120 [EEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

Dynamic Broadcasting in Parallel Computing

Emmanouel A. Varvarigos, Member, IEEE, and Dimitri P. Bertsekas, Fellow, IEEE

Abstract—We consider the problem where broadcast requests
are dynamically generated at random time instants at each node
of a multiprocessor network. In particular, in our model packets
arrive at each node of a network according to a Poisson process,
and each packet has to be broadcast to all the other nodes. We
propose an on-line, distributed routing scheme to execute the
broadcasts in this dynamic environment. Our scheme consists of
repeated execution of a partial multinode broadcast task, which is
a static communication task where any M < N arbitrary nodes
of an N-processor network broadcast a packet to all the other
nodes. The dynamic broadcasting scheme that we propose can be
used in any topology, regular or not, for which partial multinode
broadcast algorithms with certain properties can be found. We
derive such an algorithm and we analyze the corresponding
dynamic broadcasting scheme for the hypercube network. We
show that its stability region tends to the maximum possible as the
number of nodes of the hypercube tends to infinity. Furthermore,
for any fixed load in the stability region, the average delay is of
the order of the diameter of the hypercube. Our analysis does
not use any approximating assumptions.

Index Terms— Dynamic broadcasting, queuing systems, aver-
age delay, stability region, hypercubes.

I. INTRODUCTION

ROADCASTING is the operation where a packet is

copied from a node to all the other nodes of a network.
Because of the variety of applications that involve broadcasts,
such operations are often implemented as communication
primitives in parallel computers. One of the most frequent
broadcasting tasks is the multinode broadcast (abbreviated
MNB), where every node of a network broadcasts a packet to
all the other nodes. The MNB arises, for example, in iterations
of the form

z = f(z) 1)

where each processor ¢ computes a component (or a block of
components) z; of the vector . If iteration (1) takes place
synchronously, and all the components of z change during
each iteration, it is necessary that at the end of an iteration
every processor i broadcasts the updated value of z; to all the
other processors for use at the next iteration; this is a MNB.

In iterations of the form given above it is very probable
that only few of the components of the vector z will change
appreciably during an iteration. If the new value of a com-
ponent is close to its previous value, there is no reason to

Manuscript received July 3, 1992; revised August 23, 1993. Research
supported by NSF under Grant NSF-DDM-8903385, and by the ARO under
Grants DAAL03-86-K-0171 and DAAL03-92-G-0309.

E. A. Varvarigos is with the University of California, Department of
Electrical and Computer Engineering, Santa Barbara, CA 93106 USA.

D. P. Bertsekas is with the Massachusetts Institute of Technology, Labora-

tory for Information and Decision Systems, Cambridge, MA 02139 USA.
IEEE Log Number 9408132.

waste communication bandwidth in order to broadcast it. This
motivates the study of the task, where only few, but arbitrary,
processors broadcast a packet (see Fig. 1(a)). We call this
generalization of the MNB task a partial multinode broadcast
(or PMNB). Since the PMNB arises often in applications, we
believe that it deserves a position among the prototype tasks
of a communication library.

The MNB and the PMNB are static broadcasting tasks,
that is, they assume that at time ¢ = 0 each node broadcasts
at most one packet, and all broadcasts start simultaneously.
Static broadcasting tasks in multiprocessor networks have been
studied extensively in the literature ([3], [4], [6], [7]1, [10],
[14]). In this paper we consider the dynamic version of the
broadcasting problem. We assume that packets are generated
at each node according to a Poisson process with rate A
independently of the other nodes, and each packet has to be
broadcast to all the other nodes (see Fig. 1(b)). We propose
a dynamic scheme to execute the broadcasts in this dynamic
environment, and we evaluate its performance without using
approximations. The assumption of Poisson arrivals is made
only because the mathematics of the analysis require it and
is inessential for the implementation of the schemes that we
propose. We are interested in two performance criteria. The
first criterion is the average delay, that is, the average time
between the arrival of a packet at a node, and the completion
of its broadcast. The second criterion is the stability region
of the scheme, that is, the maximum load that it can sustain
with the average delay being finite. We set two objectives for
a dynamic broadcasting scheme: stability for as big a load
as possible, and average delay which is of the order of the
diameter for any fixed load in the stability region.

The dynamic broadcasting problem is important for a variety
of reasons. Consider, for example, the case where iteration (1)
takes place asynchronously. Each processor i computes at its
own speed without waiting for the others, and broadcasts the
updated value of z; whenever it is available. Asynchronous
parallel computation is used to circumvent the synchronization
penaity (see, e.g., [4]), and it naturally results in a dynamic
communication environment like the one we are considering.
In this environment static algorithms, such as the MNB,
become inefficient, since a fast processor has to wait for all
the other processors before starting a MNB. Algorithms for
static communication tasks are also difficult to use, because
they must be detected by the compiler, or called explicitly
by the programmer. It is plausible that the programmer and
the compiler may fail to identify a communication task.
Even more importantly, broadcasts may be generated in real
time, during the execution of a program. In such a situa-
tion, the communication pattern is not known in advance,

1045-9219/95%04.00 © 1995 IEEE

VARVARIGOS AND BERTSEKAS: DYNAMIC BROADCASTING IN PARALLEL COMPUTING 121

@ :active nodes
(a)

A
(b)

Fig. 1. The PMNB and the dynamic broadcasting problems for a general network. In (a), M arbitrary nodes of the network have a packet to broadcast to
all other nodes. This is the PMNB task, and it has to take place once and for all. In (b), packets arrive at each node of the network continuously according
to some probabilistic rule, and each of them has to be broadcast to all other nodes. This is the dynamic broadcasting problem.

and precomputed static communication algorithms cannot be
used. Multitasking and time-sharing make the communications
even more unpredictable, and the use of static communica-
tion algorithms more difficult. For the preceding reasons, we
believe that the dynamic broadcasting problem deserves a
position among the generic problems in parallel computation.
Dynamic broadcasting schemes that run continuously, and
execute on-line the broadcast requests should be a part of
the communication primitives of a parallel computer. The
throughput and delay of a network for broadcast (one-to-
many) communication are important performance criteria, in
the same way that the throughput and delay for one-to-one
communication are.

The only previous work on dynamic broadcasting we know
of is that of Stamoulis and Tsitsiklis [12] for the hypercube
network. There are two algorithms of Stamoulis and Tsitsiklis
that are most interesting from a theoretical point of view: the
direct algorithm, and the indirect algorithm. Both of them are
conceptually different than ours in that they define and use
certain spanning trees for broadcasting. In the direct algorithm,
d spanning trees, where d is the dimension of the hypercube,
are defined for each node. A packet that is generated at a
node selects at random one of the d trees of the node and
is broadcast on it. The direct algorithm meets the stability
objective described above, but its average delay analysis is
approximate. In the indirect algorithm, d spanning trees are
defined in the hypercube. A packet that arrives at some node
selects at random one of these trees. It is then sent to the root
of that tree, and from there it is broadcast to all the other nodes
using links of the tree. The indirect algorithm meets the delay
objective, but its stability region is not the maximum possible.
Therefore, the two hypercube dynamic broadcasting schemes
of [12] do not provably satisfy both performance objectives.

