary reservations) during a
control interval. Then the attempt rate is

po(m) = (1 —m)gq,+ mq,

If retransmissions are sufficiently randomized, it is plausi-
ble to approximate the process of attempted reservations
from an entry buffer, by an independent Bernoulli process
with parameter py(m). If retransmissions are not attempted
from the same entry buffer, but from another available en-
try buffer of the same node, then more randomization is
added, and the Bernoulli approximation is expected to be
more accurate even for g, = 1. This approximating assumjp-
tion is reminiscent of the approximating assumption used
in the analysis of various multiaccess systems (for example

698

the Aloha protocol, see [1]), where the aggregate traffic of
new arrivals and retransmissions is modeled as a Poisson
process.

The system that we analyze has some similarities with a
multiaccess system (for example, an Aloha system). Con-
flicts over links or buffer space correspond to collisions in a
multiaccess system. An important difference is that packets
in the CSR protocol collide when they request the same link
for the same slot, while in Aloha whenever two nodes
transmit simultaneously there is always a conflict. Another
difference is that in our system whenever a conflict occurs,
one of the conflicting packets is granted the link (or buffer),
while in Aloha whenever a collision happens all transmis-
sions are destroyed. The feedback in our system requires
time units, while in multiaccess systems it is usually as-
sumed instantaneous. The CSR protocol also has similari-
ties with the Carrier Sense Multiaccess protocol, since they
both “sense the channel” before transmitting, in order to
avoid collisions.

It is possible that a flit reserves a link [during some con-
trol interval and frees it later in the same control interval
due to its failure to reserve the remainder of its path. We
will refer to such a reservation as a ghost reservation, as op-
posed to a confirmed reservation where the flit after reserving
link [, it also reserves the rest of its path. Let p(f =i + 1, ¢ : 1),
i=1,2,...,d, be the probability that a particular link [is
reserved (by a confirmed or a ghost reservation) on the
t — i+ 1th control interval for the tth transmission interval.
Assuming that the system eventually reaches steady state,
the following limit exists and is independent of I

p; = limp(tfi-kl,t:l), i=1,2,...,4d.
f—eo

Thus p; is the steady-state probability that in a given control
interval a link is reserved for the ith subsequent transmis-
sion interval. Note that we have p,,, < p, for allie {0, 1, 2,
.., 4 —1}. Note that p(t —i + 1, f :]) is independent of | for
any f (and not only in steady state); we use the index [to
clarify the meaning of some of the subsequent calculations,
but we will also sometimes omit it.

Consider two flits f; and f, corresponding to packets P,
and 7,, which try to make the necessary reservations dur-
ing control intervals ¢, and f,, starting from entry buffers of
dimensions d; and d,, respectively. Packets 7, and P, may
request link [for the same slot [f > max (¢, f,)] only if | is
on their path, all links needed prior to slot t have been re-
served, and t, + d; mod d = £, + d, mod d. If t; < ¢, then P, is
not affected by the presence of P,, since its attempt to make
the reservations is made at a control interval prior to P,’s
arrival. In this case, f, can reserve link / only if f; fails to re-
serve all of its path. If £, = t, (and d; = d,) then f; and f, will
claim the same link provided that it is on their path and
they have reserved all other links they need prior to [. If the
link is free, then it is allocated to one of them arbitrarily.

We want to calculate p; for i > 1. Let [, and [, be the inter-
nal and forward links, respectively, that lead to /. Link [
may be reserved either by a flit f; coming on [}, or by a flit f,
coming on [,. Link [can be reserved during the t — i + 1th
control interval for transmission interval ¢ by a flit coming
on [; only if:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

Qs

Q,

Qk_ I(s+e 2

@, f+n)

Fig. 8. Alink /, and the two links leading to it. In this figure, link / corre-
sponds to an internal link connecting the internal buffer Qf(s) to the

link queue Q,4(s) of the same node. Link L corresponds to a forward
link connecting the forward buffer Q,:(s) to the link queue Q,—(s @ ey)
of the neighbor node s @ g,. Similarly, /; is the internal link that con-
nects the internal buffer Q£+1(s) to the link queue Q,(s) of the same
node, and is a forward link connecting the forward buffer

