
Future Generation Computer Systems 25 (2009) 912–925
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Multi-cost job routing and scheduling in Grid networks
T. Stevens a,∗, M. De Leenheer a, C. Develder a, B. Dhoedt a, K. Christodoulopoulos b,c, P. Kokkinos b,c,
E. Varvarigos b,c
a Department of Information Technology, Ghent University – IBBT, Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium
b Department of Computer Engineering and Informatics, University of Patras, Greece
c Research Academic Computer Technology Institute, Patras, Greece

a r t i c l e i n f o

Article history:
Received 9 November 2007
Received in revised form
12 June 2008
Accepted 18 August 2008
Available online 9 September 2008

Keywords:
Algorithms
Network problems
Scheduling
Optimization

a b s t r a c t

Akeyproblem inGrid networks is how to efficientlymanage the available infrastructure, in order to satisfy
user requirements and maximize resource utilization. This is in large part influenced by the algorithms
responsible for the routing of data and the scheduling of tasks. In this paper, we present several multi-
cost algorithms for the joint scheduling of the communication and computation resources that will be
used by a Grid task. We propose a multi-cost scheme of polynomial complexity that performs immediate
reservations and selects the computation resource to execute the task and determines the path to route
the input data. Furthermore, we introduce multi-cost algorithms that perform advance reservations and
thus also find the starting times for the data transmission and the task execution. We initially present
an optimal scheme of non-polynomial complexity and by appropriately pruning the set of candidate
paths we also give a heuristic algorithm of polynomial complexity. Our performance results indicate
that in a Grid network in which tasks are either CPU- or data-intensive (or both), it is beneficial for the
scheduling algorithm to jointly consider the computational and communication problems. A comparison
between immediate and advance reservation schemes shows the trade-offs with respect to task blocking
probability, end-to-end delay and the complexity of the algorithms.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Grid computing aims to offer a unified interface to various re-
sources such as computational clusters, data storage sites and sci-
entific instruments. In general, these resources are heterogeneous
in nature, have different access and control policies, and are dis-
tributed on a large scale (possibly global) network. The driving
force for the realization of such Grid technology is the highly chal-
lenging applications emerging from large-scale collaborations and
eScience experiments. Recently, several proposals have beenmade
to extend the concept for supporting enterprise- and consumer-
oriented Grid applications [1]. Management and control of an ef-
ficient Grid system will therefore require intelligent scheduling at
various levels [2]. Indeed, the complexity of the Grid applications,
the user requirements and the system heterogeneity would re-
sult in suboptimal system performance in case manual procedures
are used. Scheduling tasks on a set of heterogeneous, dynamically

∗ Corresponding author.
E-mail addresses: tim.stevens@intec.ugent.be (T. Stevens),

marc.deleenheer@intec.ugent.be (M. De Leenheer), kchristodou@ceid.upatras.gr
(K. Christodoulopoulos), kokkinop@ceid.upatras.gr (P. Kokkinos),
manos@ceid.upatras.gr (E. Varvarigos).

0167-739X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.08.004
changing resources is a complex problem that requires sophisti-
cated algorithms that take into account multiple optimization cri-
teria. Such algorithms should try to balance the users’ individual
demands (e.g., cost, response-time), the objectives represented by
the resource providers (profit, utilization) while at the same time
also maintain a good overall performance for the Grid network.
Grid applications usually pose challenging demands to the

networking fabric, as data transfers demand high-bandwidth and
low latency connections. As such, optical networks have been
identified as the most suitable technology to interconnect the
distributed resources. Irrespective of the transport technology,
efficient routing algorithms for data transfer between Grid sites is
of great importance for the performance of any Grid deployment,
and especially for Data-Grids.
Another issue for efficientmanagement ofGrid resources is how

to take into account temporal information in the scheduling and
routing decisions. Traffic demands are known to fluctuate over
time, and both network and computational resources are subject
to failures and disconnections. Thus, the option of immediately
reserving the resources for a task is not always the best choice.
In a Grid scenario, a user typically submits a task to have
it processed within a predetermined deadline. In this context,
network transfers and/or task executions can be delayed, allowing
communication and computational loads to be more spread out

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:tim.stevens@intec.ugent.be
mailto:marc.deleenheer@intec.ugent.be
mailto:kchristodou@ceid.upatras.gr
mailto:kokkinop@ceid.upatras.gr
mailto:manos@ceid.upatras.gr
http://dx.doi.org/10.1016/j.future.2008.08.004


T. Stevens et al. / Future Generation Computer Systems 25 (2009) 912–925 913
over time in order to efficiently serve/manage all the requests.
Moreover, a number of Grid tasks require the utilization of certain
resources for specific time periods. In both the above cases,
the starting time of the resource reservation has to be (or is
relaxed to be) in the future. This is generally referred to as
advance reservations, as opposed to immediate reservations which
are made in a just-in-time manner. However, inclusion of this
temporal information in routing and scheduling algorithms will
naturally increase the complexity of these algorithms. This paper
will provide insight into this matter by comparing the delay, the
acceptance performance, and the computational complexity of
algorithms for both immediate and advance reservations.
In this work we address several of the previously introduced