Our dynamic broadcasting scheme has a fundamentally
different philosophy: it relies heavily on finding efficient
PMNB algorithms that are used as a subroutine of the dynamic
scheme. Furthermore, our dynamic scheme is very general: it
applies to any network for which efficient PMNB algorithms
can be found, without any assumptions on the communication
model used for the network. For a hypercube network, our
scheme has a stability region that tends to the maximum

possible as the number of nodes tends to infinity. Furthermore,
its average delay for any fixed load in the stability region
is of the order of the diameter. Thus, our scheme compares
favorably with the hypercube algorithms in [12] none of which
meets optimally the stability and the delay objective.

The dynamic broadcasting scheme consists of executing
successive PMNB algorithms, each starting when the previous
one has finished. Our stability and average delay results apply
to any network for which we can find algorithms that execute
the PMNB communication task in linear time, that is, in time

XM+V

where M is the number of nodes that have a packet to
broadcast, called active nodes, and X,V are scalars that are
independent of M (they may depend on the size of the
network). For analytical purposes, our scheme is modelled
after reservation and polling schemes for multiaccess com-
munication ([1]). The network is conceptually viewed as a
channel, and the nodes as users of the channel. The first V' time
units of the PMNB algorithm are considered as a reservation
interval, and the following M X time units as a data interval,
where users with reservations transmit a packet. The analogy to
reservation systems is made only to analyze the performance
of the scheme; no reservations actually take place, and the
dynamic scheme is easy to implement in a distributed system.

For the hypercube network, we will present three different
PMNB algorithms that are suitable for our purposes. The
first PMNB algorithm is simple but is suboptimal. When this
PMNB algorithm is incorporated in our dynamic broadcasting
scheme, the latter does not provably meet the stability and
average packet delay objectives that we have set. The second
and third algorithms execute in linear time, are near-optimal,
and have a running time bound that is roughly one half
of the best existing bound for a PMNB due to Stamoulis
[11]. The second algorithm assumes that packets can be split
into d parts that can be routed independently. In the third
algorithm the splitting of packets is not allowed, and each
message is transmitted as one packet. A dynamic broadcasting
scheme based on any one of the last two algorithms meets
our performance objectives: its stability region tends to the
maximum possible as the number of nodes tends to infinity,

122 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

and the average packet delay for any fixed load in the stability
region is of the order of the diameter of the hypercube. In
the companion paper [13] we present near-optimal PMNB
algorithms for d-dimensional meshes that also give rise to
efficient dynamic broadcasting schemes.

The structure of the paper is the following. In Section II we
describe the dynamic broadcasting scheme in a given network,
assuming that a PMNB algorithm with certain properties
is available for that network. We also state the dynamic
broadcasting theorem, which is the main result of the paper.
In Section III we evaluate the performance of our dynamic
broadcasting scheme. In particular, in Subsection III-A we
describe an auxiliary queueing system, which we will use to
prove the dynamic broadcasting theorem. In Subsection III-B
we prove the dynamic broadcasting theorem, which gives an
estimate on the average packet delay of the dynamic broadcast-
ing scheme. Section IV describes three different algorithms to
execute a partial multinode broadcast in a hypercube. Section
V applies the dynamic broadcasting theorem to the case of the
hypercube, using the results obtained in Section IV. Finally,
Section VI concludes the paper.

II. DYNAMIC BROADCASTING SCHEMES

In this section we will describe the dynamic broadcasting
scheme for a general network. We will assume that an algo-
rithm that executes the PMNB task in that network is given,
and that it requires XM + V time units, where M is the
number of nodes that have a packet to broadcast, and X,V
are scalars independent of M. We also assume that during the
PMNB algorithm each node learns the number of active nodes
M, and that the network is synchronized so that the nodes can
start various phases of the algorithm simultaneously.

Our scheme is merely a repetition of successive partial
multinode broadcast algorithms, each starting when the previ-
ous one has finished (see Fig. 2). The time axis is, therefore,
divided into PMNB intervals. Within each PMNB interval, a
PMNB is executed, involving exactly one packet from each
of the M nodes that are active at the start of the interval.
Each PMNB interval is divided into two parts. The first part is
called reservation interval. Its duration can be upper bounded
by a known constant V' that depends only on the size of
the network, and is independent of the number of active
nodes M. During the reservation interval each active node
s can be conceptually viewed as making a reservation for the
broadcast interval (as we will see in Subsections IV-B and
IV-C for the hypercube this is done automatically through
the mere participation of s in the parallel prefix operation).
Also, in the reservation interval some global information is
gathered at the nodes (e.g., the total number of active nodes
M, and other information), and some additional organizational
work is performed. For example, in the PMNB algorithms
described in Subsections IV-B and IV-C for the hypercube,
and in the algorithms described in the companion paper [13]
for the d-dimensional mesh, the packets move during the
reservation interval to more favorable intermediate locations.
The details of what happens in the reservation interval are in
fact irrelevant, and all that matters for our purposes is that

PMNB PMNB PMNB PMNB
- - ot ot ———P
X
M.X My
P B <—”2x—>- -
13RAAAAERAA00 I
v \'4 v Vv

Fig. 2. The dynamic broadcasting scheme. Each PMNB period consists of
two intervals: a reservation interval (marked by gray) of duration V| and a
broadcast interval of duration M X, where M is the number of active nodes
at the start of the PMNB period.

its duration is less than or equal to V. The second part of
a PMNB interval is called broadcast interval. Its duration is
equal to XM, and is therefore known once M is known (X
is a scalar that may depend on the network). The broadcast
interval is empty if there are no packets to broadcast (M = 0).
Even though the duration of each PMNB is random (because
packet arrivals are random), it is known to all the nodes of
the network, because each node learns during the broadcast
interval the number M of active nodes and, from there, the
duration of the following broadcast interval. Therefore, if the
nodes initiate the dynamic broadcast scheme at the same time,
no further synchronization is needed, and the dynamic scheme
is fully distributed. Note that the details of what happens in
the broadcast interval are irrelevant, and all that matters for
our purposes is that the duration of the broadcast interval
is less than or equal to M X. Indeed our general dynamic
scheme and the following theorem are valid regardless of the
communication model adopted (store-and-forward, wormhole,
etc).

It is important for the performance of the dynamic scheme
that the duration of the PMNB algorithm is linear in the num-
ber of active nodes M, with the constant X of proportionality
being the smallest possible.

The main theorem that we prove in the paper is the
following.

