
E. Luque, T. Margalef, and D. Benítez (Eds.): Euro-Par 2008, LNCS 5168, pp. 478–488, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Spectral Clustering Scheduling Techniques for
Tasks with Strict QoS Requirements

Nikos Doulamis, Panagiotis Kokkinos, and Emmanouel Varvarigos

Department of Computer Engineering and Informatics, University of Patras and
Research Academic Computer Technology Institute, Patras, Greece

ndoulam@cs.ntua.gr

Abstract. Efficient task scheduling is fundamental for the success of the Grids,
since it directly affects the Quality of Service (QoS) offered to the users. Effi-
cient scheduling policies should be evaluated based not only on performance
metrics that are of interest to the infrastructure side, such as the Grid resources
utilization efficiency, but also on user satisfaction metrics, such as the percent-
age of tasks served by the Grid without violating their QoS requirements. In this
paper, we propose a scheduling algorithm for tasks with strict timing require-
ments, given in the form of a desired start and finish time. Our algorithm aims
at minimizing the violations of the time constraints, while at the same time
minimizing the number of processors used. The proposed scheduling method
exploits concepts derived from spectral clustering, and groups together for as-
signment to a computing resource the tasks so to a) minimize the time overlap-
ping of the tasks assigned to a given processor and b) maximize the degree of
time overlapping among tasks assigned to different processors. Experimental
results show that our proposed strategy outperforms greedy scheduling algo-
rithms for different values of the task load submitted.

1 Introduction

Task scheduling is fundamental for the success of the Grids, especially with regards
to its ability to support real-life commercial applications, by directly affecting a) the
efficiency with which Grid resources are used and b) the Quality of Service (QoS)
offered to the users. Evaluating a task scheduling algorithm should be based not only
on resource utilization metrics, but also on user satisfaction factors, such as the per-
centage of tasks that are served by the Grid without violating their QoS requirements,
e.g., their start and finish times [1]. Currently, several open source schedulers have
been developed for clusters of servers such as Maui [2] and portable batch system
(PBS) [3]. However, the primary objective of most existing approaches is to improve
overall system performance (e.g., resource utilization), while the QoS experienced by
Grid users is, at best, a secondary consideration [4], [5].

Without QoS guarantees (e.g., given in the form of task deadlines that should not
be violated), users may be reluctant to pay for Grid services or contribute resources to
the Grid, reducing its economic impact. On the other hand, designing a scheduling
algorithm that satisfies only the end-to-end users’ QoS, without taking into account
Grid utilization efficiency, would result in a wasteful Grid architecture, that uses

 Spectral Clustering Scheduling Techniques for Tasks with Strict QoS Requirements 479

many more processors than necessary in order to satisfy users’ QoS requirements.
Equivalently, processor utilization would be relatively small, meaning that only a
small percentage of the available resources would be exploited. Therefore, we need
scheduling and resource allocation schemes that are able to simultaneously meet these
two sometimes contradictory requirements: optimize Grid utilization efficiency while
simultaneously guaranteeing the tasks’ strict QoS requirements (e.g., deadlines).

Several computing toolkits and systems have been developed to meet the task QoS
requirements in a Grid computing architecture. Globus is probably the most well
known [6]. Additionally Condor-G is an enhanced version of Condor that uses the
Globus toolkit to manage Grid jobs [7]. The Nimrod-G [8] is a Grid aware version of
the Nimrod, which provides a simple declarative parametric modeling language for
expressing a parametric experiment. A dynamic Grid resource allocation method is
adopted in [9] using market economy notions (the G-commerce architecture). Finally,
a new scheduling algorithm developed in the framework of the GrADS (Grid Appli-
cation Development Software) tool has been proposed in [10]. A survey of state of the
art methods for Grid scheduling is presented in [11].

