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Abstract. Efficient task scheduling is fundamental for the success of the Grids, 
since it directly affects the Quality of Service (QoS) offered to the users. Effi-
cient scheduling policies should be evaluated based not only on performance 
metrics that are of interest to the infrastructure side, such as the Grid resources 
utilization efficiency, but also on user satisfaction metrics, such as the percent-
age of tasks served by the Grid without violating their QoS requirements. In this 
paper, we propose a scheduling algorithm for tasks with strict timing require-
ments, given in the form of a desired start and finish time. Our algorithm aims 
at minimizing the violations of the time constraints, while at the same time 
minimizing the number of processors used. The proposed scheduling method 
exploits concepts derived from spectral clustering, and groups together for as-
signment to a computing resource the tasks so to a) minimize the time overlap-
ping of the tasks assigned to a given processor and b) maximize the degree of 
time overlapping among tasks assigned to different processors. Experimental 
results show that our proposed strategy outperforms greedy scheduling algo-
rithms for different values of the task load submitted. 

1   Introduction 

Task scheduling is fundamental for the success of the Grids, especially with regards 
to its ability to support real-life commercial applications, by directly affecting a) the 
efficiency with which Grid resources are used and b) the Quality of Service (QoS) 
offered to the users. Evaluating a task scheduling algorithm should be based not only 
on resource utilization metrics, but also on user satisfaction factors, such as the per-
centage of tasks that are served by the Grid without violating their QoS requirements, 
e.g., their start and finish times [1]. Currently, several open source schedulers have 
been developed for clusters of servers such as Maui [2] and portable batch system 
(PBS) [3]. However, the primary objective of most existing approaches is to improve 
overall system performance (e.g., resource utilization), while the QoS experienced by 
Grid users is, at best, a secondary consideration [4], [5].  

Without QoS guarantees (e.g., given in the form of task deadlines that should not 
be violated), users may be reluctant to pay for Grid services or contribute resources to 
the Grid, reducing its economic impact. On the other hand, designing a scheduling 
algorithm that satisfies only the end-to-end users’ QoS, without taking into account 
Grid utilization efficiency, would result in a wasteful Grid architecture, that uses 
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many more processors than necessary in order to satisfy users’ QoS requirements. 
Equivalently, processor utilization would be relatively small, meaning that only a 
small percentage of the available resources would be exploited. Therefore, we need 
scheduling and resource allocation schemes that are able to simultaneously meet these 
two sometimes contradictory requirements: optimize Grid utilization efficiency while 
simultaneously guaranteeing the tasks’ strict QoS requirements (e.g., deadlines). 

Several computing toolkits and systems have been developed to meet the task QoS 
requirements in a Grid computing architecture. Globus is probably the most well 
known [6]. Additionally Condor-G is an enhanced version of Condor that uses the 
Globus toolkit to manage Grid jobs [7]. The Nimrod-G [8] is a Grid aware version of 
the Nimrod, which provides a simple declarative parametric modeling language for 
expressing a parametric experiment. A dynamic Grid resource allocation method is 
adopted in [9] using market economy notions (the G-commerce architecture). Finally, 
a new scheduling algorithm developed in the framework of the GrADS (Grid Appli-
cation Development Software) tool has been proposed in [10]. A survey of state of the 
art methods for Grid scheduling is presented in [11]. 

In general, scheduling parallel and distributed applications is a known NP-
complete problem. For this reason, several heuristic algorithms have been proposed 
for task scheduling. Some approaches use genetic algorithms to maximize the overall 
system performance [12], [13], while others use Directed Acyclic Graphs (DAG) for 
scheduling on heterogeneous or homogeneous computing environments [14], [15]. 
Performance evaluation results for these algorithms are presented in [16]. However, 
all the aforementioned approaches try to maximize overall system performance, (that 
is, Grid resource utilization), without respecting task deadlines (that is, user’s QoS). 
Advance reservation of resources, which is the ability of the scheduler to guarantee 
the availability of resources at a particular time in the future, is one mechanism Grid 
providers may employ in order to offer specific QoS guarantees to the users [4]. 
However, these algorithms lack scalability, as they are unable to efficiently perform 
task scheduling in short time for large numbers of Grid resources. Using concepts 
from computational geometry, [1] solves the scalability problem for task scheduling 
under a user’s satisfaction framework. The scalability problem is also addressed in 
[17]. Furthermore, fair scheduling algorithms and reservation schemes have been 
discussed in [5].  