Dynamic Broadcasting Theorem: Assume that for a given
N-processor network there exists an algorithm that executes
the PMNB communication task in time

XM+V

where M is the number of nodes that have a packet to
broadcast and X, V are scalars that are independent of M
(they may depend on the size of the network). Assume that
during the PMNB algorithm each node learns the value of M.
Then the dynamic broadcasting scheme that uses this PMNB
algorithm as described above has the folowing performance
characteristics. If the packets to be broadcast arrive at each
node of the network according to a Poisson process with rate
A, independently of the other nodes, the average packet delay
T satisfies

T=W+X+aNX<W+X

+ min (%X, pW)

VARVARIGOS AND BERTSEKAS: DYNAMIC BROADCASTING IN PARALLEL COMPUTING 123

where
pX 1-pV
W =
2(1—p—)\V)+2(1—p—)\V)
(1-pa—- V)V _
T—, v - PEANX

and a is a scalar satisfying

M+(M-1)2M-M) 1 11
— _—<g< = - —
2NM 2N — — 2 2N
where
H:ANV,
1-p

and M is the smallest integer which is strictly larger than M.
Note that the dynamic broadcasting scheme is stable for
p <1 — AV, or by using the relation A = p/(NX),

1
*= TRVIINXY

The dynamic broadcasting theorem is proved in the following
section.

III. ANALYSIS OF THE DYNAMIC BROADCASTING SCHEME

In this section we will prove the dynamic broadcasting
theorem. We first describe an auxiliary queueing system that
will be used in the main proof given in Subsection III-B.

A. Limited Service Gated Reservation System with
Shared Reservation and Data Intervals

In this subsection we describe an auxiliary queueing system,
called limited service gated reservation system with shared
reservation and data intervals, which is a reservation system
for multiaccess communication. We are interested in the av-
erage delay required to serve a packet in this system. This
average delay will be used in the next subsection to evaluate
the average packet delay of the dynamic broadcasting scheme.
The analysis of the auxiliary queueing system is based on
unpublished research by D. P. Bertsekas and R. G. Gallager
[2]. We will give this analysis in detail, since it is important
for our purposes and it does not appear anywhere else.

The auxiliary queueing system is defined as follows. Con-
sider N traffic streams, each corresponding to a different user,
which share a common channel. The channel is used both
for packet transmissions and reservations. In particular, the
time axis is divided into data intervals, where actual data
is transmitted, and reservation intervals used for scheduling
future data. Each user has a separate queue, and the queues
are served in cyclical order. Users make reservations during the
same reservation interval, and transmit at most one packet each
in the subsequent data interval. A packet can be transmitted
in a data interval only if it arrived before the beginning of the
previous reservation interval. For this system the following
theorem holds.

Theorem 1: Let the arrival processes of packets at the users
of the system be independent Poisson processes, each with
rate \. Let also X, X2 be the first and second moments of the
packet transmission times and V,V? be the first and second
moments of the duration of a reservation interval. Then the
mean waiting time in queue for this system is

_ ANX? (1-p)V?
T21=p-AV) 20-p-AV)V
(1 - pa-— /\K)V @
1—-p-=2AV

where p = ANX is the utilization factor, and a satisfies

K+(K—1K2K_K)_L<G<E_L
2NK 2N - "~ 2 2N
where
?:/\NV
1-p

is the average number of packets per data interval, and K is
the smallest integer which is strictly larger than K.

Proof: Consider the ith packet arrival into the system and
suppose that the user associated with packet 4 is user j. This
packet must wait in queue for the residual time R; until the
end of the current packet transmission or reservation interval. It
must also wait for the transmission of the N; packets that must
be transmitted before packet i. Finally the packet must wait
for the duration of reservation intervals. Thus, the expected
waiting time of packet ¢ is

E(Wi) = E(R;) + E(N)X + E(Yi)

where Y; is the duration of all the whole reservation intervals
during which packet i must wait before being transmitted. The
expected waiting time is therefore

W = lim E(R;)+ E(N)X + E(Y). 3)

100

From Little’s law we get
E(N;) = ANW. @)

Let Q; be the number of packets in the queue of user j found
by packet ¢ upon arrival, and m; be the number (0 or 1) of
packets of user j that will start transmission between the time
of arrival of packet 7 and the end of the frame at which packet
i arrives. Then

EY;))=(1+E(Q:) - E(mi))V. 5)
From Little’ law we have
Q = lim E(Q;) = AW. (6)

The mean residual time R = lim;_, .o R; can be calculated as
in [1] to be

_ ANX?Z N (1—p)V2

= 7
= 2 2V @

124 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

Combining (3)—(7) we get

_ _ 2
W =ANWX + (14 W - lim E(m))V + ANX
i—00 2
(1-pv?
—_———. 8
+ ®)

To find W, it remains to calculate lim,_, o, E(m;).

There are two possibilities regarding the time of arrival of
packet 1.

a) packet ¢ arrives during a reservation interval. This event,
call it A, has steady state probability 1 — p:

P(A)=1-p.

Since the ratio of the average data interval length to the
average reservation interval length is p/(1 — p), the average
steady state length of data interval is pV /(1 — p). Therefore,
the average steady state number of packets per user in a data
interval is
oV _ AV
(1-pNX 1-p

This also equals the steady state value of E(m;|A) in view of
the symmetry with respect to the users:

AV
1-p

b) Packet ¢ arrives during a data interval. This event, call
it B, has steady state probability p:

lim E(m;|A) =
100

P(B) = p.
Denote

a = lim E(m;|B),

ar = lim E(m;|B, the data interval of
arrival of packet i contains k packets).

Assuming k > 0 packets are contained in the data interval of
arrival, there is equal probability 1/k of arrival during the
transmission of any of these packets. Therefore

k
1lk—-n
“=d R =
n=1

Let P(k) be the unconditional steady-state probability that a
data interval contains k packets, and E(k) and E(k?) be the
corresponding first two moments. Then we have by Bayes’ rule

k-1

2N

lim P(The data interval of arrival of

1— 00
packet i contains k packets) = —kEF;(:)) .

Combining the preceding equations we have
Y kP(R) i
(k)

k=1 k=1

P(k(k—1) ER®?) 1

2E(k)N IN

‘= ~32NE®K) 2N

We have already shown as part of the analysis of case a)
above that

ANV

E(k) = -,

(€]

so there remains to estimate E(k?). We have
N
E(k?) = kK*P(k).
k=1

If we maximize the quantity above over the distribution
P(k),k =0,1,---, N, subject to the constraints TY_,P(k) =
1, =¥ kP(k) = E(k), and P(k) > O (a linear program-
ming problem) we find that the maximum is obtained for
P(N) = E(k)/N,P(0) =1- E(k)/N, and P(k) = 0,k =
1,2,--., N — 1. Therefore

E(k*) < NE(k).

Similarly if we minimize E(k?) subject to the same constraints
we find that the minimum is obtained for P(k — 1) = &k —
E(k), P(k) = 1— (k- E(k)) and P(k) = 0 for k # k- 1,k,
where £ is the integer for which k — 1 < E(k) < k. Therefore
E(K?) > (k- 1)*(k - E(k)) + (k)*(1 - (k - E(K)).
After some calculations this relation can also be written
E(k*) 2 B(k) + (k — 1)2E(k) - k)
for E(k) € [k — 1,k),

E=1,2,---,N.

Note that the lower bound above is a piecewise linear func-
tion of E(k), and equals (E(k))? at the breakpoints k =

1,2,---, N. Summarizing the bounds we have
E(k)+ (k-1)(2E(k)—k) 1 11
——<a<z—-=— (10
INE(k) N S255 73y (0

where k is the positive integer for which
E-1<Ek)<k.