issues, by proposing two separate techniques in order to solve
a communication and computation co-allocation problem of
significant importance. The general assumption is that a task
consists of two phases: (i) the transfer of data from the
scheduler or a data repository resource (which we will call
source) to a Computing Element (CE) or a cluster (which we will
call destination) and (ii) the task’s execution. Without loss of
generality, we assume there is no output data associated with
the tasks: this can be modelled as an additional task with only
data transfer, to a specified destination. (Note that the algorithms
can be extended to include output data transfer explicitly, but to
limit the complexity we chose not to present those extensions in
this paper.) The algorithms return the destination (CE) to execute
the task and the path over which to route the input data. The
first proposed technique, which is an extension of SAMCRA, is a
multi-cost algorithm that uses the path delay and the computation
load as selection metrics and is proven to be of polynomial
complexity. This algorithm employs immediate reservations and
can be applied in cases that the data size and the computation
load of a task are either known or not known in advance. The
second technique, called MC-T, is a multi-cost algorithm that
is mainly used in the cases where the data sizes and the task
execution times are known in advance. MC-T uses utilization
vectors of the communication and computation resources in the
multi-cost formulation in order to copewith advance reservations.
This technique provides advance reservations by orchestrating
the corresponding network and computational resources, and
specifically returns not only the path and the destination (CE), but
also the time that the data transmission should start and the time
that the task execution should begin at the CE. Due to the large
number of cost parameters that MC-T utilizes, the number of paths
that it calculates can be exponential. By appropriately pruning
the set of candidate paths we also present a heuristic algorithm
of polynomial complexity. Table 1 provides an overview of the
proposed algorithms.
We evaluate the performance of the various algorithms

for multi-cost task routing and scheduling using full network
simulation experiments. Our results indicate that in aGrid network
in which tasks are either CPU- or data-intensive (or both), it
is beneficial for the scheduling algorithm to jointly consider
the computational and communication problems. A comparison
between immediate and advance reservations shows the trade-
offs with respect to task blocking probability and end-to-end
delay. Finally, an analysis of the computational complexity of the
proposed algorithms is also presented. Ultimately, we will show
that the proposed algorithms combine the strength of multi-cost
optimization (both for immediate and advance reservations) with
a low computational complexity and running time.
The remainder of this paper is organized as follows. In Section 2

we report on previous work. Section 3 presents our model for Grid
networks, with details on the assumptions for both computation
and communication resources. In the same sectionwe also propose
an algorithm for immediate joint reservation of network and
computation Grid resources. In Section 4, we initially present
network and computation resource state models in the form
of utilization profiles. Based on these profiles we present our
advance reservationmulti-cost algorithms (optimal and heuristic).
In Section 5 we compare the proposed algorithms for a wide range
of input parameters and scenarios, and analyze the performance
results. Finally, our conclusions are summarized in Section 6.

2. Related work

The Grid Scheduling Architecture Research Group (GSA-RG)
of the Open Grid Forum (OGF) in [3] provides different Grid
scheduling use case scenarios and describes common usage
patterns. Among them themost complicated scenario is scheduling
tasks requesting more than one and possibly different service
guarantees. In this content, a ‘‘workflow’’ is defined as a task
that consists of a number of other ‘‘subtasks’’ with various
interdependencies. Thus a workflow requests the co-allocation of
resources in different time frames.
In general, Grid applications can be categorized as CPU- or data-

intensive [4]. Different Grid environments have been created to
cope with these two types of applications. Computational Grids
normally deal with CPU-intensive problems on small data sets. In
contrast, Data Grids mostly deal with problems that require the
transfer of large amounts of data. However, in general all tasks
have a computation and a communication part, even if one part is
negligible. For example it is usual for a task to require the transfer
of a large chunk of data, as a connection with a constant rate or a
data burst, from the location of the user or a storage repository to
the computation resource where it will be executed. This problem
of communication and computation resources co-allocationwill be
addressed in this paper.
Resource co-allocation is one of the most challenging problems

in Grids. The co-allocation problem for Computational Grids has
been defined in [5]. In the Condor project, the gang matchmaking
scheme [6] extends the matchmaking model in order to support
the co-allocation of resources. In order to co-allocate resources as
defined in workflows, the scheduler has to orchestrate resources
belonging to different sites and different administrative domains.
To do so, advance reservation of these resources has to be
supported by the local resource management systems. The Globus
Architecture for Reservation and Allocation (GARA) [7] is a
framework for advance reservations that treats communication,
computation, and storage resources in a uniform way. Although
GARA has gained popularity in the Grid community, its limitations
in coping with current application requirements and technologies
led to the proposal of the Grid Quality of Service Management (G-
QoSm) framework [8]. The WS-Agreement protocol [9] has been
proposed by the GRAAP working group in the Open Grid Forum
(OGF) for the negotiation of advance reservations.
Some specific instances of communication and computation

co-allocation problems have previously been examined in the
literature. In [10,11] the authors study the relation between
job scheduling decisions and data replication strategies within
a data Grid environment, in order to minimize job turnaround
time. Similar algorithms have been examined in multimedia
networks where the co-allocation of computation, communication
(bandwidth) and other resources are examined [12]. A framework
for specifying and handling co-reservations in Grid environment is
presented in [13]. This framework can be applied to the reservation
of applications running concurrently on multiple resources and
to the planning of job flows, where the components may be
linked by some temporal or spatial relationship. More general Grid
workflow management systems have been developed by several
projects: Condor DAGman [14], GridFlow [15], Gridbus [16], and



914 T. Stevens et al. / Future Generation Computer Systems 25 (2009) 912–925
Table 1
Main characteristics of the proposed algorithms

Algorithm Topic Options

SAMCRA (Section 3) Input Known or not known input data size and computation complexity of tasks.
Utilization of links and clusters at current time