Q;+1(s ® e,,q) of the neighbor node s @ e, to the link queue Q,(s)
of node s. Flits (as well as packets) cross dimensions in descending
modulo d order; thus flits arriving on links /; or I, are transmitted, if not

blocked, on links / or L, depending on their destination (or equivalently
on their routing tag).

e a reservation was made for /; for the f — 1 transmis-
sion interval during control interval — i + 1; this
happens with probability p(t —i+ 1,1 -1:1),

e link I is on the flit's path (given that [; is on the flit's
path); this happens with probability 1/2,

¢ no confirmed reservation has been made for | during
a previous control interval, and no reservation
(confirmed or ghost) has been made by a flit coming
on [, during the same control interval for transmission
interval £.

Thus,

p(tﬂ'g,t—l:l])(]_Pr(A| B)
i=2,3,..,d, @

p(t—i+1,t:l) =2

where A is the event that a confirmed reservation has been
made for link I for transmission interval + during a previous
control interval, or a reservation has been made during the
current control interval for transmission interval ¢ by a flit
coming on I, and B is the event that f; reserved link I; for the
transmission interval f — 1 during control interval f —i + 1.
The factor 2 in (2) accounts for the fact that ! can be re-
served either by a flit coming on [,, or by a flit coming on [,.
Given that event B occurred, we know that no confirmed
reservation has been made for ! for the transmission interval
t by a flit coming from /,. Therefore, the probability of the
event A is equal to the (conditional on B) probability that
some flit f, reserved I, for the transmission interval t — 1 dur-
ing control interval £ —j + 1 withj =i+ 1, ..., 4, it chose link ,
and its reservation was finally confirmed. Ignoring the con-
ditional on B, this probability can be approximated by

VARVARIGOS AND BERTSEKAS: A CONFLICT SENSE ROUTING PROTOCOL AND ITS PERFORMANCE FOR HYPERCUBES

1 ¢ plt-j+1t-j+d)
- t—i+1,t-1:1 .
ZEp(I+ 2) p(f—j-l—],t)

jeitl

3

The ratio

plt—=j+1,t—j+d)/plt—j+ 1,1
in (3) is the probability that the reservation of / by f, was
finally confirmed.

The probability that a flit f, claims link ! during the same
control interval £ — i + 1 with f;, and for the same transmis-
sion interval #, and it is granted the link can also be ap-
proximated, ignoring the conditional on B, by

! :
-+ 1LE-1L). @

The factor 1/4 is the probability that f, requests link [(given
that it reserved I,), and it is selected instead of f;. Combin-
ing (3) and (4) we get

Pr(A| B) =
1 &) t—j+1L,t—j+d) 1 .
‘2‘2p(f*‘]+1,f—1:12);7(—(]tT1}t)_—)+1p(t—1+1,t*1I12).
j=i+l P 7+

The preceding equation, together with (2) gives
plt—i+Lel)=p(t—i+1,t-1:)
1 ¢ plt—j+Lt—j+d) p(t-i+1,t-1:1)
T-= Y plt—j+1,6-1:1 : -
QJ:ZM (ST 1
i=2,3,..,4d. ®

Taking the limit t — <o and using the symmetry with re-
spect to the links we obtain from (5) that

14 P P
Pi = Pia 1_727"] P -1

j=i

fori=2,3,..,d, (6
which yields

1 p, il p, :
pi_1:2—pd2pf’— 2—pd2p—] —4p, fori=2,3,...,d.)
j=i j+l j=i j+i

To relate p; and p, we first observe that at the beginning of a
control interval, the steady-state probability that a link is re-
served for the ith subsequent transmission interval, i = 1, 2,
..., d =1, is equal to p; (note that these are confirmed reserva-
tions, since all ghost reservations of previous control intervals
have been canceled, and that no reservations for the dth sub-
sequent transmission interval have been made yet). Thus the
probability that a link is unreserved is 1 — d - Dp,, and,
therefore,

= po(l —(d - l)Pd). (8)

For a particular value of p,, we can use (7) to find p; in
terms of p;,y, ..., py for each i, and then (8) to find the corre-
sponding p,. Repeating this for various values of p, we ob-
tain a curve that gives p, as a function of the attempt rate p;.
It is possible to prove inductively that p, is a monotonically
increasing (and 1-1) function of p,.