Note that as E(k) approaches its maximum value N (i.e.,
the system is heavily loaded), the upper and lower bounds
coincide. By combining the results for cases a) and b) above
we have
lim E(m;) = P(A) lim E(m;|A) + P(B) lim E(m;|B)
1—00 1—0oC 1—00
AV
=(1- P)l—_—p +ap

or finally

lim E(m;) = AV +ap

1—00
where a satisfies (10). Using (8) and the expressions derived
we obtain (2), where E(K) is given by (9), and k satisfies
k-1<E(k)<k. Q.ED.

Note that the formula for the mean waiting time becomes

exact in the limit both as p — 0 (light load), and as
p — 1 — AV (heavy load), in which case E(k) — N and
a — 1/2—1/(2N). The formula is also exact if N = 1 ([1]).

VARVARIGOS AND BERTSEKAS: DYNAMIC BROADCASTING IN PARALLEL COMPUTING 125

B. Main Proof

We now complete the proof of the dynamic broadcasting
theorem.

Proof of the Dynamic Broadcasting Theorem: In a PMNB
period each node that has a packet to broadcast at the start
of the period participates with exactly one packet. Let M be
the number of such nodes at the start of a period. Each of
these nodes can be viewed as making a reservation during the
reservation interval. The duration of the subsequent broadcast
interval is at most M X time units.

The dynamic broadcasting scheme will be called system “b?
(for “broadcast”). We also consider the limited service gated
reservation system with shared reservation and data intervals
presented in the previous subsection. This system will be called
system “a” (for “auxiliary”). Let the reservation interval of
system “a” be constant and equal to V, and the service time
of a packet be constant again and equal to X.

Consider the following analogy between systems “a” and
“p.” Let a data interval of system “a” correspond to a broadcast
interval of system “b,” a user of system “a” correspond to
a node of system “b,” and a packet arrival of system “a”
correspond to a broadcast request arrival of system “b.” Note
the similarities between the two systems. During a data interval
of system “a” (or broadcast interval of system “b”) at most
one packet (or broadcast request, respectively) from each user
(or node, respectively) can be served. It is easy to see that
the probability distributions of the length of the reservation
intervals, the data (or broadcast) intervals, and the number of
users (or nodes) served in a data interval are identical for both
systems. In particular, the length of a reservation interval of
both systems is equal to V by construction. The length of a
broadcast interval of system “b” is equal to MX, where M
is the number of active nodes. Similarly, the length of a data
interval of system “a” is equal to M X, where M is the number
of non-empty queues. The only difference between the two
systems is that in system “b” a broadcast request completes
service at the end of a PMNB period, while in system “a”
packets complete service at times j X, j =1,2,---, M, from
the beginning of the data interval.

The waiting time W, in queue for a packet of the aux-
iliary system is given from (2) of Subsection III-A, with
X,X2,V,V? replaced by X, X%, V,V?, respectively. The
average delay (queueing plus service time) for the auxiliary

[Pl

system “a” is
T, =W, + X.

Let U; be the average time between the beginning of a data
interval of system “a,” and the time that a packet served in
this data interval starts transmission (see Fig. 3). Similarly, let
U, be the average time between the end of the transmission
of a packet of system “a” and the end of the data interval in
which it is served. Then it can be proved by using arguments
similar to those used in the proof of Theorem 1 that

N-1

Uy=Us=aNX < X. (11)
It can also be seen that

U1 = U2 _<_ E(NI)X =)\NWaX = pWa

Broadoast intervals

nepxtun for System b
arrival o
1 uz
1 Voe——v Veo——»
v Xlvo 2 v
- ——=" 4_’—> > adl

Y §

Ty

Fig. 3. Reservation and broadcast (or data) intervals for the network broad-
casting scheme, and the auxiliary queueing system.

where (4) was used. The average packet delay 13 of the
broacasting scheme is

Ty=To+Us=W,+ X +aNX <W,
N-1
+ X + min (X,pT/Va).

12)

This completes the proof. Q.E.D.
Note that for light load the dynamic broadcasting theorem
gives

T<15V+X, p=0.

Until now we did not have to assume any particular topology
for the multiprocessor network. The dynamic broadcasting
scheme and the dynamic broadcasting theorem apply to any
network for which a PMNB algorithm with certain prop-
erties exists. The next section will present such algorithms
for a hypercube network of processors. In [13] we present
corresponding PMNB algorithms for d-dimensional meshes.
We believe that such algorithms exist for many other regular
topologies (in later publications we will present such PMNB
algorithms for folded-cubes and Manhattan Street networks).

IV. PARTIAL MULTINODE BROADCAST IN A HYPERCUBE

Beginning with this section we focus on a hypercube
network of processors. In particular, we consider the partial
multinode broadcast problem, where M arbitrary nodes of
an N-processor hypercube have to broadcast a packet to
all the other nodes. We call these nodes active nodes. The
PMNB is, as we saw, an important component of the dynamic
broadcasting scheme, but it is also an important problem on
its own right.

We will say that a communication algorithm is near-optimal
if the potential loss of optimality with respect to completion
time is of strictly smaller order of magnitude than the optimal
completion time itself. We generally prove that an algorithm
is near-optimal by showing that the leading term of its worst
case time complexity (including the corresponding constant
factor) is the same with the leading term of an expression
which is a lower bound to the time required by any algorithm.
We generally derive the optimal completion time by deriving
a lower bound to the completion time of any algorithm and
by constructing an algorithm that attains the lower bound, this

126 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

latter algorithm is said to be optimal. We will say that an
algorithm is of optimal order if its worst case time complexity
is asymptotically within a constant factor from the optimal
value.

Let Tpvng be the optimal time required for a partial
multinode broadcast in a hypercube. Tpynpg may depend on
the identity of the M nodes that want to broadcast. A lower
bound, however, is always

-1

TepMmNB > (13)

where d is the dimension of the hypercube. This can be seen
by arguing that each node has to receive M —1 or M packets,
and has only d input ports. If the splitting of packets is not
allowed, then a slightly stronger lower bound holds:

TpMNB > max (d7 [?])

where by [2] we denote the smallest integer which is greater
than or equal to z. This is because when packets are not split,
the diameter of the network is a lower bound on the broadcast
delay.

One way to execute the partial multinode broadcast is to
perform a full multinode broadcast (with dummy packets
for the nodes that have nothing to broadcast). The optimal
completion time of the MNB in an d-dimensional hypercube
with N = 2¢ nodes, when each packet requires one time unit
(or slot) to be transmitted over a link, was found in [3] (see
also [4]) to be [(N — 1)/d] time slots. Thus an upper bound
for TPMNB is

Tpmne < {N 1}-

When M <« N the MNB algorithm is inefficient as the
gap between the preceding inequality and the lower bound
of (13) suggests. In the three subsections of this section we
will provide three communication algorithms to execute the
PMNB task in a hypercube. The first algorithm, presented in
Subsection IV-A, has time complexity

M-1
Tiung < [T] +2d + 2dt, — m

in the case M = 2™ for some integer m, where ¢, is the
time required for a single parallel prefix step (¢, < 1). If M
is not a power of 2 then m should be replaced in the above
expression by [log M] and M by 2M°8 M1 This algorithm
is not of optimal order [except if M = O(N€) for some
positive constant ¢, or if M = ©(log N)], but it is a simple
and practical algorithm, as numerical examples indicate.