Output Assignment of computation resources, routing of data over the
communication resources

QoS parameters Communication: path availability, delay
Computation: processing availability

Objectives Delay minimization, load balancing

Reservation type Immediate

Complexity Polynomial for the specific problem (in general NP-hard)

MC-T (Section 4) Input Known input data size and computation complexity of tasks Utilization of
links and clusters as a function of time

Output Assignment and time scheduling of computation resources, routing and time
scheduling of communication resources

QoS parameters Communication: path availability (also in future), delay
Computation: processing availability (also in future), delay
Total: availability (also in future), end-to-end delay

Objectives Delay minimization, load balancing

Reservation type In-advance (can perform immediate as well)

Complexity NP-hard, (heuristic: polynomial)
UNICORE [17]. A taxonomy of workflow management systems is
presented in [18].
In the related literature, multi-cost algorithms have mainly

been used for QoS routing problems [22–27]. In [22], the authors
show that QoS routingwith the specific parameters bandwidth and
delay is not NP-complete, while the general QoS routing problem
is discussed in [23]. To the best of our knowledge, the present
work is the first time to use a multi-cost algorithm for the joint
communication and computation problem in a Grid environment.
Moreover, the algorithm presented in Section 4 is significantly
different from other multi-cost approaches, since it is designed to
handle temporal information, using timeslots as cost parameters
in the multi-cost formulation, in order to cope with the time
scheduling of the resources.

3. Exact multiple constraints routing: Immediate reservations

Upon submitting a job to a computing grid, scheduling and
routing actions determine to which computing resource(s) the
job is assigned and how it can be transmitted over the network.
If there is no possibility to delay the job transmission time or
the job execution time, immediate reservation of network and
computational resources is mandatory. In this case, scheduling
and routing can be tackled simultaneously by transforming
the problem to a Multi-Constrained Path (MCP) problem with
multi-dimensional weight vectors. When optimal use of the
available network- and computational resources is desired, the
Multi-Constrained Optimal Path (MCOP) should be computed for
each generated job. For this purpose, we embrace the SAMCRA
algorithm [21].
In the following sections we present amodel for Grid networks,

and show how cluster sites can be virtualized into a single anycast
group, which then allows multi-constraint routing to be used to
balance network and cluster availability.

3.1. Grid network and resources model

As illustrated in Fig. 1, we consider a Grid network consisting
of links l of known propagation delays dl, and a set M of clusters
or CEs (these terms will be used interchangeably in this paper).
Cluster m ∈ M has Wm CPUs of a given computation capacity Cm
per CPU (e.g. in MIPS). A task or job (also used interchangeably)
is created by a user with specific needs: input data size I (bits),
computational workload W (in MIs) and requires r CPUs for its
execution. The parameters I and W may or may not be known
in advance. We assume that the task consist of two sub-tasks:
(i) the transfer of data from the scheduler or a data repository
resource (which we will call source) to a computation resource
(CE) in the form of a connection with a constant rate or a data
burst, and (ii) the task execution at that CE. Observe that we
do not consider the possible transfer of output data, as this can
be considered an additional job without computational demand.
Another implicit assumption is that each task can be processed
at a single resource site, but multiple CPU’s can be allocated to
that task. Although this model does not allow complex workflows
between processing sites, we adopt it here for simplicity and
tractability purposes. Furthermore, there is an upper bound D
on the maximum delay the task can tolerate; if this deadline
cannot be met, the task is rejected. Each user communicates this
information to its corresponding meta-scheduler S. We assume a
centralized scheduling architecture, where all users forward their
task scheduling requests to a single central scheduler S, which
maintains information about the utilization of the communication
and computation resources throughout the network.
We will examine two cases that differ in the type and the

amount of information the scheduler maintains. In case (i) we
assume that the data size and the computation workload of
a task are not known in advance. In this case the scheduler
cannot use advance reservations and thus maintains resources’
utilization information that is not time dependent. In case (ii) we
assume the data size and the computation workload of a task are
known in advance and thus the scheduler maintains profiles that
record the utilization of the resources as a function of time. Such
communication and computation utilization profiles are presented
in the next subsection. We are interested in scheduling algorithms
that decide the destination (CE) at which to execute the task and
also the path over which to route the input data. These scheduling
algorithms take into account the utilization information available
at the scheduler in order to efficiently utilize the available Grid
resources.



T. Stevens et al. / Future Generation Computer Systems 25 (2009) 912–925 915
Fig. 1. A request for task execution is generated by a user and is forwarded to the
scheduler S. The task has input data with size I , computation complexity W and
requires r CPUs to execute.

Fig. 2. Virtual topology.