Fig. 4 illustrates the results obtained for d = 11. The hori-
zontal axis corresponds to both the fraction m of backlogged
entry queues and the attempt rate p, which are related
through the linear equation pyim) = (1 - m)q, + mq,. The verti-

699

CSR Protocol (d=11)

2.0 2 1 1 i 1 L
A Throughput R per node

« Load line (g;=0.05, g;=1)

1.5 1 o

(1-m)q,

J _

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Po =(1-m)q +mgy

Throughput R per node/ Arriving new traffic per node

Fig. 4. Throughput and stable point of the hypercube implementation of
the CSR protocol for d = 11. The probability with which a new packet is
available at the entry buffer during a slot is g,, and the probability of a
retrial is g, The fraction of backlogged entry queues-to the total num-
ber of entry queues is denoted by m. The throughput per link cannot be
greater than min (2, 2dg,) (= 1.1 for g, = 0.05).

cal axis corresponds to the throughput per node (curve),
which is

R=2dp,

and the arrival rate of new packets per node (straight line).
The throughput and the arrival rate are measured in pack-
ets per 1 + Bunits of time. For each value of the probability
of a new arrival ¢g,, the maximum throughput is obtained
for retransmission probability g, = 1 (modulo the approxi-
mating assumptions). From Fig. 4 we see that there is a sin-
gle stable point in a CSR system, which corresponds to
quite high throughput. The straight line corresponds to g, =
0.05, which represents rather heavy load.

We have performed simulations in order to assess the
accuracy of the analysis. The simulation results obtained for
d =7, together with the corresponding analytical results, are
shown in Table 1. The relative difference between the
simulation and the analytical results is less than 2%.

TABLE 1
SIMULATION AND ANALYTICAL RESULTS FOR THE HYPERCUBE:
IMPLEMENTATION OF THE CST PROTOCOL FOR d=7

2o Throughput/node | Throughput/node
(analytical) (simulations)
0.011666 0.140000 0.142795
0.027465 0.280000 0.283746
0.048996 0.420000 0.418328
0.078620 0.560000 0.558200
0.119931 0.700000 0.693059
0.178584 0.840000 0.831379
0.263852 0.980000 0.965929
0.391796 1.120000 1.104581
0.592309 1.260000 1.242851
0.927213 1.400000 1.388006
1.000000 1.422100 1.409178

5 COMPARISON WITH OTHER SWITCHING FORMATS
AND ROUTING SCHEMES

The CSR protocol can be applied to various topologies and

700

routing algorithms.-as a way to perform scheduling and
resource management in a synchronous multiprocessor
computer. In this section we will compare the hypercube
CSR implementation of Section 3 to some other switching
formats and schemes. The results concerning these switch-
ing formats and schemes are not always directly compara-
ble. Therefore, the comparison is not intended to be a rigor-
ous one, but we believe it will give insight into the relative
advantages and disadvantages of each scheme.

The routing schemes that will be compared are the
following:

1) The hypercube implementation of the CSR protocol.

2) The simple and the priority deflection schemes de-
scribed in [10]. In these schemes each node has a
queue which can hold up to d packets. When conflicts
over a link arise, then packets are misrouted instead
of being dropped. During each slot the nodes transmit
all the packets that they hold, either by transmitting
them on links that take them closer to their destina-
tion, or by simply transmitting them on any available
link. When assigning packets to links, the priority de-
flection scheme gives priority to packets which are
closer to their destination (see [10], Section 5.5). A
common characteristic between deflection schemes
and CSR schemes is that they do not drop packets.