The second and the third algorithms, to be described in
Subsections IV-B and IV-C respectively execute the PMNB in
near-optimal time. In particular the second algorithm, which
we call near-optimal PMNB algorithm, executes the task in
time

N —
11
Tpmns <

! %{ +2dt, +2 (14)

independently of the value of M and the location of the active
nodes. This is the best existing algorithm for the PMNB task,

having roughly half the complexity of the PMNB algorithm
given in [11]. Comparing (14) with the lower bound (13) we
see that the leading terms of the right hand sides have the same
coefficient. The algorithm assumes that packets can be split at
the origin and recombined at the destinations. For the case
where this is undesirable we modify the algorithm to achieve
near-optimal completion time without the need of splitting and
recombining the packets. This gives rise to a third PMNB
algorithm that will be presented in Subsection IV-C. We call
it near-optimal PMNB without splitting of packets and its time
complexity can be bounded above by
T s < [%1 +2d + 4dt, — 1

for any M. Note that the MNB is a special case of the PMNB
with M = N. The latter PMNB algorithm gives rise to a very
efficient MNB algorithm with complexity [N/d] + 2d — 1,
which does not use the splitting of packets. This MNB
algorithm has not appeared in the literature before.

The benefits of using a partial multinode broadcast instead
of a full multinode broadcast algorithm can be best illustrated
by a numerical example.

Example: We consider both the cases where ¢, = 1 and
tp = 0. The case t, = 0 corresponds to the situation where
tp < 1 (a realistic assumption for computers which have an
efficient implementation of the parallel prefix operation), or to
the situation where the position of the active nodes is known
in advance. The case t, = 1 corresponds to the situation
where a single parallel prefix step takes time equal to the
transmission time of a packet, which may be the case when
the computer does not support the parallel prefix operation and
packet transmission times are independent of packet lengths.
Consider a hypercube of N = 26 nodes and a PMNB task
involving M = 20 active nodes. A full MNB would take
4096 steps. Algorithm I requires 157 time units (or only 125
if t, = 0). The near-optimal algorithm which allows splitting
of packets requires 98 time units (or only 66 time units if
tp = 0). The near-optimal PMNB algorithm without splitting
of packets requires 160 time units (96 if t, = 0). The lower
bound for the PMNB in this case is 64.

A. A Suboptimal PMNB Algorithm for the Hypercube

This algorithm consists of four phases. (There can be some
pipelining between the phases, but we do not try to exploit
this because the gain in completion time is small).

Let s1,82,---,8pm,M < N, be the active nodes. The rank
of a packet located at node s is defined as

rs=2zt—1

t<s

where z, is equal to one if processor ¢ has a packet to
broadcast, and zero otherwise.

Phase 1 (Rank Computation Phase): The rank r,(0 <
rs < M — 1) of each active node s is computed. This can
be done in 2d steps by performing a parallel prefix operation
(see [9]) on a tree P, called parallel prefix tree, embedded in
the hypercube. The ith leaf of the tree from the left is the ith

VARVARIGOS AND BERTSEKAS: DYNAMIC BROADCASTING IN PARALLEL COMPUTING 127

node of the hypercube. The operation is described in [9], pp.
37-44. During each step only links of a particular dimension
are used. The packets involved in a parallel prefix operation
are small (one byte of information), and require only ¢, time
units to be transmitted over a link. Thus Phase 1 takes 2dt,
time units to be completed. It is reasonable to assume that
t, < 1, where one time unit is the time required to transmit
a whole packet over a link; in fact it is reasonable to expect
that in many parallel machines we have ¢, < 1. Note that if
the active nodes are known in advance then their ranks are
also known and Phase 1 can be omitted.

Phase 2 (Packing Phase): Processor s sends its packet to
processor 7. This is known in the literature as the packing
problem (see [9] for the case of a butterfly network), and can
be done in d steps by using the following greedy algorithm; a
packet during the ith step of the packing phase is transmitted
over an :-dimensional link if the sth bit of its routing tag
is a one, or stays at the current node otherwise. Packets in
the packing phase use disjoint paths. This can be seen by
noting that when the dimensions of the hypercube are travelled
in an ascending order, the hypercube resembles a butterfly,
and using the well-known results for the packing problem in
butterflies (see, for example, [9], pp. 524-538).

At the end of the second phase the 2™ nodes with the
smallest identities have a packet. In the last two phases, each
of these packets will be broadcast to all the other processors.
Note that the M = 2™ nodes with the smallest identities form
a subcube of dimension m, namely, the one obtained by fixing
the d — m most significant bits to 0.

Phase 3 (Subcube Single Node Broadcast Phase): Processor
r,,0 < r, < 2™ — 1, broadcasts its packet to the d — m
dimensional hypercube (*4~™r,) obtained by fixing the m less
significant bits to equal the binary representation of . This is
a single node broadcast in a (d — m)-dimensional hypercube,
and requires d — m steps.

Phase 4 (Subcube Multinode Broadcast Phase): At the be-
ginning of this phase all processors wrs, w = 0,1,---,2¢7™
have received the packet originating at node s. During Phase
4 processor wr, broadcasts the packet to all the nodes in the
subcube (w*™). This is a full MNB in each one of these m-
dimensional disjoint subcubes, and requires time [(M —1)/m]
(see [4], Section 1-C).

Adding up the durations of Phases 1 through 4 we get

M-1

Teung < { —‘ +2d + 2dt, — m.

Fig. 4 shows how the preceding algorithm works for a 4-
dimensional hypercube and M = 4 active nodes.

B. A Near-Optimal PMNB Algorithm with Splitting of Packets

In this subsection we present a near-optimal algorithm to
execute the partial multinode broadcast task in a hypercube.
We will show that the time required by the algorithm satisfies

N-1M
= 4+ 2dt, +2

11
TPMNB < N d

where t,, is the time required for a single parallel prefix step.

0000 {0001 | 0010 | 0011
(0] (o] ® | ® @
0100| 0101 | 0110] o111 Packing
Phase

1000 | 1001 | 1010 | 10114

@
1100 | 1101 | 1110 | 1111
® []

Subcube SNB Phase

[X: A% NN X3 K-
90|09 @ 8 |® B Subcube MN
ocoeloeloe O-P:::: o] ® el e
L X0 X-20 X:20 N+
oeloeloceloe 0 ©| e
00|00 |00D
oeloelce|oe c| e |5 @

Fig. 4. The first (suboptimal) PMNB algorithm for hypercubes (N = 16.
A = 4). Each column or row corresponds to a subcube.