The main drawback of the above mentioned approaches is that scheduling is per-
formed either in the direction of maximizing overall system performance (resource 
utilization efficiency) or minimizing the degradation of user’s QoS requirements 
satisfaction. As mentioned before, a successful Grid scheduling algorithm should 
actually take into account both directions. This problem is addressed in this paper, by 
proposing a novel task scheduling algorithm that assigns tasks to processors so that a) 
the time overlapping between tasks assigned to the same processor are minimized 
(users QoS requirements are met to the degree possible), while simultaneously b) 
maximizing overall Grid utilization efficiency.    

As we show in this paper, the two above mentioned objectives can be described by 
a matrix representation and then the proposed optimal scheduling strategy can be 
obtained by introducing the notions of generalized eigenvalues through the use of the 
Ky-Fan theorem [19]. The Ky-Fan theorem states that an optimal schedule that satis-
fies both aforementioned criteria can be derived as a solution of the largest  
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eigenvectors of the two matrices that represent the two conditions. Therefore, we have 
a scheduling algorithm of polynomial order with respect to the number of tasks, that 
simultaneously satisfies the users’ QoS and the system’s performance conditions.     

The paper is organized as follows. Section 2 discusses the proposed scheduling  
algorithm for jointly optimizing resource utilization efficiency and tasks’ QoS re-
quirements. The solution of the joint optimization problem is given in Section 3.  In 
Section 4, we discuss a lower bound on the number of processors required to achieve 
no task overlapping (no QoS violations) and propose objective criteria for evaluating 
scheduling efficiency. Experimental results and comparisons with other approaches 
are given in Section 5, while Section 6 concludes the paper. 

2   Joint Optimization of Resource Performance and QoS 
Requirements 

Let us denote by iT , i=1,2,..,N,  the tasks that request service in a Grid infrastructure 

consisting of M processors. Let us also denote by iST  the desired Start Time for Task 

iT  and by iFT  its desired Finish Time. In this paper, we assume that the tasks are 

scheduled in a non-preemptable, non-interruptible way. Under this assumption, if a 
task has been assigned for execution on a processor and another task requests service 
on an overlapping time interval, then, the second task should either be assigned to 
another processor (which is not reserved at the requested time interval) or undergo 
violation of its QoS, i.e., its start or finish time or both of them. 

We denote by ijσ  the non-overlapping measure between tasks iT  and jT . Assum-

ing that the task i Start and Finish Time, iST  and iFT , are hard constraints that should 

not be violated, a proper selection for the non-overlapping measure ijσ  is to take zero 

values when tasks iT  and jT  overlap in time and positive non-zero values when they 

do not overlap.  
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where 0>α .  
Let us assume, without loss of generality that the Start time iST  and Finish time iFT  

for all tasks that are to be scheduled are within a time horizon T, which can be consid-
ered as the time interval within which one instance of the scheduling algorithm is exe-
cuted. Let us denote by rC  the set of tasks assigned for execution on processor r.    

As stated in Section 1, an efficient scheduling scheme for a commercially success-
ful Grid should assign all the N pending tasks to the M processors so as to a) minimize 
the tasks’ QoS violations, while simultaneously b) maximizing the overall utilization 
of the M processors, so that the Grid resources do not stay idle most of the time. The 
first requirement, in terms of the scheduling algorithm, means that the tasks assigned 
to a given processor should present minimal overlapping. The second requirement 
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indicates that the task overlapping among different processors should be maximized, 
that is, the utilization of all processors in Grid should be as high as possible. These 
two requirements can be written as  
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where 1, ...,{ }i i NV T ==  the set of tasks that request service in a Grid infrastructure. 