3) The unbuffered simple and priority schemes intro-
duced in [10], Sections 5.3-5.4. The switches used by
these schemes are the same with those assumed for
the hypercube implementation of the CSR protocol
(see Fig. 2). The results for these two schemes are di-
rectly comparable to those of Section 4 because the
feasible switching assignments are in both cases the
same; one can use the results to see the improvement
obtained by using the CSR protocol instead of packet
switching. The priority scheme differs from the sim-
ple scheme in the way that contention over buffer
space is resolved: in the priority scheme, packets that
have been in the network longer have priority.

We will refer to the saturation point of a routing scheme
as the ratio of the maximum throughput of the scheme for
uniformly distributed traffic over the maximum possible
throughput that the network can sustain. In other words,
the saturation point is the maximum fraction of the capacity
of the network that performs useful work, where the
maximum is taken over all possible loads. A link is not do-
ing useful work when

1) itis idle,

2) the packet transmitted on it will be eventually dropped,

3) the packet transmitted on it is being deflected, or it

had previously been deflected on a link of the same
dimension.

Fig. 5 indicates the saturation point for the hypercube im-
plementation of the CSR protocol (Sections 3 and 4), the
simple and the priority deflection schemes ([10], Section
5.5), the unbuffered simple scheme ([10], Section 5.3), and
the unbuffered priority scheme ([10], Section 5.4) for vari-
ous dimensions 4 of the hypercube.

JEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

In order to interpret Fig. 5 the following comments are
necessary:

CSR Protocol: The saturation point for each hypercube size
is obtained from the approximate analysis of Section 4
(which is within 2% from simulation results), and cor-
respond to the unbuffered implementation of Section 3.
The routing algorithm on which the CSR protocol is
superimposed assumes a very simple switch at the
nodes. Other implementations would probably give a
higher saturation point, but they would require more
expensive nodes (see the comments below on the
node cost).

Deflection Routing: The results of Fig. 5 on the simple and
the priority deflection schemes have been obtained
through simulations. For the evaluation of the satura-
tion point of both deflection schemes we have taken
the probability of access p, to be equal to one, that is,
we have assumed that packets are always available
and enter the hypercube whenever there is an avail-
able empty slot. This does not necessarily result in the
maximum possible throughput, but the difference is
of the order of 2-3% (see [10]), which is within the
statistical error of our simulations, and is in any case
negligible.

Simple and Priority Schemes: The results of Fig. 5 for the sim-
ple and the priority schemes have been obtained from
an approximate analysis of [10]. The approximate
analysis is in very good agreement with simulation

results.
10 i 1
+ priority deflection
> 0.8 o
el
]
o
g
- X simple deflection
© 0.6 o
g A CSR (one implementation)
=
&
&
& # priority scheme
w 0.4+ -
£
)
a
=
)
=]
§ 0.24 I O simple scheme
K]
&
0.0 —T T T 4 ~T T
2 4 6 8 10 12 14

Hypercube dimension d

Fig. 5. The saturation point as a function of the dimension of the hyper-
cube for: 1) the hypercube implementation (Section 3) of the CSR
protocol for £ = 0 (for other values of f the saturation point should be
divided by 1 + f), 2) the priority deflection scheme, 3) the simple de-
flection scheme, 4) the (unbuffered) priority scheme, and 5) the
(unbuffered) simple scheme.

The remainder of the section is devoted in examining
advantages and disadvantages of each scheme when ap-
plied to the hypercube network, and to other topologies.

5.1 Saturation Throughput and Congestion

The schemes that are the most interesting in terms of satu-
ration throughput are the two deflection schemes
(especially the priority deflection scheme), and the CSR