The algorithm in this section assumes that packets can be
split at the origin and recombined at the destination without
any overhead. Each packet requires one time slot in order to
be transmitted over a link. If a packet is split in d parts, each
of these parts requires 1/d time units to be transmitted over
a link. In the next subsection, we will present another near-
optimal partial multinode broadcast algorithm, which does not
require the splitting of packets.

We will start by presenting a suboptimal partial multinode
broadcast algorithm. This algorithm will not make full use of
the links of a hypercube. We will then modify the algorithm to
achieve efficient link utilization and near-optimal completion
time. The suboptimal algorithm consists of three phases:

Phase 1 (Rank Computation Phase): The rank r, of each
active node is computed. This computation is done through a
parallel prefix operation as in Phase 1 of the algorithm of the
previous subsection. It requires time 2dt,, where ¢, is the time
required for a single parallel prefix step.

Phase 2 (Packing Phase): The packet of node s and rank
r, is sent to processor 7. This is done in d steps as described
in Phase 2 of the algorithm of the previous subsection.

Phase 3 (Broadcast Phase): The broadcast phase consists
of d subphases [= 1,2---,d. During subphase [, every
node 7 = r4_1T4—2 - - - Ty transmits to its neighbor across the
(d — 1)th dimension in any order the packets that were located
at the node at the beginning of Phase 3 plus the packets that
the node has received during all the previous subphases.

During subphase 0 the nodes have (at most) one packet
and this is the only one they broadcast. Phase 3 is easy to
implement since the current subphase [is easily known.

To prove that the algorithm delivers the packets to all
the nodes, it is useful to introduce some new notation. Let
B = B4—184—2-+-Fo be a binary number of length d. We
denote by S;(8) = (*'84_1_184_1-2---Bo) the subcube of

128 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

the nodes whose d — [less significant bits are equal to the
d — I less significant bits of 3.

The next theorem proves that the previous algorithm actu-
ally executes the PMNB task.

Theorem 2: For each 8 € {0,1}¢, at the end of subphase
! of Phase 3, [= 1,2, - - -, d, each node in subcube Si(B) has
received a copy of every packet located at the beginning of
Phase 3 at some node in S;(3), completing a PMNB within
each of these subcubes.

Proof: The proof will be done by induction on {. For
! = 0 (ie., at the beginning of Phase 3 of the algorithm) it
holds trivially since every node has its own (if any) packet.
Assume it is true for some {. Every subcube Sy((3) is composed
of the two subcubes Sl—l(ﬂd—l . x e ﬂd—l+10ﬂd—l—1 tee ﬁ()) and
Si—1(Ba-1 - Ba—1+11Ba—1-1- - fo). During subphase lev-
ery node in one of these subcubes sends to its (d — [)-neighbor
all the packets it has received during the previous subphases,
together with its own packet. This combined with the induction
hypothesis proves the theorem. QE.D.

Letting | = d we find that at the end of subphase d each
packet has been received by all the nodes, and therefore, the
PMNB has been completed.

The next lemma calculates the time complexity of Phase 3.

Lemma 1: Phase 3 of the algorithm requires at most

N-1
N M+d
steps.

Proof: We denote by T the duration of subphase [, and
we let m = [log M. At the beginning of Phase 3 only nodes
0,1,---,M —1 have a packet. From Theorem 2 we know that
just before the beginning of phase [, node s = 84—154—2""" S0
has received all the packets originally located at nodes in the
subcube (¥ s4_184—i—1 - - - 80). The number of these packets
is equal to the cardinality of the set

Wi(s) = {w = wag—1wd—2 cwel0<w <M -1,
Wi—1 = Sd—1, Wd—1—-1 = Sd=1-1,"" ", Wo = 80}-

During subphase !, node s will send these packets to its
d — l-neighbor. Therefore, we have

T; < max [Wi(s)]
where || denotes the cardinality of a set. Let s’ = sa_12%t+

$5g_1.12471=1 + -+ + s0. The cardinality of Wi(s) is equal
to the number of integers between 0 and M — 1 — ', which

are divisible by 247!, Thus
M- < M
2d—l+1 - 2d—l+1)

The total duration of Phase 3 satisfies
Duration of Phase 3

max Wi(s)| £ max [

QED.

Adding up the duration of Phases 1, 2 and 3 we obtain the
following lemma:
Lemma 2: The partial multinode broadcast task can be
executed in a d-dimensional hypercube in

N —
Tos < M=~ Ly odi, +2d

time units, where M is the number of active nodes.

The PMNB algorithm that we described so far is not of
optimal order as the gap between the lower bound (13), and
the result of Lemma 2 indicates. In fact, it is suboptimal by a
factor of roughly d. This is due to the fact that at each step only
links of a particular dimension are used. In the next theorem
we modify the algorithm so that all dimensions are used at the
same time, and near-optimal completion time is achieved.

Theorem 3: The partial multinode broadcast task in a
d-dimensional hypercube can be executed in

MN -1
T =——+V 1
PMNB = 7y + Vi (15)
time units, where M is the number of active nodes, and
Vi = 2dt, + 2

s the time required for the first two phases.

Proof: We call the PMNB algorithm analyzed in Lem-
mas 1 and 2 algorithm Ag. At each step of Phases 1, 2, and 3
of Ay, only links of a particular dimension are used. Indeed,
in the parallel prefix or the packing phase only links of a
particular dimension are used at each step. Similarly, during
subphase [of the broadcast phase only links of dimension
d — | are used.

For any node s and integer ¢,0 < ¢ < d — 1, we denote by
R4(s) the binary number obtained by shifting s by ¢ positions
to the right. We also define the order <. between binary
numbers as

s <. tif and only if R°(s) < R°(t),

and the rank of class c of an active node s as

c —
T =

(16)

Ty — 1
{t:t<.cs}

where x; is equal to one if processor ¢ has 2 packet to broadcast
and zero otherwise.

For any c, consider now another PMNB algorithm referred
to as algorithm A.. Algorithm A is similar to algorithm Ao,
and consists of a parallel prefix, a packing, and a broadcast
phase. In the parallel prefix phase the rank ¢ is calculated
for each node by using an appropriate parallel prefix tree; this
tree is obtained from the paralle] prefix tree used in algorithm
Ay, by replacing each node w by node R¢(w), and each
link of dimension [by a link of dimension (I + c¢ymodd.
In the packing phase, the packet of node s is sent to the
intermediate node r¢ in the following way. During the ith
step of the packing phase the packet is transmitted over a
link of dimension i + cmodd if the corresponding bit of its
routing tag is a one, or stays at the current node otherwise. In
the broadcast phase of algorithm A. a packet is transmitted
over a link of dimension (+ ¢) mod d of its current location,

VARVARIGOS AND BERTSEKAS: DYNAMIC BROADCASTING IN PARALLEL COMPUTING 129

whenever the same packet would be transmitted under the A
algorithm over a link of dimension [of its current location.
Since A, is identical to Aq after appropriately renaming the
hypercube dimensions and the nodes, and since .4y performs
the PMNB independently of the location of the M active
nodes, we conclude that A, also executes the PMNB task,
and requires the same amount of time as Ajg.