The denominator of equations (2) is used for normalization purposes. Otherwise, 
optimizing would favor the trivial solution of one task per processor. Parameter rQ  

expresses a measure of the overall QoS violation for the tasks assigned to the rth proc-
essor. Instead, parameter rP  expresses the Grid utilization. Taking into account all the 

M processors of the Grid, we can define a measure Q for the total tasks’ QoS violation 
and a measure P for the overall processor utilization as 

∑
=

=
M

r
rQQ

1
 , ∑

=
=

M

r
rPP

1
. (3) 

An efficient scheduler that tries to meet user QoS requirements should maximize 
Q  and simultaneously minimize P . However, it is clear that  

MQP =+ . (4) 

Equation (4) shows that the maximization of Q simultaneously yields a minimization 
of P and vice versa. Hence, in our problem, the two aforementioned optimization objec-
tives require in fact the use of identical means and they can be met simultaneously. This 
is intuitively satisfying, since scheduling a set of tasks in a way that makes efficient use 
of resources is also expected to help meet the QoS requirements of the set of tasks that 
are scheduled. Therefore, it is enough to optimize (maximize or minimize) only one of 
the two criteria. In our case, we select to minimize variable P. Thus,  
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where rĈ  is the set of tasks assigned for execution on processor r.   

3   The Proposed Task Scheduling Policy 

3.1   Matrix Representation 

Optimizing equation (5) is still a NP-complete problem, even for the special case of 
M=2 processors. To overcome this difficulty, we transform the problem of (5) into a 
matrix based representation. Let us denote by ][ ijσ=Σ  a matrix which contains the 

values of the non-overlapping measures ijσ  for all NxN combinations of tasks iT  and 
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jT . Let us now denote as Tu
rr e ][=e an Νx1 indicator vector whose u-th entry is 

given by  
1,  if Task  is assigned to processor 

0, otherwise
uu

r

T r
e

⎧
= ⎨
⎩

 (6) 

The indicator vector re  points out which of the N tasks are executed on processor 

r. That is, indices of tasks executed on processor r are marked with one, while the 
remaining indices take zero values. Since the Grid infrastructure consists of M proces-
sors, M different indicator vectors re , Mr ,...,2,1=  are defined, each indicating the 

tasks assigned for execution on each processor.  This way, we can express the left 
hand of (5) with respect to vectors re , Mr ,...,2,1= . However, we also need to express 

the right hand of (5) as a function of re . For this reason, we denote by 

)( ildiag=L  the diagonal matrix, whose elements il  express the cumulative 

non-overlapping degree of task iT  with the remaining tasks. That is, 

∑=
j

ijil σ . (7) 

Using matrices L and Σ, we can express equation (5) as,  
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3.2   Optimization in the Continuous Domain 

Let us form the indicator matrix ][ 1 Mee=E , the columns of which correspond to the 

M processors in the Grid, while the rows to the N tasks, then the rows of E have only 
one unit entry and the remaining entries are zero. Optimization of (8) under the dis-
crete representation of matrix E is still a NP hard problem. However, if we relax the 
indicator matrix E to take values in the continuous domain, we can solve the problem 
in polynomial time. We denote by RE  the relaxed version of the indicator matrix E, 

i.e. a matrix whose rows take real values instead of binary values as is the case of the 
indicator matrix E. Then, it can be proven that (8) can be rewritten as  

)( 2/12/1 YLΣLY −−−= TtraceMP , (9a) 

subject to IYY =T . (9b) 

Y is a matrix that is related to the matrix RE  through   

ΛEYL R=− 2/1 , (10) 

where Λ is any MM ×  matrix. In this paper, we select Λ to be equal to the identity 
matrix, Λ=I. Then, the relaxed indicator matrix RE is given as 

YLE 2/1−=R . (11) 
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Minimization of (11) is obtained through the Ky-Fan theorem [19]. The Ky-Fan 

theorem states that the maximum value of the )( 2/12/1 YLΣLY −−Ttrace  subject to the 

constraint of IYY =T  is equal to the sum of the M (M<N) largest eigenvalues of 

matrix 2/12/1 −− LΣL .This maximum value is provided for the matrix  

RUY ⋅= , (12) 

where U is a MN ×  matrix whose columns are the eigenvectors corresponding to the 