In general, scheduling parallel and distributed applications is a known NP-
complete problem. For this reason, several heuristic algorithms have been proposed
for task scheduling. Some approaches use genetic algorithms to maximize the overall
system performance [12], [13], while others use Directed Acyclic Graphs (DAG) for
scheduling on heterogeneous or homogeneous computing environments [14], [15].
Performance evaluation results for these algorithms are presented in [16]. However,
all the aforementioned approaches try to maximize overall system performance, (that
is, Grid resource utilization), without respecting task deadlines (that is, user’s QoS).
Advance reservation of resources, which is the ability of the scheduler to guarantee
the availability of resources at a particular time in the future, is one mechanism Grid
providers may employ in order to offer specific QoS guarantees to the users [4].
However, these algorithms lack scalability, as they are unable to efficiently perform
task scheduling in short time for large numbers of Grid resources. Using concepts
from computational geometry, [1] solves the scalability problem for task scheduling
under a user’s satisfaction framework. The scalability problem is also addressed in
[17]. Furthermore, fair scheduling algorithms and reservation schemes have been
discussed in [5].

The main drawback of the above mentioned approaches is that scheduling is per-
formed either in the direction of maximizing overall system performance (resource
utilization efficiency) or minimizing the degradation of user’s QoS requirements
satisfaction. As mentioned before, a successful Grid scheduling algorithm should
actually take into account both directions. This problem is addressed in this paper, by
proposing a novel task scheduling algorithm that assigns tasks to processors so that a)
the time overlapping between tasks assigned to the same processor are minimized
(users QoS requirements are met to the degree possible), while simultaneously b)
maximizing overall Grid utilization efficiency.

As we show in this paper, the two above mentioned objectives can be described by
a matrix representation and then the proposed optimal scheduling strategy can be
obtained by introducing the notions of generalized eigenvalues through the use of the
Ky-Fan theorem [19]. The Ky-Fan theorem states that an optimal schedule that satis-
fies both aforementioned criteria can be derived as a solution of the largest

480 N. Doulamis, P. Kokkinos, and E. Varvarigos

eigenvectors of the two matrices that represent the two conditions. Therefore, we have
a scheduling algorithm of polynomial order with respect to the number of tasks, that
simultaneously satisfies the users’ QoS and the system’s performance conditions.

The paper is organized as follows. Section 2 discusses the proposed scheduling
algorithm for jointly optimizing resource utilization efficiency and tasks’ QoS re-
quirements. The solution of the joint optimization problem is given in Section 3. In
Section 4, we discuss a lower bound on the number of processors required to achieve
no task overlapping (no QoS violations) and propose objective criteria for evaluating
scheduling efficiency. Experimental results and comparisons with other approaches
are given in Section 5, while Section 6 concludes the paper.

2 Joint Optimization of Resource Performance and QoS
Requirements

Let us denote by iT , i=1,2,..,N, the tasks that request service in a Grid infrastructure

consisting of M processors. Let us also denote by iST the desired Start Time for Task

iT and by iFT its desired Finish Time. In this paper, we assume that the tasks are

scheduled in a non-preemptable, non-interruptible way. Under this assumption, if a
task has been assigned for execution on a processor and another task requests service
on an overlapping time interval, then, the second task should either be assigned to
another processor (which is not reserved at the requested time interval) or undergo
violation of its QoS, i.e., its start or finish time or both of them.

We denote by ijσ the non-overlapping measure between tasks iT and jT . Assum-

ing that the task i Start and Finish Time, iST and iFT , are hard constraints that should

not be violated, a proper selection for the non-overlapping measure ijσ is to take zero

values when tasks iT and jT overlap in time and positive non-zero values when they

do not overlap.

, if , are non-overlapping in time

0, if , overlap in time

i j

ij

i j

T T

T T

α
σ

⎧
⎪= ⎨
⎪
⎩

 (1)

where 0>α .
Let us assume, without loss of generality that the Start time iST and Finish time iFT

for all tasks that are to be scheduled are within a time horizon T, which can be consid-
ered as the time interval within which one instance of the scheduling algorithm is exe-
cuted. Let us denote by rC the set of tasks assigned for execution on processor r.