3.2. Routing towards anycast destinations

From a routing perspective, cluster sites can be grouped in
a single virtual anycast node A, as depicted in Fig. 2. Such an
abstraction is only applicable if the virtual anycast group is the
final routing destination, because this virtual anycast node cannot
forward packets over virtual links. For the application in mind,
anycast nodes are computational resources (m ∈ M) and not
routers, making this a realistic assumption. Furthermore, this
approach requires a distinct logical network topology – and hence
a distinct routing component instance – for each anycast group
present in the routing domain. In general, however, the number
of anycast groups in an autonomous systemwill probably be small
because of their focused applicability.
When traditional single constraint shortest path routing is

applied to the logical topology, shortest shortest path (SSP) routing
as discussed in [21] is achieved. Using SSP, the nearest anycast
target node is contacted and data is sent over the shortest path.
In this paper, additional metrics are also taken into account
(e.g., resource availability), so Dijkstra shortest path routing or
other single constraint routing algorithms are not sufficient. In a
general multi-constrained anycast routing problem, each network
link l is characterized by k link weightswi(l) ≥ 0 for all 1 ≤ i ≤ k.
Besides additive network-related constraints such as delay or hop
count, also server-related constraints can be taken into account
(e.g., server load). In this case, edges not directly attached to a
member of the anycast server group have a weight equal to zero
for all server-related constraints. Therefore, only the last edge of
a path p from a source node to an anycast member can have a
non-zero value for the server-related components of the weight
vector. Based on [3], the corresponding anycastMCOP problem can
be defined as follows: Given k constraints Li (1 ≤ i ≤ k), find a path
P from a source node (which in Fig. 2 is S) to the virtual anycast
node Awhich satisfies the following condition:

wi(p)
def
=

∑
l∈P

wi(l) ≤ Li.

Additionally, for some length function d(.), the condition d(p) ≤
d(p′) should hold for all paths p′ between S and A.
This anycast multiple constraints routing problem can now be

solved by applying the SAMCRA algorithm, which is discussed in
the next section.

3.3. Self-adaptive multiple constraints routing algorithm: SAMCRA

In this section, the SAMCRA algorithm with look-ahead
extension [23] is briefly summarized; in the next section we
present an adaptation of the original SAMCRA sub-path evaluation
ordering. For an in-depth investigation of the algorithm, the reader
is referred to [23].
SAMCRA is based on four key concepts: non-linear path

length, k-shortest paths, non-dominated paths and look-ahead.
Before presenting the complete algorithm, these key concepts are
clarified.
The q-vector norm of path P from source S to destination E can

be computed as follows:

dq(p) =

 k∑
i=1


∑
l∈S→E

wi(l)

Li

q
1
q

.

For q→∞, this length function can be rewritten as follows:

d∞(p) = max
1≤i≤k


∑
l∈S→E

wi(l)

Li

 .
According to Van Mieghem et al. [23], finding the shortest path
between S and E using the non-linear length function d∞ in the
equation above, solves the MCOP routing problem.
The k-shortest paths algorithm is similar to Dijkstra’s algorithm,

but stores the k shortest paths instead of the single previous hop
in each node. This is necessary because in a multi-constrained
environment, sub-paths of shortest paths are not necessarily
shortest paths themselves. If a fixed value for the number of paths
k is specified, the multi-constrained shortest path from a source to
a destination may not be found. For SAMCRA, the number of paths
stored in each node is unrestricted, meaning that all possible paths
may need to be stored before the shortest one can be selected.
This property leads to the worst-case NP-complete behavior of
SAMCRA [24].
The non-dominance concept allows for a drastic reduction of the

number of sub-paths that need to be stored in the router nodes.
This optimization dismisses newly computed sub-paths from the
source to the current routing node that a priori lead to a non-
optimal path from the source to the final destination, based on
previously computed sub-paths stored in the node. More concrete,
new sub-paths between the source and the current routing node
are dismissed if a previous sub-path to the same routing node has
a weight vector for which each vector component is smaller than
the corresponding component of the new sub-path weight vector.
The look-ahead extension further reduces the search space

of possible paths by predicting the total length from source to
destination for each sub-path stored in intermediate routers. This
path lengthprediction is basedon the sub-pathhistory andDijkstra



916 T. Stevens et al. / Future Generation Computer Systems 25 (2009) 912–925
Fig. 3. Meta-code for the SAMCRA algorithm.

shortest path information for all constraints from the intermediate
router to the final destination. By applying the look-ahead concept,
sub-paths with the lowest end-to-end predicted path length are
evaluated first.
Meta-code for the complete algorithm is presented in Fig. 3.

Lines 1–10 take care of the initialization. For each node v, Dijkstra
look-ahead information b[v] is computed and K [v], the number
of stored sub-paths between S and v, is initialized to 0. If the
length of a Dijkstra path for one of the constraints is smaller than
the maximum length MAX_LENGTH, the value of MAX_LENGTH is
updated. Furthermore, the source node S is inserted in the priority
queue Q with an empty path history. The iterative search for the
shortest path starts at line 11. First, the sub-path with the lowest
predicted end-to-endpath length is dequeued andmarked ‘‘GREY’’,
which means this path is not considered anymore during the next
iterations. If the destination has been reached, the algorithm stops.
Starting at line 17, the current sub-path is extended by examining
all nodes that are adjacent to the current intermediate router
and are not listed in the sub-path history. For each of these path
extensions, path dominance is evaluated and previously computed
sub-paths that have become obsolete, are marked ‘‘BLACK’’. If
the extended path is non-dominated and the predicted length is
less than or equal to the maximum length, the priority queue
is updated. When an arbitrary sub-path v[BLACK k] has become
obsolete, it is replaced by the new sub-path in the priority queue
(by decreasing the key value and updating the path). Otherwise, a
new item is created and inserted into the priority queue. On lines
32–33, the maximum length MAX_LENGTH is updated if a shorter
path reaching D is found.
In Fig. 4, a two-dimensional example illustrates the SAMCRA