Using simultaneously all the algorithms Ag, Ay, -+, Ag—1
we can find a new algorithm that requires the amount of time
claimed in the theorem. In particular, each packet is split into
d parts, called mini packets. Each mini packet is assigned
a distinct integer ¢ between O and d — 1, called class. The
mini packets of class ¢ are routed according to algorithm A..
Packets of different classes use different hypercube dimensions
at any time. According to our communication model, a mini
packet requires 1/d time units for transmission over a link.
The duration of the packing and the broadcast phase is thus
reduced by a factor of d, while the duration of the parallel
prefix phase remains the same. Therefore, the theorem follows
from Lemma 2. Q.E.D.

The scalar V}, in (15) is growing linearly with the dimension
d. In practice, however, 2dt, is small, since t, is very small.
Indeed, at each step of a parallel prefix operation only one
byte has to be transmitted between neighbors. Some parallel
computers, such as the Connection Machine model CM-2
of Thinking Machines Corporation, the IBM/RP-3, and the
NYU Supercomputer, have very efficient implementations of
the parallel prefix, otherwise called “scan” operation ([5]).
Theoretically, however, the parallel prefix operation takes time
proportional to the diameter.

No upper ceilings are needed in (15), since we allow
fragmented slots. Note also that under the communication
model used in this section a single multinode broadcast
requires 2 time units, the same time that would be required
if cut-through routing ([8]) was used. A near-optimal PMNB
algorithm that does not require the splitting of packets is
presented in the next subsection.

C. A Near-Optimal Hypercube PMNB Algorithm
without Splitting of Packets

In this subsection we modify the algorithm of the preceding
section in order to avoid the potential drawbacks of packet
splitting. This is done at the expense of a slight increase in the
complexity. Messages in this section require one time slot in
order to be transmitted over a link, and are always transmitted
as one packet. The algorithm consists of two parts.

1) Class Computation Part: The rank r;,0 < ry, < M —
1,5 € {s1,82, -+, sm}, of each packet is computed through
a parallel prefix operation. This requires 2dt, time units. The
packet of node s is assigned a class number ¢ = v, mod d.

2) Main Part: The packets of class ¢ are routed according
to algorithm .4, described in the proof of Theorem 3. Recall
that algorithm .A. consists of three phases: the rank computa-
tion phase, the packing phase, and the broadcast phase. Only
packets of class c¢ take part in the rank computation phase, or
in any other phase of A.. For example, when computing the
rank r¢ from (16), only the active nodes of class c set z; = 1.

Each class has at most [M/d] packets. Using Lemma 2 with
[M/d) instead of M, we get that the main part of the previous
algorithm requires time less than [M/d] + 2d + 2dt, — 1 (we
have taken into account that the duration of the main part,
excluding the parallel prefix operation, is an integer). Thus
the total duration of the algorithm satisfies

T s < {%} +2d + 4dt, — 1.

The algorithm just presented for the PMNB task gives rise
to an efficient algorithm for the MNB task. Indeed, a multinode
broadcast can be treated as a partial multinode broadcast with
M = N. The class computation part and the rank computation
phase are not necessary any more, since the class number and
the rank of each packet are known in advance. The packing
and the broadcast phases alone can execute the MNB in time

less than or equal to
N
— 2d -1
kK

which is optimal within 2d—1 time units. This MNB algorithm
is apparently new.

V. PERFORMANCE OF THE DYNAMIC
BROADCASTING SCHEME FOR HYPERCUBES

The PMNB algorithms of Subsections IV-B and IV-C
satisfy the conditions of the dynamic broadcasting theorem,
and, therefore, any of them can be used as a component of the
dynamic broadcasting scheme. In this section we will evaluate
the average delay and the stability region of the corresponding
hypercube dynamic schemes.

If we use the PMNB algorithm of Subsection IV-B as
the basis for the dynamic scheme, we can view the rank
computation and the packing phases as a reservation interval of
duration V = 2dt, + 2. If the PMNB algorithm of Subsection
4.3 that does not allow the splitting of packets is used, then
the reservation interval consists of the class computation, the
rank computation, and the packing phases, and it has duration
V = 2d+4dt,. The analysis can be carried out for both cases.
In what follows we will assume that the PMNB algorithm of
Subsection IV-B is used; if the algorithm of Subsection IV-C
is used, V should be replaced by 2d + 4dt, throughout this
section.

During the reservation interval every node s that has a
packet to broadcast sets x5 = 1 in the parallel prefix phase
of Subsection IV-B (or in the class computation phase if the
algorithm of Subsection IV-C is used). In addition to that,
during the packing phase, the packets move to more favorable
intermediate destinations. Following each reservation interval,
there is a broadcast interval, which is the last phase of the
PMNB algorithm, and has duration

MN-1
d N
time units. Each node can participate with at most one packet

in a broadcast interval, and this packet must have arrived prior
to the beginning of the PMNB period.

130 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

We define the hypercube utilization factor as

AN - 1)

p= I a7
For a given load, p is equal to the ratio of the average total
number of transmissions per unit of time necessary to execute
the broadcasts (each broadcast requires N — 1 transmissions),
over the total number of links of the hypercube. To find a
necessary condition for stability for any broadcasting scheme,
note that AN broadcast requests are generated on the average
per unit of time in the hypercube, each requiring at least N — 1
transmissions to be completed. Since there are dNV links, a
necessary condition for stability is

AN(N -1) <dN
or equivalently
p<l1.

As we will see, our scheme does not guarantee stability for
any p <1, but it does for p very close to 1.

The PMNB algorithm of Subsection IV-B satisfies the con-
ditions required by the dynamic broadcasting theorem to apply.
Using the dynamic broadcasting theorem, and substituting
X by (N — 1)/(dN), we see that the average delay T} of
the corresponding hypercube dynamic broadcasting scheme
satisfies

a(N-1) N-11 1
T = _— — < -
h=WE Ty N as"*3
+ min (pVV, %) (18)
with
W P N-1_ (1-pV
T2d1—-p-AV) N 2(1—p—AV)
(1—pa—=AV)V
1—p=AV
_N-1 p V(1.5 —0.5p — pa — AV)
N 2d(1—-p—-2AV) 1—-p—-AV
19
where
V =2dt, +2
p is given by (17), and
M+(M—1£2M—M)_i<a<l__l_7
2NM 2N — 2 2
szVd
1-p

where M is the smallest integer which is larger than M. (M is
the average number of broadcast requests served in a PMNB
period).

For any fixed load which satisfies 1 — p — AV >0, we
obtain from (18) and (19) that the average packet delay

is (V) = O(d - tp). In particular, for an almost empty
hypercube, p ~ 0, we have

1 1
nLSl.5V+E:3dtp+3+E, forp = 0.
The following theorem gives the order of magnitude of the
average delay of the scheme at heavy load.
Theorem 4: In the limit, as p — 1 — AV, we have

|4
Th—o(l_p—_w)

Proof: Let p=1— AV — ¢ with € — 0. Then, as shown
in Subsection III-A, @ — 0.5—-0.5/N. Leta = 0.5—-0.5/N -6
with § — 0. Then, using (18) and (19),

. . 1
T, S_p__'- V(0.5+ ¢+ 0.5p/N + pb) 21
2de € d
+ min (V(0.5+e+0.5p/N+p6), N - 1)
€ 2d
:0(K+ﬁ). QED
€ de

As proved in [11], the average delay of any dynamic
broadcasting scheme grows at least as Q((1 — p)~!). Since
the term AV, which by (17) is equal to pdV/(N — 1), goes to
0 (very fast) as N — oo, our dynamic broadcasting scheme
has good behavior for heavy load (p close to 1) when the
number of nodes of the hypercube is large.