As stated in Section 1, an efficient scheduling scheme for a commercially success-
ful Grid should assign all the N pending tasks to the M processors so as to a) minimize
the tasks’ QoS violations, while simultaneously b) maximizing the overall utilization
of the M processors, so that the Grid resources do not stay idle most of the time. The
first requirement, in terms of the scheduling algorithm, means that the tasks assigned
to a given processor should present minimal overlapping. The second requirement

 Spectral Clustering Scheduling Techniques for Tasks with Strict QoS Requirements 481

indicates that the task overlapping among different processors should be maximized,
that is, the utilization of all processors in Grid should be as high as possible. These
two requirements can be written as

∑

∑

∈∈

∈∈=

VjCi
ij

CjCi
ij

r

r

rrQ

,

,

σ

σ
,

∑

∑

∈∈

∉∈=

VjCi
ij

CjCi
ij

r

r

rrP

,

,

σ

σ
, (2)

where 1, ...,{ }i i NV T == the set of tasks that request service in a Grid infrastructure.

The denominator of equations (2) is used for normalization purposes. Otherwise,
optimizing would favor the trivial solution of one task per processor. Parameter rQ

expresses a measure of the overall QoS violation for the tasks assigned to the rth proc-
essor. Instead, parameter rP expresses the Grid utilization. Taking into account all the

M processors of the Grid, we can define a measure Q for the total tasks’ QoS violation
and a measure P for the overall processor utilization as

∑
=

=
M

r
rQQ

1
 , ∑

=
=

M

r
rPP

1
. (3)

An efficient scheduler that tries to meet user QoS requirements should maximize
Q and simultaneously minimize P . However, it is clear that

MQP =+ . (4)

Equation (4) shows that the maximization of Q simultaneously yields a minimization
of P and vice versa. Hence, in our problem, the two aforementioned optimization objec-
tives require in fact the use of identical means and they can be met simultaneously. This
is intuitively satisfying, since scheduling a set of tasks in a way that makes efficient use
of resources is also expected to help meet the QoS requirements of the set of tasks that
are scheduled. Therefore, it is enough to optimize (maximize or minimize) only one of
the two criteria. In our case, we select to minimize variable P. Thus,

∑
∑

∑

=
∈∈

∉∈=
M

r
VjCi

ij

CjCi
ij

r

r

rrPC
1

,

,
minmin:ˆ

σ

σ
, for all r=1,…,M, (5)

where rĈ is the set of tasks assigned for execution on processor r.

3 The Proposed Task Scheduling Policy

3.1 Matrix Representation

Optimizing equation (5) is still a NP-complete problem, even for the special case of
M=2 processors. To overcome this difficulty, we transform the problem of (5) into a
matrix based representation. Let us denote by][ijσ=Σ a matrix which contains the

values of the non-overlapping measures ijσ for all NxN combinations of tasks iT and

482 N. Doulamis, P. Kokkinos, and E. Varvarigos

jT . Let us now denote as Tu
rr e][=e an Νx1 indicator vector whose u-th entry is

given by
1, if Task is assigned to processor

0, otherwise
uu

r

T r
e

⎧
= ⎨
⎩

 (6)

The indicator vector re points out which of the N tasks are executed on processor

r. That is, indices of tasks executed on processor r are marked with one, while the
remaining indices take zero values. Since the Grid infrastructure consists of M proces-
sors, M different indicator vectors re , Mr ,...,2,1= are defined, each indicating the

tasks assigned for execution on each processor. This way, we can express the left
hand of (5) with respect to vectors re , Mr ,...,2,1= . However, we also need to express

the right hand of (5) as a function of re . For this reason, we denote by

)(ildiag=L the diagonal matrix, whose elements il express the cumulative

non-overlapping degree of task iT with the remaining tasks. That is,

∑=
j

ijil σ . (7)