VARVARIGOS AND BERTSEKAS: A CONFLICT SENSE ROUTING PROTOCOL AND ITS PERFORMANCE FOR HYPERCUBES 701

scheme. One reason the CSR scheme does not achieve 100%
utilization of the capacity of the network even for heavy
load is source blocking: if a packet fails to make the neces-
sary reservations, then the corresponding entry buffer is
backlogged and the packets behind it do not have access to
the network. A second reason 1is related to the
“segmentation” of the available link capacity: some links
may be free, but if put together they may not form a whole
path (d links may form a path only when their link dimen-
sions appear in descending order). This segmentation is not
inherent in the CSR protocol, and is mainly due to the sim-
ple node switches assumed, which are not cross-bar
switches, and do not permit arbitrary switching assign-
ments. The saturation throughput of the CSR scheme
shown in Fig. 5 has to be divided by 1 + j since each slot is
equal to 1 + S units of time. For example, if §= 0.5 then the
curve that corresponds to the CSR protocol has to be multi-
plied by 2/3. It is, however, important that the CSR proto-
col does not require additional acknowledgment packets,
while the simple and the priority schemes do require. The
two deflection schemes also require the use of acknowl-
edgments for reasons to be explained later, but to a lesser
extent. Therefore, for all the schemes examined there is
some overhead not taken into account in Fig. 5 (one can
view the parameter fas the cost of the acknowledgments).

A disadvantage of the unbuffered simple scheme is that,
after some point, increasing the offered load decreases the
throughput (see [10]). This makes necessary the existence of
a mechanism for controlling the transmission rate of the
nodes. This is less of a problem for the priority scheme
(buffered or unbuffered), the buffered simple scheme, and
the simple deflection scheme. In the latter schemes the
throughput at the saturation point is somewhat smaller
than the throughput when the attempted traffic is the
maximum possible, but this difference is small (less than
5% for hypercube dimension less than 13; see [10]). The
simulations of the priority deflection scheme, and the ap-
proximate analysis of the CSR scheme have indicated that
their throughput increases monotonically when the offered
load increases.

The results of Fig. 5 assume uniform traffic. If the traffic
is not uniform then congestion may become a serious
problem, especially for deflection routing, as results in [9]
indicate. Congestion feeds on itself since it forces packets to
take Jonger paths, increasing the utilization, and making
other packets to take even longer paths. If the topology is
not regular, congestion may become an even more serious
problem. Even in regular topologies which have a severe
penalty for deflections (for example, the shuffle exchange
network; see [8] and [9]) deflection routing can be very inef-
ficient in terms of throughput. The CSR protocol behaves
better in congestion, and is apparently least affected by the
choice of the topology.

5.2 Node Cost

Deflection routing requires a d x d cross-bar switch with
©(d*) wires at each node of a hypercube. The simple and the
priority schemes, as well as the hypercube implementation
of Section 3 of the CSR protocol require a much simpler
switch. This switch, which we call descending-dimensions

switch, is illustrated in Fig. 6 (see also Fig. 2). The number of
wires of a descending-dimensions switch is only O(d). A
cross-bar router is larger and slower, and results in a slower
network (the processing time at a node and the clock cycle
is larger). The switching assignments possible with the de-
scending-dimensions switch are of course more restricted,
and suffer from internal message collisions (the collisions
on the internal links of the node model of Fig. 2). This re-
sults in a degradation in performance, which in the case of
the CSR protocol was not severe. Since the descending-
dimensions switch uses simple 2 : 2 switch/merge switches,
it can be made to operate very quickly, which may offset
the degradation in the performance due to the restrictions
in the routing algorithm (see [3]). If the CSR protocol wers
used with a cross-bar switch, it would probably outperform
deflection routing (for small enough f); however, we be-
lieve that the improvement would not be worth the addi-
tional cost. An advantage of the CSR protocol is that it per-
forms well even with simple switches.

dxd descending-dimensions switch

dxd crossbar switch

S: 1:d switch
M: d:1 merge

S/M: 2x2 crossbar

Fig. 6. A d x d cross-bar switch, a d x d descending-dimensions switch,
and the modules out of which they are composed.