routing algorithm steps to compute a path from C (bottom) to
E (right). Two-dimensional link weights and Dijkstra look-ahead
vectors are depicted next to links and nodes, respectively. Step
1 depicts the algorithm state after the initialization phase (lines
1–10): look-ahead information is computed and MAX_LENGTH
is reduced according to lines 6–8 in the SAMCRA meta-code.
Subsequently, the priority queue is initialized by inserting a single
element with empty path history. Steps 2–3 represent successive
iterations of themain algorithm loop (lines 11–33). Each step starts
by dequeueing the sub-path with the smallest predicted end-to-
end cost (drawn in bold), whereupon possible path extensions
(indicated by dotted arrows) are investigated. Path extensions that
do not create a routing cycle and are not dominated by other sub-
paths to the same intermediate router are inserted into the priority
queue if their predicted end-to-end (i.e., C → E) length (the
priority queue key value) does not exceed MAX_LENGTH. During
step 4, an end-to-end path is dequeued from the priority queue
and the SAMCRA algorithm returns the solution C → B→ E.

3.4. Avoiding sub-optimal SAMCRA results

Unfortunately, the path computed in the example above (C →
B → E) is not the optimal solution: when taking into account
the path length in the non-dominating dimension(s), the SAMCRA
algorithm should have returned the path C → E. Actually, it is
not the SAMCRA algorithm itself but the d∞(.)metric which leads
to sub-optimal results. Because the path evaluation order (priority
queue) is determined only by the dominating component of the
predicted path length vector, optimality in the non-dominating
vector components cannot be guaranteed in the evaluation order
between equal length (sub-)paths (according to the d∞(.)metric).
We adapted the SAMCRA algorithm to cope with this issue.

Instead of using the d∞(.)metric to determine the order in which
sub-paths are evaluated, the information contained in the entire
path weight vector pw is used when ordering the sub-paths. Let
ρ(pw) be a rescaled vector with components ρ(pw)i = pwi /Li. Let
o(ρ(pw)) be the vector ρ(pw)with its indices reordered so that the
components are in non-increasing order. The vector ordering pw <
qw holds if the first nonzero component of o(ρ(pw))− o(ρ(qw)) <
0. In contrast, the original SAMCRA algorithm only considers the
outcome of the first component of o(ρ(pw))− o(ρ(qw)). It is clear
that the proposed vector ordering is a refinement of the d∞(.)
metric that allows to differentiate between (sub-)paths with equal
length according to the d∞(.) metric. For unequal path lengths
according to the d∞(.) metric, the same ordering is preserved.
With the new vector ordering, path length can only be equal if
o(ρ(pw)) = o(ρ(qw)).
When revisiting the example depicted in Fig. 4 and applying

the modification presented above, step 4 will dequeue the optimal
path C → E because the non-dominating vector component is
smaller. Indeed, we have

o(ρ(C → E)) = (0.4, 0.1) and o(ρ(C → B→ E)) = (0.4, 0.2)

and consequently

C → E < C → B→ E.

This adaptation is particularly important when the SAMCRA
algorithm is applied in a hop-by-hop scenario [25]. If zero link
weight components are allowed, hop-by-hop SAMCRA requires
an exact solution in each intermediate node in order to prevent
routing loops.

3.5. Complexity analysis

In the general case, the SAMCRA algorithm cannot guarantee
to find the optimal path in polynomial time. According to
Kuipers [26], the worst-case complexity of SAMCRA is:

CSAMCRA = O(pmaxN log(pmaxN)+ p2maxkE),

where N and E depict the number of nodes and edges in the
network, respectively. pmax corresponds to the maximum number
of sub-paths in an intermediate node that need to be evaluated
before the optimal solution is found and is bounded by

pmax = O(N!) = O(exp(N lnN)),



T. Stevens et al. / Future Generation Computer Systems 25 (2009) 912–925 917
Fig. 4. Illustration of the SAMCRA algorithm.
thereby potentially leading to intractability. In practice, link
weights will have a finite granularity and can be represented by
integer values. In this case

pmax =

k∏
i=1
Li

max
1≤i≤k

Li
,

where Li are the constraints (higher possible values), and SAMCRA
has a pseudo-polynomial-time complexity.
For the two-constraint scenario considered, a link has two

weights, being the delay, which is a float cost, and the availabil-
ity of CPUs at the Computing Element of the ending node, which is
a bounded integer cost (and thus, by definition, has finite granular-
ity). Link delayswill be zero for the virtual links leading to the com-
putation resources, and resource’s load will be zero for ordinary
network links. By definition, each regular node will store at most
one sub-path and the virtual target nodewill store atmostM paths,
where M stands for the number of Computing Elements. To this
end themaximum number of sub-paths at an intermediate node is
pmax = O(M). The resulting worst-case complexity is given by:
CSAMCRA−2costs = O(MN log(MN)+M2kE),
which is polynomial.
Note that this only applies to the case of these two specific cost

weights and not the general case of SAMCRA algorithm. For an
in-depth complexity analysis of the SAMCRA algorithm, we refer
to [26].

4. Multi-cost task routing and scheduling: Employing advance
reservations

The second algorithm that is presented in this section requires
that the task’s input data size and the computation load are
known in advance (or an accurate estimation is available) and
employs advance reservations of communication and computation
resources.