Using matrices L and Σ, we can express equation (5) as,

1

()
ˆ , : min min

TM

r r

r T
r r r

r P
=

−
∀ = ∑ e L Σ e

e
e Le

. (8)

3.2 Optimization in the Continuous Domain

Let us form the indicator matrix][1 Mee=E , the columns of which correspond to the

M processors in the Grid, while the rows to the N tasks, then the rows of E have only
one unit entry and the remaining entries are zero. Optimization of (8) under the dis-
crete representation of matrix E is still a NP hard problem. However, if we relax the
indicator matrix E to take values in the continuous domain, we can solve the problem
in polynomial time. We denote by RE the relaxed version of the indicator matrix E,

i.e. a matrix whose rows take real values instead of binary values as is the case of the
indicator matrix E. Then, it can be proven that (8) can be rewritten as

)(2/12/1 YLΣLY −−−= TtraceMP , (9a)

subject to IYY =T . (9b)

Y is a matrix that is related to the matrix RE through

ΛEYL R=− 2/1 , (10)

where Λ is any MM × matrix. In this paper, we select Λ to be equal to the identity
matrix, Λ=I. Then, the relaxed indicator matrix RE is given as

YLE 2/1−=R . (11)

 Spectral Clustering Scheduling Techniques for Tasks with Strict QoS Requirements 483

Minimization of (11) is obtained through the Ky-Fan theorem [19]. The Ky-Fan

theorem states that the maximum value of the)(2/12/1 YLΣLY −−Ttrace subject to the

constraint of IYY =T is equal to the sum of the M (M<N) largest eigenvalues of

matrix 2/12/1 −− LΣL .This maximum value is provided for the matrix

RUY ⋅= , (12)

where U is a MN × matrix whose columns are the eigenvectors corresponding to the

M largest eigenvalues of matrix 2/12/1 −− LΣL and R is an arbitrarily rotation matrix

(i.e., orthogonal with determinant of one). Again, a simple approach is to select ma-
trix R as the identity matrix, R=I, that is UY = . Therefore, we have that the optimal

relaxed indicator matrix RÊ in the continuous domain is given as

ULE 2/1ˆ −=R . (13)

3.3 Discrete Approximation

The optimal matrix RÊ given by equation (13) does not have the form of the indicator

matrix E since the values of RÊ are continuous, while E’s entries are binary. Recall

that a unit entry indicates the processor a task is assigned to for execution, under the
non-interruptible, non-preemptable assumption. Consequently, the problem is how to

round the continuous values of RÊ in a discrete form that approximates matrix E.

One simple approach, regarding the rounding process, is to set the maximum value

of each row of matrix RÊ to be equal to 1 and let the remaining values be equal to 0.

However, such an approach yields unsatisfactory performance when there is no domi-

nant maximum value for each row of RÊ . Furthermore, it handles the rounding proc-

ess as N (that is the number of tasks) independent problems. An alternative approach,

which is adopted in this paper, is to treat the N rows of matrix RÊ as M-dimensional

feature vectors. Each one of these feature vectors indicates the association degree of
each task and the respective M processor of the Grid. Then, we apply the k-means to
form the indicator matrix E.

4 Lower Bound - Scheduling Efficiency

An important aspect, which determines the scheduling efficiency is the task granular-
ity g, and the task arrival rate λ defined as

T

N
=λ ,

T

D
g = , (14)

where N is the number of tasks requesting service over the corresponding time inter-
val T and D the average task delay.

484 N. Doulamis, P. Kokkinos, and E. Varvarigos

Given a granularity g and a rate λ, the lower bound of Grid resources required for
achieving no task overlapping is given by the following equation

optMgN
T

ND
B ≤⋅== , (15)

where optM refers to minimum number of processors required for achieving no task

overlapping by an optimal (exhaustive search) scheduling algorithm. The lower bound
of (15) is achieved in the extreme case that the tasks request execution intervals of a
constant duration D that appear one right after the other, completely filling the gaps
within the time horizon T. Thus, this lower bound is usually smaller than the optM .