M largest eigenvalues of matrix 2/12/1 −− LΣL  and R is an arbitrarily rotation matrix 

(i.e., orthogonal with determinant of one). Again, a simple approach is to select ma-
trix R as the identity matrix, R=I, that is UY = . Therefore, we have that the optimal 

relaxed indicator matrix RÊ  in the continuous domain is given as 

ULE 2/1ˆ −=R . (13) 

3.3   Discrete Approximation  

The optimal matrix RÊ  given by equation (13) does not have the form of the indicator 

matrix E since the  values of RÊ  are continuous, while E’s entries are binary. Recall 

that a unit entry indicates the processor a task is assigned to for execution, under the 
non-interruptible, non-preemptable assumption. Consequently, the problem is how to 

round the continuous values of RÊ  in a discrete form that approximates matrix E.   

One simple approach, regarding the rounding process, is to set the maximum value 

of each row of matrix RÊ  to be equal to 1 and let the remaining values be equal to 0. 

However, such an approach yields unsatisfactory performance when there is no domi-

nant maximum value for each row of RÊ . Furthermore, it handles the rounding proc-

ess as N (that is the number of tasks) independent problems. An alternative approach, 

which is adopted in this paper, is to treat the N rows of matrix RÊ  as M-dimensional 

feature vectors. Each one of these feature vectors indicates the association degree of 
each task and the respective M processor of the Grid. Then, we apply the k-means to 
form the indicator matrix E.   

4   Lower Bound - Scheduling Efficiency 

An important aspect, which determines the scheduling efficiency is the task granular-
ity g, and the task arrival rate λ defined as  

T

N
=λ , 

T

D
g = , (14) 

where N is the number of tasks requesting service over the corresponding time inter-
val T and D the average task delay. 
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Given a granularity g and a rate λ, the lower bound of Grid resources required for 
achieving no task overlapping is given by the following equation 

optMgN
T

ND
B ≤⋅== , (15) 

where optM  refers to minimum number of processors required for achieving no task 

overlapping by an optimal (exhaustive search) scheduling algorithm. The lower bound 
of (15) is achieved in the extreme case that the tasks request execution intervals of a 
constant duration D that appear one right after the other, completely filling the gaps 
within the time horizon T. Thus, this lower bound is usually smaller than the optM .      

Given the lower bound B on the number of processors required for no overlapping, 
the scheduling efficiency is defined as 

)(
)(

AM

B
Ae =  or ⎡ ⎤

)(
)(

AM

B
A =ε , (16) 

where A refers to the algorithm used to approximate the exhaustive search policy and 
M(A) is the number of processors required for achieving no task overlapping when 
algorithm A is used. e(A) is the scheduling efficiency, while )(Aε  is the rounded 
efficiency for algorithm A. The ⎡ ⎤⋅  indicates the ceil operator.  

5   Experimental Results 

Two different algorithms were implemented in this paper and compared with respect 
to their scheduling efficiency. The first algorithm is the proposed scheme, presented 
in Section 2. The second scheme is a greedy approach, which, for each task, a locally 
optimum choice is selected. In particular, the algorithm assigns each task to a proces-
sor, so that no task overlapping is encountered, by taking into account the current 
local load of the processors.  

Our proposed algorithm is recursively applied assuming different number of proc-
essors in Grid. Then, we select the minimum number of processors that provide no 
task overlapping that is no violation of the tasks’ QoS. This number M(Proposed 
Algorithm) is used for evaluating the scheduling efficiency. In the greedy algorithm, 
each time a newly considered task overlaps with the already assigned tasks, then a 
new resource is activated and this task is assigned to this resource. The number of 
resources that have been activated after scheduling all tasks, without overlaps, is de-
noted by M(Greedy). We assume that the tasks’ Start and Finish Times iST  and iFT  

are uniformly distributed within the time horizon T and that the average tasks’ dura-
tion is constant and equals D.  Experiments where the task duration varies signifi-
cantly from task to task, have also been performed, but are not included here due to 
space limitations. 