5.3 Livelock/Deadlock

The livelock problem is unique to deflection routing (see
[9]). Tt occurs when packets are transmitted continuously
without any chance of reaching their destination. This
problem cannot be removed by an end-to-end contrcl
scheme, since such packets do not reach their destination. If
routing decisions are made deterministically then scenarios
can be found where a livelock persists forever. Possible so-
lutions to the livelock problem exist (see [9]), but compli-
cate the implementation. The other switching schemes ex-
amined do not suffer from this problem. In particular, in
the CSR protocol a packet that is accepted in the network is
guaranteed to arrive at its destination with a finite delay
(upper bounded by d, if no buffering is used). This is be-
cause all resources that will be used by the packet are re-
served in advance. Another problem that may arise in
switching schemes for parallel computers (e.g. in wormhole
routing, see [4]) is that of a deadlock. A deadlock arises
when there is a cyclic dependency where a packet cannot
proceed without being granted some resource, and this re-
source is being held by another packet, and cannot be freed
before the first packet proceeds. This situation may cause
important problems for some switching schemes (such as

702

wormhole routing; see [4]), and special mechanisms have to
be devised to avoid it, or to resolve it if it occurs. The CSR
protocol is deadlock-free, because all reservations made by
a flit are canceled in the backward phase if the flit fails to
reserve all the necessary resources along its path.

01

[
00

Fig. 7. Node 00 continuously sends two packets per slot to node 11,
and node 11 sends two packets per slot to node 00. Then, if the
(unbuffered) priority scheme or one of the two deflection schemes is
used, both nodes 01 and 10 cannot insert any packets. If at some slot
node 00 does not send a packet via node 01 to node 11, then node 01
will be able to insert a packet, but it will again be blocked out when
node 00 resumes sending packets to node 11. If the CSR protocol
(without buffers) is used, the senario shown in the figure will also cause
nodes 01 and 10 to be blocked out. However, if at some slot node 00
does not send a packet via node 01 to node 11, node 01 may take this
slot, and if it has more packets to send, it will also take the subsequent
slots. Therefore, the faimess problem is less important for the CSR
protocol, and is easily solved, for example, by forcing from time to time
a node to leave empty slots.

5.4 Fairness

The priority scheme, and the two deflection schemes, can
cause the system to operate unfairly. This is because pack-
ets that are on transit have priority over packets that are
trying to enter the network. The first source that has access
to the empty slots make take all the slots that it requires,
while the source that follows takes what is left over. Fig. 7
illustrates how a source can be locked out with the priority
deflection scheme (even with randomized decisions). The
CSR protocol is more fair as the caption of Fig. 7 explains.

5.5 Packet Resequencing

The CSR protocol can easily guarantee that packets arrive at
their destination in sequence. On the other hand, the need
for resequencing packets is inherent in deflection routing,
and cannot be avoided. An implication of that is that rese-
quencing buffers may overflow, dropping packets, and
making the use of acknowledgments necessary.

5.6 Processing at the Nodes

The simple and the priority schemes are the easiest to im-
plement. The hardware required for these schemes is very
simple (see Fig. 2 for the node model). Deflection routing
requires more processing at each node, especially if we
want to address the livelock and the fairness problems.
Also, a cross-bar switch is slower than a descending-
dimensions switch. The priority deflection scheme requires
slightly more processing time at the nodes than the simple
deflection scheme. The CSR protocol can be implemented
fairly easily in a synchronous system. In the unbuffered
case, the state of each link can be described by a binary
number of length d (at any time reservations may exist for
the next d slots at most), which should not be a problem.

5.7 Synchronization
The CSR scheme, the priority scheme, and the two deflec-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996

tion schemes are best suited for synchronous systems. The
simple scheme can also be implemented in an asynchro-
nous system. Synchronous systems have a number of ad-
vantages which have resulted in an almost universal use
(see [3]). Asynchronous systems are potentially faster (the
slower component does not have to dominate the speed of
the system), and avoid the problem of the distribution of
the clock to all the chips with as small a clock-skew as pos-
sible, at the expense of a much more complicated imple-
mentation.

APPENDIX

In Section 2, we claimed that the duration of the forward
phase of the control interval is at most equal to kdz time
units, and we described a rule that when followed ensures
that there are no collisions among flits in the backward
phase. We also claimed that for a general network storage
space for at most kd¢ flits is required, where d is the di-
ameter of the network, and Jis the in-degree of the node. In
the following lemma we prove these claims.