4.1. Time dependent utilization profiles

Link utilization profile
The immediate reservation algorithm proposed in Section 3 poses
no constraints on the underlying network, while the algorithm
proposed in this section requires a network that supports advance
reservations, as discussed in [20,28].
We require that each node records the capacity reserved on its

outgoing links as a function of time, in order to perform channel
scheduling and reservations. Assuming each connection or data
burst reserves bandwidth equal to the link capacity for a given time
duration, the utilization profile Ul(t) of a link l is a stepwise binary
function with discontinuities at the points where reservations
begin or end, and is updated dynamically with the admission of
each new connection. We define the capacity availability profile of
link l of capacity Cl as Cl(t) = Cl − Ul(t). In order to obtain a data
structure that is easier to handle in an algorithm,wediscretizeCl(t)
in time steps of duration τl to obtain the binary capacity availability
vector Ĉl, abbreviated CAV, as the vector whose k-th entry is:{
Ĉl
}
k
=

{
1, if Cl(t) = 1
0, otherwise

}
,

for all (k− 1) · τl ≤ t ≤ k · τl, k = 1, . . . , ul

where ul is the dimension of the CAV (see Fig. 5).
Cluster utilization profile
To have a consistent formulation, we define the utilization profile
Um(t) of clusterm as an integer function of time, which records the



918 T. Stevens et al. / Future Generation Computer Systems 25 (2009) 912–925
Fig. 5. The capacity availability profile Cl(t), and the binary capacity availability
vector Ĉl of a link l of capacity Cl , when the discretization step is τl .

Fig. 6. The cluster availability profile Wm(t), and the binary r-cluster availability
vector Ŵm(r) of a cluster m with Wm processors, when the task requests to be
executed on r processors and the discretization step is τm .

number of processing elements that have been committed to tasks
at time t relative to the present time. Themaximum value of Um(t)
is the number of CPUs Wm, and it has a stepwise character with
discontinuities of height r (always integer number) at the starting
and ending times of tasks. In case all tasks request a single CPU, the
steps are always unitary. We define the cluster availability profile,
which gives the number of CPUs that are free as a function of time,
as Wm(t) = Wm − Um(t). In order to obtain a data structure that
is easier to communicate and store, we discretize the time axis
in steps of duration τm and define the binary r-cluster availability
vector Ŵm(r), as follows:{
Ŵm(r)

}
k
=

{
1, if Wm − Um(t) > r
0, otherwise

}
,

for all (k− 1) · τm ≤ t ≤ k · τm, k = 1, 2, . . . , um

where um is themaximumsize of the cluster availability vector (see
Fig. 6).
To simplify the presentation and the experiments, we assume

for this study that each task requests r = 1 processors, which is the
most usual case. Then, we can denote Ŵm(r) by Ŵm suppressing
the dependence on r .
The discretization of the time axis results in some loss of

information, and provides a tradeoff between the accuracy and
the size of the maintained information. The discretization steps
τl and τm and the dimensions ul and um used in the link and
cluster utilization profiles, respectively, can be different to account
for the different time scales in the reservations performed on
the communication and computation resources, and to separately
control the efficiency–accuracy we want to obtain in each case.
The timeslot-basedmanagement of allocated resources [27–29]

has been used in different environments for advance reservations,
e.g. denoted as ‘‘slot table’’ in GARA [7]. A recent paper [30]
has focused on enhancing the timeslot-based approach by
introducing dynamic timeslots and the notion of granularity, and
Fig. 7. The co-allocation problemwhen the task’s input data size I and computation
workload W are known in advance. Each link is characterized by its propagation
delay and its binary capacity availability vector. Node E is a cluster with binary r-
cluster availability vector ŴE(r).

developed analytical models of the interrelation between user and
system parameters. A different approach to maintain utilization
information as a function of time is instead of bit-vectors to have
linked lists that store the changes of states (from 0 to 1 and from 1
to 0) [31]. Manipulating such linked lists is also straightforward.

4.2. Grid network and resources model in the case of advance
reservations

The assumptions of the Grid Network and the traffic are the
same as Section 3.1, but we also assume that we know in advance
or have an accurate estimation of the input data size I and the
computational workload W of a task. Moreover, we assume that
the scheduler S has information about the capacity availability
vectors Ĉl of all links l, and the cluster-availability vectors Ŵm of
all clusters M . We assume that there is an upper bound D on the
maximum delay tasks can tolerate. Even when no limit D is given,
we still assume that the dimension ul and um of the link and cluster
utilization vectors are finite. Given the previous information, we
want to find a suitable cluster to execute the task, a feasible path
over which to route the input data from the source (which can be
the scheduler or a data repository site), and the time at which the
task should start transmission (from the source) and execution (at
the cluster), so as to optimize some performance criterion, such as
the completion time of the task. In other words we want to find a
(path, cluster) pair and the corresponding TimeOffsets, to transmit
the data of the task (TOpath), and execute the task at the cluster
(TOcluster). Fig. 7 presents an instance of the problem.

4.3. Binary capacity availability vector of a path and binary cluster
availability vector over a path

Calculating the binary capacity availability vector of a path
Assuming the routing and scheduling decision is made at the
scheduler S, the capacity availability vectors of all links should
be gathered continuously. To calculate the Capacity Availability
Vector (CAV) of a path we have to combine the CAVs of the links
that comprise it, as described in [20].
For example, for the topology of Fig. 7, the CAV of path

SBE (pSBE), consisting of links lSB and lBE , is

ĈSBE = ĈSB ⊕ ĈBE = ĈSB & LSH2·dSB(ĈBE) (1)

where ĈSB and ĈBE are the CAVs of links lSB and lBE , respectively, and
LSH2·dSB defines the left shift of ĈBE by 2 ·dSB (twice the propagation
delay of link lSB measured in τl-time units). Left shifting ĈBE by