The hypercube broadcasting scheme is stable for p < 1-AV,
or using the equations A = pd/(N — 1) and V = 2dt, + 2,

1
<
P = 1% 2dt, + 2)d/(N — 1)’

which is very close to one (the maximum p that can be
accomodated by any scheme), and tends to one as N — oo.
The reason we get this remarkable result is the efficiency of the
PMNB algorithm of Subsection IV-B, and the small overhead
introduced by the reservation intervals (parallel prefix and
packing phases).

Note that similar results can be obtained for the case where
the PMNB algorithm of Subsection IV-C (where packets are
not split) is used as the basic component of the dynamic
broadcasting scheme. Then, it can be shown that the stability
region is given by

1

< ket ¢ split
p_1+(2d+4dtp)d/N’ (packets are not split),

while the average delay for ligth load satisfies

Ty Sﬁdt,,+3d+$,

forp ~ 0, (packetsare not split).

3

VARVARIGOS AND BERTSEKAS: DYNAMIC BROADCASTING IN PARALLEL COMPUTING 131

VI. CONCLUSIONS

We have provided a general method for dynamic broad-
casting, which consists of successive (static) PMNB algorithm
executions. The method is valid for any network and can use
any PMNB algorithm for that network. If, however, the PMNB
algorithm has execution time that is linear in the number of
nodes participating in the PMNB, our dynamic broadcasting
theorem gives sharp stability and average delay results.

These results have been specialized to the hypercube, show-
ing that as the size of the hypercube increases, the region
of stability of our dynamic scheme approaches the maximum
possible, while the average delay grows at the optimal rate.
Similar results have been shown elsewhere for mesh topologies
[13]. It is expected that appropriate PMNB algorithms can
be developed for other topologies of interest, and that a
similar stability and average delay analysis of our dynamic
broadcasting scheme can be obtained by using our general
theorem.

REFERENCES

[1] D. P. Bertsekas and R. Gallager, Data Networks.
NIJ: Prentice-Hall, 1987.

2] , unpublished research.

{3] D. P. Bertsekas, C. Ozveren, G. D. Stamoulis, P. Tseng, and J.
N. Tsitsiklis, “Optimal communication algorithms for hypercubes,” J.
Parallel Distrib. Comput., vol. 11, pp. 263-275, 1991.

[4] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Com-

putation: Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall,

1989.

G. E. Blelloch, “Scans as primitive parallel operations,” Proc. Int. Conf.

Parallel Processing, pp. 355-362, Aug. 1986.

[6] C.T.Ho, “Full bandwidth communications on folded hypercubes,” IBM
Almaden Research Center, Res. Rep. RJ 7434 (69605), Apr. 1990.

[7] S. L. Johnsson and C. T. Ho, “Optimum broadcasting and personalized
communication in hypercubes,” IEEE Trans. Comput., vol. C-38, pp.
1249-1268, 1989.

[8] P. Kermaniand and L. Kleinrock, “Virtual cut-through: A new computer
communicating switching technique,” Comput. Networks, vol. 3, pp.
267-286, 1979.

[9] F. T. Leighton, Introduction 10 Parallel Algorithms and Architectures:

Arrays—Trees—Hypercubes. San Mateo, CA: Morgan Kaufmann,

1992.

Y. Lan, A.-H. Esfahanian, and L. Ni, “Multicast in hypercube multipro-

cessors,” J. Parallel Distrib. Comput., pp. 3041, 1990.

G. D. Stamoulis, “Routing and performance evaluation in interconnec-

tion networks,” Ph.D. thesis, Rep. LIDS-TH-2035, Massachusetts Inst.

of Tech., May 1991.

G. D. Stamoulis and J. N. Tsitsiklis, “Efficient fouting schemes for

multiple broadcasts in hypercubes,” IEEE Trans. Parallel Distrib. Syst.,

vol. 4, pp. 725-739, 1993.

Englewood Cliffs,

{5

s}

(101
(1]

[12]

[13] E. A. Varvarigos and D. P. Bertsekas, “Partial multinode broadcast and
partial exchange in d-dimensional wraparound meshes,” to appear in J.
Parallel Distrib. Comput.

, “Multinode broadcast in hypercubes and rings with randomly

distributed length of packets,” IEEE Trans. Parallel Distrib. Syst., vol.

4, pp. 144-154, 1993.

{14]

Emmanouel (Manos) Varvarigos (M’93) was born
in Athens, Greece, in 1965. He received a Diploma
(1988) in electrical engineering from the National
Technical University of Athens, Greece, and the
M.S. (1990), Engineer (1991), and Ph.D. (1992) de-
grees in electrical engineering and computer science
from the Massachusetts Institute of Technology.
. \ In 1990 he worked on optical fiber communi-
) ‘ cations at Bell Communications Research, Morris-
"v"%% town. He is currently an Assistant Professor of
) Electrical and Computer Engineering at the Univer-
sity of California, Santa Barbara. His research interests are in the areas of
parallel and distributed computation, optical fiber data networks, and mobile
communications.
Dr. Varvarigos received the First Panhellenic Prize in the Greek Mathematic
Olympiad in 1982, and four times (1984-1988) the Technical Chamber of
Greece award. He is a member of the Technical Chamber of Greece.

Dimitri P. Bertsekas (F’83) received a combined
B.SEE. and B.SME. degree from the National
Technical University of Athens, Greece in 1965,
the M.S.E.EE. degree from George Washington
University in 1969, and the Ph.D. degree in
system science from the Massachusetts Institute of
Technology in 1971.

He has held faculty positions with the
Engineering-Economic Systems Dept., Stanford
University (1971-1974) and the Electrical
Engineering Dept. of the University of Illinois,
Urbana (1974-1979). He is currently Professor of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology. He
consults regularly with private industry and has held editorial positions in
several journals. He has done research in the areas of estimation and control
of stochastic systems, linear, nonlinear and dynamic programming, data
communication networks, and parallel and distributed computation, and has
written numerous papers in each of these areas. He is the author of Dynamic
Programming and Stochastic Control, Academic Press, 1976, Constrained
Optimization and Lagrange Multiplier Methods, Academic Press, 1982,
Dynamic Programming: Deterministic and Stochastic Models, Prentice-Hall,
1987, Linear Network Optimization: Alogorithms and Codes, M.I.T. Press,
1991; and co-author of Stochastic Optimal Control: The Discrete-Time Case,
Academic Press, 1978, Data Networks, 1987, and Parallel and Distributed
Computation: Numerical Methods, Prentice-Hall, 1989.