LEMMA 1. The forward phase of a control interval requires
at most kd 7 time units. If the rule of Section 2 is fol-
lowed, at most one flit is scheduled on a link at any
time in the backward phase, so the backward phase is
collision-free. Finally, storage for at most kdJ flits is
required per node.

PROOF. Consider a control interval t. Let f be a flit in this

interval, c(fi) ,1=1,2,...,d, be the content of its counter

()]

after the ith transmission, and ¢ ;= 0 be the initial

content of the counter. As it can be seen from the de-
scription of Section 2, the ith transmission of a flit oc-

curs during the c;i) th step of the forward phase. A flit
that successfully reserves all necessary resources
completes the forward phase during the c;d)th step.

By convention, if a flit is blocked after its ith transmis-
sion, we will say that the value of its final counter is

equal to c;i). The forward phase is completed by a flit

when it is blocked or when it is transmitted for the dth
time; this happens at a step equal to the final value of
its counter. To prove the first claim of the lemma it is
enough to show that a flit counter cannot take a value
greater than kd. To see that, note that a flit arriving at
-1

a node with counter ¢) attempts to reserve a link

(i-1)

for transmission interval t+cf . Since its counter

upon departure is c}i), the flit reserves the link for

transmission interval f + c;i) ~1, and one buffer space
for all transmission intervals between f+ C}H) and

(€]
t+cf

—1. This means that the link has already been
reserved by other flits for transmission intervals be-
tween f + cj(f*l) 7~ 2; let S be this set of flits.

and t+c¢ £
Since all flits in S were processed before flit f, the
content of their counter upon arrival at the node was

VARVARIGOS AND BERTSEKAS: A CONFLICT SENSE ROUTING PROTOCOL AND ITS PERFORMANCE FOR HYPERCUBES 703

C(i—])‘

less than or equal to) Therefore, the

cj(f)‘—c;"‘l) -1 flits in § have all reserved a buffer
(-1

space for interval ¢ +¢; . This is because when a flit

is granted a different interval than it asked for, it must
also be granted buffer space for all intervals in be-

tween. Thus, there are a total of c}” - c;’;l) buffer res-

ervations (including the reservation by flit f) for inter-
val t+ c(fl_]). Since the buffer size per link is equal to k
(a link can store up to k packets including the packet

under transmission), we have c}i) —c(fi“1> < k. This

combined with the fact that C;O)

=0 gives C(fi) < kd for
alli=1,2, ..., d. Since all packets complete the for-
ward phase at a step equal to the final value of their
counter, the forward phase is completed in at most kd
steps, and requires at most kd 7 time units, where 7 is
the time required for the transmission of a flit over a

link.

It is easy to see that since the forward phase is com-
pleted by time kdz, it does not interfere with the
backward phase (which starts after that time). Ac-
cording to the rules of Section 2, two flits will be
scheduled for transmission at the same link at time
(2kd — i — 1)7 in the backward phase, only if they were
both transmitted over that link at time i7 of the for-
ward phase. Clearly, this cannot happen because at
most one flit is transmitted over a link at any time in
the forward phase.

The forward phase requires at most kd steps, and
during each step at most Jflits may arrive. Even if all
arriving flits are blocked at that node, the node will
not have to store more than kdJ flits. This proves the

third claim of the lemma. O
ACKNOWLEDGMENTS
The authors would like to gratefully thank the

(anonymous) reviewers for their helpful suggestions. Re-
search supported by NSF under Grants NSF-DDM-8903385
and NSF-RIA-08930554, and by the ARO under Grants
DAAL03-86-K-0171 and DAAL03-92-G-0309.

REFERENCES

[1] D.P. Bertsekas and R. Gallager, Data Networks. Prentice Hall, 1987.

[2] J.T. Brassil, “Deflection Routing in Certain Regular Networks,”
PhD thesis, Univ. of California, San Diego, 1991.