T. Stevens et al. / Future Generation Computer Systems 25 (2009) 912–925 919
Fig. 8. Calculation of the path capacity availability vector ĈSBE . ĈBE is shifted by 2
dSBτl-time units (dSB = 2 in this example), before the AND operation is applied.

dSB positions purges utilization information corresponding to time
periods that have already expired (time to transfer ĈBE information
from B to S), while left shifting it by another dSB accounts for
the propagation delay any data sent from S suffers to reach
node B (assuming the link propagation delay is the same in both
directions). We finally execute a bit-wise AND operation, denoted
by ‘&’, between the CAVs of SB and BE to compute the binary
availability vector of the whole path SBE. This process is depicted
in Fig. 8.
Calculating the binary cluster availability vector over a path
Let p be the path that starts at the scheduler S and ends at a cluster
m, Cp its CAV and dp =

∑k
l=1 dl its delay.Wewant to transmit a task

with data duration b (b = I/Cl where I is the size of the input data)
over the path p1 in order to be executed on cluster m. We define
Rp(b) the as the first position afterwhich Cp has b consecutive ones.
In other words, Rp(b)is the earliest time after which a connection
or a data burst of duration b can start its transmission on path
p. The earliest time that the task can reach cluster m is given by
EST(p, b) = Rp(b)+b+dp. The scheduler S maintains information
about the cluster availability vector Ŵm ofm.WedefineMUVk(Ŵm)
as the operation of setting zeros (making unavailable) the first k
elements of vector Ŵm. Then vector Ŵm(p, b) = MUVEST(p,b)(Ŵm)
gives the time periods that S can schedule the task over path p at
clusterm.
With respect to the Figs. 7 and 8 we assume that we want

to transmit a task with transmission duration b = 3 from S to
the cluster located at node E, over path pSBE with propagation
delay dSBE = 6. The capacity availability vector of the path ĈSBE
was calculated in the previous section, and thus we can compute
RpSBE (b)⇒ RpSBE (3) = 0. The task can reach E after time

EST(pSBE, b) = RpSBE (b)+ b+ dSBE = 0+ 3+ 6 = 9.

Also, S has an accurate knowledge of the cluster availability profile
ŴE . Based on the above, the cluster availability vector that gives
the time periods that S can schedule the execution of task at E
is ŴE(pSBE, b) = MUVEST(pSBE ,b)(ŴE) = MUV9(ŴE), which is the
operation of setting the 9 first entries of vector ŴE to zero. This
process is depicted in Fig. 9.

4.4. Optimal advance reservation multi-cost algorithm (MC-T)

In what follows, we present a multi-cost algorithm for the
joint communication and computation scheduling of tasks. The
algorithm we propose consists of three phases: given a source
(which can be the scheduler S or a data repository site R) we first
calculate the set Pn−d of non-dominated paths between the source
and all the network nodes. In the second phase, we obtain the set
PMn−d of candidate non-dominated (path-cluster) pairs from the
source to all the clusters that can process the task. Finally, in the
third phase, we choose from the PMn−d set the pair that minimizes
Fig. 9. Calculation of the cluster availability vector of E at the scheduler S thatwants
to transfer a task of transmission duration b = 3 over path pSBE . We denote by
EST (pSBE , b) the earliest time the task can reach E over pSBE and by ŴE(pSBE , b) the
cluster availability vector that gives the time periods at which S can schedule the
task at E. To calculate ŴE(pSBE , b), we put 0’s in the first EST (pSBE , b) = 9 elements
of ŴE .

the completion of the task execution, or some other performance
criterion.

Phase 1: Algorithm for computing the set of non-dominated paths
In multi-cost routing, each link l is assigned a vector Vl of cost

parameters, as opposed to the scalar cost parameter assigned in
single-cost routing. In our initial formulation, the cost parameters
of a link l include the propagation delay dl of the link and its binary
capacity availability vector Ĉl, that is,

Vl = (dl, Ĉl) = (dl,c1,l, c2,l, . . . , cul , l),

but they may also include other parameters of interest (such as
number of hops, the capacity availability profile instead of the
binary CAV vector, the number of executed tasks in a cluster, etc.).
A cost vector can then be defined for a path p consisting of links
1, 2, . . . , k, based on the cost vectors of its links, according to

V (p) =
k
⊗
l=1
Vl
def
=

(
k∑
l=1

dl,
k
⊕
l=1
Ĉl

)
, (2)

where⊕ is the associative operator defined in Eq. (1).
We say that path p1 dominates path p2 for a given connection

and source-destination pair if the propagation delay of p1 is
smaller than that of p2, and path p1 is available for scheduling
the connection (at least) at all time intervals at which path p2 is
available. Formally:

p1 dominates p2(notation : p1 > p2) iff∑
l∈p1

dl <
∑
l∈p2

dl and ⊕
l∈p1
Ĉl ≥ ⊕

l∈p2
Ĉl, (3)

where the vector inequality ‘‘≥’’ should be interpreted component
wise. The set of non-dominated paths Pn−d for a given connection
and source-destination pair is then defined as the set of paths with
the property that no path in Pn−d dominates another path in Pn−d.
An algorithm for obtaining the set Pn−d of non-dominated paths

from a given source node to all destination nodes is given in [19]
and [20], and it can be viewed as a generalization of Dijkstra’s
algorithm that only considers scalar link costs.