Given the lower bound B on the number of processors required for no overlapping,
the scheduling efficiency is defined as

)(
)(

AM

B
Ae = or ⎡ ⎤

)(
)(

AM

B
A =ε , (16)

where A refers to the algorithm used to approximate the exhaustive search policy and
M(A) is the number of processors required for achieving no task overlapping when
algorithm A is used. e(A) is the scheduling efficiency, while)(Aε is the rounded
efficiency for algorithm A. The ⎡ ⎤⋅ indicates the ceil operator.

5 Experimental Results

Two different algorithms were implemented in this paper and compared with respect
to their scheduling efficiency. The first algorithm is the proposed scheme, presented
in Section 2. The second scheme is a greedy approach, which, for each task, a locally
optimum choice is selected. In particular, the algorithm assigns each task to a proces-
sor, so that no task overlapping is encountered, by taking into account the current
local load of the processors.

Our proposed algorithm is recursively applied assuming different number of proc-
essors in Grid. Then, we select the minimum number of processors that provide no
task overlapping that is no violation of the tasks’ QoS. This number M(Proposed
Algorithm) is used for evaluating the scheduling efficiency. In the greedy algorithm,
each time a newly considered task overlaps with the already assigned tasks, then a
new resource is activated and this task is assigned to this resource. The number of
resources that have been activated after scheduling all tasks, without overlaps, is de-
noted by M(Greedy). We assume that the tasks’ Start and Finish Times iST and iFT

are uniformly distributed within the time horizon T and that the average tasks’ dura-
tion is constant and equals D. Experiments where the task duration varies signifi-
cantly from task to task, have also been performed, but are not included here due to
space limitations.

Fig. 1(a) presents the efficiency e [see equation (16)] versus the task granularity g
for different values of lower bound B. As is observed, the efficiency increases as the
granularity decreases for low values of g. However, the ratio of improvement de-
creases, meaning that the efficiency converges as g increases. We also observe from

 Spectral Clustering Scheduling Techniques for Tasks with Strict QoS Requirements 485

Fig. 1 that for values of granularity greater than g ≥ 0.2 the efficiency also increases
as g increases. This is due to singularity issue, since in this case the minimum number
of processors required for achieving no task overlapping equals the number of tasks
N. In Fig. 1(b), we compare the continuous and rounded efficiency e and ε for the
lower bound B=1. As expected, the rounded efficiency is a discontinuous function
and several peaks are encountered due to the ceiling operator ⎡ ⎤⋅ involved in (16).

However, in general terms, the overall behavior resembles that of the continuous case.
In Fig. 2(a), we depict the effect of the number of tasks N (equivalently, of the task

arrival rate λ, for a given time window T) on the efficiency ε for different values of the
granularity g. As we observe, the rounded efficiency presents a periodically discon-
tinuous behavior that depends on the granularity value. This periodicity is due to the
ceiling operator involved in the rounded efficiency ε [see equation (16)]. Next, we
examined the effect of the number of iterations of the k-means algorithm used for
estimating the indicator matrix E –that is tasks’ partitioning– from the relaxed matrix

10
-4

10
-3

10
-2

10
-1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Granularity (g = D/T)

E
ff

ic
ie

nc
y

(
e

)

 B=1
 B=2
 B=5
 B=10

10

-4
10

-3
10

-2
10

-1
10

0
0

0.2

0.4

0.6

0.8

1

Granularity (g = D/T)

E
ff

ic
ie

nc
y

(
e

or
 ε

)

Efficiency without Ceilling (e)

Efficiency with Ceilling (ε)

(a) (b)

Fig. 1. (a) Efficiency (e) versus granularity (g) for different values of lower bound B in case
that the proposed scheduling policy is used. (b) Comparison of the continuous and rounded
efficiency (e and ε) for lower bound B=1.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Number of Tasks (N)

E
ff

ic
ie

nc
y

(ε)

Granularity g=0.1%
Granularity g=0.2%
Granularity g=0.4%
Granurality g=0.6%

0 10 20 30 40 50

0

5

10

15

20

25

Number of Iterations (#)

Im
pr

ov
em

en
t R

at
io

Granularity g =0.01%
Granularity g =0.1%
Granularity g =1%

(a) (b)

Fig. 2. (a) Efficiency ε versus the number of tasks for different values of granularity in case of
B=1. (b) Improvement ratio of the efficiency versus the number of iterations of the proposed
algorithm.