[3] WJ. Dally, “Network and Processor Architecture for Message-
Driven Computers,” VLSI and Parallel Computation, R. Suaya and
G. Birtwhistle, eds., pp. 140-222. San Mateo, Calif.: Morgan
Kaufmann, 1990.

[4] WJ. Sally and C.L. Seitz, “Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,” IEEE Trans. Comput-
ers, vol. 36, pp. 547-553, 1987.

[5] A.G. Greenberg and J. Goodman, “Sharp Approximate Models of
Adaptive Routing in Mesh Networks,” Teletraffic Analysis and
Computer Performance Evaluation, J.W. Cohen, O.JJ. Boxma, and
H.C. Tijms, eds., pp. 255-270. Amsterdam: Elsevier, 1988.

[6] A.G. Greenberg and B. Hajek, “Deflection Routing in Hypercube
Networks,” IEEE Trans. Comm., vol. 35, no. 6, pp. 1,070-1,081, June
1992.

[71 P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New
Computer Communicating Switching Technique,” Computer Net-
works, vol. 3, pp. 267-286, 1979.

[8] N.F. Maxemchuk, “Comparison of Deflection and Store-and-
Forward Techniques in the Manhattan Street and Shuffle-
Exchange Networks,” Proc. INFORCOM ‘89, vol. 3, pp. 800-809,
Apr. 1989.

[91 N.F. Maxemchuk, “Problems Arising from Deflection Routing:
Livelock, Lock-Out, Congestion and Message Reassembly,” Proc.
NATO Workshop Architecture and High Performance Issues of High
Capacity Local and Metropolitan Area Networks, France, June 1990.

[10] E.A. Varvarigos, “Static and Dynamic Communication in Parallel
Computing,” PhD thesis, Dept. of EECS, Massachusetts Inst. of
Technology, Aug. 1992.

Emmanouel A. Varvarigos received a Diploma
(1988) in electrical engineering from the Na-
tional Technical University of Athens, Greece,
and the MS (1990), Engineer (1991), and PhD
(1992) degrees in electrical engineering and
computer science from the Massachusetts In-
stitute of Technology. In 1990, he worked on
optical fiber communications at Bell Communi-
cations Research, Morristown, New Jersey. He
is currently an assistant professor of electrical
and computer engineering at the University of
California, Santa Barbara. His research interests are in the areas of
parallel and distributed computation, data networks, and mobile com-
munications. Dr. Varvarigos received the first panhellenic prize in the
Greek Mathematic Olympiad in 1982 and received the Technical
Chamber of Greece award four times (1984-1988). He is a member of
the Technical Chamber of Greece.

Dimitri P. Bertsekas received a combined
BSEE and BSME from the National Technical
University of Athens, Greece, in 1965, the
MSEE degree from George Washington Univer-
sity in 1969, and the PhD degree in system
science from the Massachusetts Institute of
Technology in 1971.

Dr. Bertsekas has held faculty positions with
the Engineering-Economic Systems Department
at Stanford University (1971-1974) and the
Electrical Engineering Department of the Uni-
versity of lllinois, Urbana-Champaign (1974-1979). He is currently a
professor of electrical engineering and computer science at the Mas-
sachusetts Institute of Technology. He consuits regularly with private
industry and has held editorial positions in several journals. He was
elected a fellow of the IEEE in 1983.

Professor Bertsekas has done research in the areas of estimaticn
and control stochastic systems, linear, nonlinear, and dynamic pro-
gramming, data communication networks, and parallel and distributed
computation and has written numerous papers in each of these areas.
He is the author of Dynamic Programming and Stochastic Control
(Academic Press, 1976), Constrained Optimization and Lagrange Mul-
tiplier Methods (Academic Press, 1982), Dynamic Programming: De-
terministic and Stochastic Models (Prentice Hall, 1987), and Linear
Network Optimization: Algorithms and Codes (MIT Press, 1991) and is
a coauthor of Stochastic Optimal Control: The Discrete-Time Case
(Academic Press, 1978), Data Networks (1987), and Parallel and Dis-
tributed Computation: Numerical Methods (Prentice Hall, 1989).