Fig. 1(a) presents the efficiency e [see equation (16)] versus the task granularity g 
for different values of lower bound B. As is observed, the efficiency increases as the 
granularity decreases for low values of g. However, the ratio of improvement de-
creases, meaning that the efficiency converges as g increases. We also observe from 
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Fig. 1 that for values of granularity greater than g ≥ 0.2 the efficiency also increases 
as g increases. This is due to singularity issue, since in this case the minimum number 
of processors required for achieving no task overlapping equals the number of tasks 
N.  In Fig. 1(b), we compare the continuous and rounded efficiency e and ε for the 
lower bound B=1. As expected,  the rounded efficiency is a discontinuous function 
and several peaks are encountered due to the ceiling operator ⎡ ⎤⋅  involved in (16). 

However, in general terms, the overall behavior resembles that of the continuous case. 
In Fig. 2(a), we depict the effect of the number of tasks N (equivalently, of the task 

arrival rate λ, for a given time window T) on the efficiency ε for different values of the 
granularity g. As we observe, the rounded efficiency presents a periodically discon-
tinuous behavior that depends on the granularity value. This periodicity is due to the 
ceiling operator involved in the rounded efficiency ε [see equation (16)]. Next, we 
examined the effect of the number of iterations of the k-means algorithm used for 
estimating the indicator matrix E –that is tasks’ partitioning– from the relaxed matrix  
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Fig. 1. (a) Efficiency (e) versus granularity (g) for different values of lower bound B in case 
that the proposed scheduling policy is used. (b) Comparison of the continuous and rounded 
efficiency (e and ε) for lower bound B=1.  
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ΕR computing by the Ky-Fan Theorem (see Section 3). In particular, Fig. 2(b) pre-
sents the improvement ratio versus the number of iterations for different granularity 
values,  assuming B=1. We observe that as the number of iterations increases the 
scheduling efficiency increases for all granularity values. However, convergent is 
achieved for large number of iterations.   

Fig. 3 presents the comparison results between the proposed algorithm for itera-
tions of 1 and 50 and the greedy scheduling scheme. As we observe, the proposed 
algorithm exhibits better efficiency at any value of granularity. At low task load (low 
values of B) the improvement is more evident than for high values of B. Additionally, 
for low granularity values the improvement is smaller. This is because in this case, 
task durations are very small compared to the time window and thus both algorithms 
can schedule more effectively the tasks.     
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Fig. 3.  Comparison of the proposed method for different iterations with the greedy algorithm. 
(a) B=1. (b) B=10.  

6   Conclusions 

We proposed an efficient scheduling strategy that maximizes Grid utilization effi-
ciency, while resulting in a minimal degradation of the QoS offered to the submitted 
tasks. These two objectives are transformed into a matrix representation and then the 
scheduling problem is solved by introducing the notions of generalized eigenvalues 
through the use of the Ky-Fan theorem.  Optimization using eigenvectors has the 
advantage that scheduling is performed in polynomial complexity.  

Experimental results and comparisons with a greedy scheduling policy are pre-
sented to indicate the efficiency of the proposed scheme. In particular, we investigate 
the number of processors required for achieving no task overlapping (no QoS viola-
tions) under the two scheduling policies. We also define a lower bound on the mini-
mum number of processors required and we estimate the scheduling efficiency of an 
algorithm as the ratio of the lower bound over the number of processors achieved by 
the algorithm. Comparison with the greedy scheduling policy demonstrates the effi-
ciency of the proposed scheme for all granularities and different assumptions on the 
number and durations of the tasks. In addition, as the number of iterations of the pro-
posed algorithm increases better scheduling efficiency is achieved. Algorithm  
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convergence is achieved even for a small number of iterations, e.g., 30. We find that 
task granularity affects more significantly the scheduling efficiency rather than the 
task arrival rate. Finally, efficiency is better at low values of granularity, however, 
convergence is noticed for very low granularities. 
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