486 N. Doulamis, P. Kokkinos, and E. Varvarigos

ΕR computing by the Ky-Fan Theorem (see Section 3). In particular, Fig. 2(b) pre-
sents the improvement ratio versus the number of iterations for different granularity
values, assuming B=1. We observe that as the number of iterations increases the
scheduling efficiency increases for all granularity values. However, convergent is
achieved for large number of iterations.

Fig. 3 presents the comparison results between the proposed algorithm for itera-
tions of 1 and 50 and the greedy scheduling scheme. As we observe, the proposed
algorithm exhibits better efficiency at any value of granularity. At low task load (low
values of B) the improvement is more evident than for high values of B. Additionally,
for low granularity values the improvement is smaller. This is because in this case,
task durations are very small compared to the time window and thus both algorithms
can schedule more effectively the tasks.

10
-4

10
-3

10
-2

10
-1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Granularity (g = D/T)

E
ff

ic
ie

nc
y

(e
)

The Greedy Algorithm
The Propposed Algorithm at Iteration=1
The Proposed Algorithm at Iteration=50

10

-4
10

-3
10

-2
10

-1
10

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Granularity (g = D/T)

E
ff

ic
ie

nc
y

(e
)

The Greedy Algorithm
The Propposed Algorithm at Iteration=1
The Proposed Algorithm at Iteration=50

(a) (b)

Fig. 3. Comparison of the proposed method for different iterations with the greedy algorithm.
(a) B=1. (b) B=10.

6 Conclusions

We proposed an efficient scheduling strategy that maximizes Grid utilization effi-
ciency, while resulting in a minimal degradation of the QoS offered to the submitted
tasks. These two objectives are transformed into a matrix representation and then the
scheduling problem is solved by introducing the notions of generalized eigenvalues
through the use of the Ky-Fan theorem. Optimization using eigenvectors has the
advantage that scheduling is performed in polynomial complexity.

Experimental results and comparisons with a greedy scheduling policy are pre-
sented to indicate the efficiency of the proposed scheme. In particular, we investigate
the number of processors required for achieving no task overlapping (no QoS viola-
tions) under the two scheduling policies. We also define a lower bound on the mini-
mum number of processors required and we estimate the scheduling efficiency of an
algorithm as the ratio of the lower bound over the number of processors achieved by
the algorithm. Comparison with the greedy scheduling policy demonstrates the effi-
ciency of the proposed scheme for all granularities and different assumptions on the
number and durations of the tasks. In addition, as the number of iterations of the pro-
posed algorithm increases better scheduling efficiency is achieved. Algorithm

 Spectral Clustering Scheduling Techniques for Tasks with Strict QoS Requirements 487

convergence is achieved even for a small number of iterations, e.g., 30. We find that
task granularity affects more significantly the scheduling efficiency rather than the
task arrival rate. Finally, efficiency is better at low values of granularity, however,
convergence is noticed for very low granularities.

Acknowledgment

This work has been supported by the European Commission through the IP Phospho-
rus project.

References

[1] Castillo, C., Rouskas, G., Harfoush, K.: On the Design of Online Scheduling Algorithms
for Advance Reservations and QoS in Grids. In: Int’l Parallel and Distributed Processing
Symp., pp. 1–10 (2007)

[2] Jackson, D., Snell, Q., Clement, M.: Core Algorithms of the Maui Scheduler. In: Feitel-
son, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102. Springer, Hei-
delberg (2001)

[3] Bode, B., et al.: The Portable Batch Scheduler and the Maui Scheduler on Linux Clusters.
Usenix Conf. (2000)

[4] Al-Ali, R.J., et al.: Analysis and provision of QoS for distributed grid applications. Jour-
nal of Grid Computing 2(2), 163–182 (2004)

[5] Doulamis, N., Doulamis, A., Varvarigos, E., Varvarigou, T.: Fair Scheduling Algorithms
in Grids. IEEE Trans, on PDS 18(11), 1630–1648 (2007)

[6] Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. International
Journal of Supercomputer Applications 11(2), 115–128 (1997)

[7] Thain, D., Tannenbaum, T., Livny, M.: Condor and the Grid. In: Berman, F., Hey, A.J.G.,
Fox, G. (eds.) Grid Computing: Making the Global Infrastructure a Reality. John Wiley &
Sons, Chichester (2003)

[8] Abramson, D., Giddy, J., Kotler, L.: High Performance Parametric Modeling with Nim-
rod/G: Killer Application for the Global Grid. In: Int’l Parallel and Distributed Processing
Symp. (2000)

[9] Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: G-commerce: Market Formulations Control-
ling Resource Allocation on the Computational Grid. In: Int’l Parallel and Distributed
Processing Symp. (2001)

[10] K. Cooper et al., “New Grid Scheduling and Rescheduling Methods in the GrADS Pro-
ject,” Int’l Parallel and Distributed Processing Symp., pp. 199-207, 2004.

[11] Maheswaran, M., Krauter, K., Buyya, R.: A taxonomy and survey of grid resource man-
agement systems for distributed computing. Software: Practice and Experience 32(2),
135–164 (2002)

[12] Shu, W., et al.: A Grid Computing Task Scheduling Method Based on Target Genetic Al-
gorithm. The Sixth World Congress on Intelligent Control and Automation 1, 3528–3532
(2006)

[13] Ye, G., Rao, R., Li, M.: A Multiobjective Resources Scheduling Approach Based on Ge-
netic Algorithms in Grid Environment. In: Fifth International Conference on Grid and
Cooperative Computing Workshops, pp. 504–509 (2006)

488 N. Doulamis, P. Kokkinos, and E. Varvarigos

[14] Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing. Transactions on Parallel and Distributed Sys-
tems 2(13), 260–274 (2002)

[15] Mandal, A., et al.: Scheduling Strategies for Mapping Application Workflows onto the
Grid. In: Symp. on High Performance Distributed Computing, pp. 125–134 (2005)

[16] Zhang, Y., Koelbel, C., Kennedy, K.: Relative Performance of Scheduling Algorithms in
Grid Environments. In: Int’l Conf. on Cluster Computing and the Grid, pp. 521–528
(2007)

[17] Zhang, Y., et al.: Scalable Grid Application Scheduling via Decoupled Resource Selection
and Scheduling. In: Int’l Conf. on Cluster Computing and the Grid, pp. 568–575 (2006)

[18] Varvarigos, E., Doulamis, N., Doulamis, A., Varvarigou, T.: Timed/Advance Reservation
Schemes and Scheduling Algorithms for QoS Resource Management in Grids. In: Di
Martino, B., Dongarra, J., Hoisie, A., Yang, L.T., Zima, H. (eds.) Engineering the Grid,
pp. 355–378. American Scientific Publishers (2006)

[19] Nakic, I., Veselic, K.: Wielandt and Ky-Fan Theorem for Matrix Pairs. Linear Algebra
and its Applications 369(17), 73–77 (2003)

	Spectral Clustering Scheduling Techniques for Tasks with Strict QoS Requirements
	Introduction
	Joint Optimization of Resource Performance and QoS Requirements
	The Proposed Task Scheduling Policy
	Matrix Representation
	Optimization in the Continuous Domain
	Discrete Approximation

	Lower Bound - Scheduling Efficiency
	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