Phase 2: Calculating the set of non-dominated (path, cluster) pairs
In the first phase of our proposed routing and scheduling

algorithm we obtained the set of non-dominated paths between
the source and all the nodes of the network. We now expand the
definition of the path cost vector to include the utilization profiles



920 T. Stevens et al. / Future Generation Computer Systems 25 (2009) 912–925
of the clusters. More specifically, we define the cost vector of a
(path, cluster) pair pm, of a path p ending to a clusterm, as:

V (pm) =
(
V (p), Ŵm(p, b)

)
=

(
k∑
l=1

dl,⊕
l∈p
Ĉl, Ŵm(p, b)

)
(4)

where Ŵm(p, b) = MUVEST(p,b)(Ŵm) is the binary cluster
availability vector of m, located at the end of path p, with 0’s at
the first EST (p, b) elements (as described in Section 4.3).
We define a domination relationship between (path, cluster)

pairs as follows. A (path, cluster) pair p1m1 dominates another pair
p2m2 for a given task, if p1 dominates p2 according to Eq. (3), and
also the clusterm1 can schedule the task at least at all time intervals
at which the clusterm2 is available. More formally,

p1m1 dominates p2m2(notation : p1m1 > p2m2) iff

p1 > p2 and Ŵm1(p1, b) ≥ Ŵm2(p2, b) (5)

where the vector inequality ‘‘≥’’ should be interpreted component
wise. The set of non-dominated (path, cluster) pairs PMn−d for a
given task is then defined as the set of (path, cluster) pairs with the
property that no pair in PMn−d dominates another pair in PMn−d.
From the previous definitions it is easy to conclude that the set

Pn−d is a superset of PMn−d(PMn−d ⊆ Pn−d}. Therefore, in order
to obtain the PMn−d set we apply Eq. (5) to the elements of the
Pn−d set.
Phase 3: Finding the optimal (path, cluster) pair and the transmission
and execution time offsets
In the third phase we apply an optimization function f (V (pm))

to the cost vector of each pair pm ∈ PMn−d to select the
optimal one. The function f can be different for different tasks,
depending on QoS requirements. For example, if we consider
the optimization of data transmission, which corresponds to the
routing optimization problem, function f will select the path that
minimizes the reception time of the data at the cluster. If we
consider the optimization of the computation problem, function f
will select the cluster that has the fewer scheduled tasks, or the one
that minimizes its completion time. A combination of the above
considerations can be also employed.
The optimization function f applied to a (path, cluster) cost

vector to compute the final (scalar) cost has to be monotonic in
each of the cost components. For example, it is natural to assume
that it is increasingwith respect to delay, decreasingwith capacity,
decreasing with increased capacity availability, decreasing with
increased cluster availability, etc. Each path cost component is
characterized by the way it is obtained from the links’ cost vector
components (e.g., addition for the delays, ⊕ for the capacity
availability vectors, selection of the final node for the cluster
availability vector) and also by the optimization criterion applied
to it (e.g., minimization for the delay, maximization for capacity
and cluster availability, etc.).
For the given task and the given instance of the Grid

network (established and scheduled data connections, executed
and scheduled tasks at clusters), we are sure that we can find
the (path,cluster) pair that optimizes the given objective function
f . The set of non-dominated (path,cluster) pairs PMn−d is by
definition bound to include all the pairs that have at least one
availability slot more than any other, or delay less than any other
pair, etc, thus include all the paths with a distinct cost that can
affect the objective function. To this end, the optimum solution is
among the pairs of this PMn−d set.
In the third phase of the algorithm we choose from the set

PMn−d of non-dominated pm pairs the one that minimizes the
optimization function f (V (pm)). For the context of this study we
assume that we want to minimize the completion of the task
and that we are using a one-way connection establishment and
reservation scheme. This is done in the following way:
Step 1: Compute the first available position to schedule the task
We start from the cost vector V (pimi) of pair pimi and calculate

the first position Ri(wi) after which Ŵmi(pi, b) has wi = W/Cmi
consecutive ones. In other words, Ri(wi) is the earliest time at
which a task of computation workload W can start execution on
mi. Note that thewaywi is calculated accounts for the computation
capacity of resourcemi, and that Ŵmi(pi, b), by definition, accounts
for the earliest transmission time, the propagation delay of path pi
and the transmission delay (as described in Section 4.1).
Step 2: Select the cluster with the minimum task completion time
Select the pair pimi that results in the minimum completion

time Ri(wi) + wi for the task. In case of a tie, select the path with
the smallest propagation delay The time offset of task execution
(TOcluster) is given by Ri(wi).
Step 3: Selecting the time to transmit the input data
Having chosen the pair pimi we transmit the data of the task

at the earliest time possible. The time offset TOpath for the task
transmission is Rpi(b), defined as the first position after which Cpi
has b consecutive ones.
Step 4: Updating the CAV of chosen (path, cluster)
Having chosen the pm pair and the time offsets (TOpath and

TOcluster ) to transmit and execute the task, the next step is to update
the utilization profiles of the corresponding links and the cluster.
The procedure described above assumes a tell-and-go reserva-

tion protocol. If we wish to use a tell-and-wait protocol we simply
have to redefine Ŵm(pi, b), Ri(wi) and Rpi(b) to take into account
the round trip time before data is transmitted.

4.5. Polynomial algorithm for computing the set of non-dominated
paths

A serious drawback of the optimal algorithm described in
the previous section is that the number of non-dominated paths
calculated in the first phasemay be exponential, and the algorithm
is not guaranteed to finish in polynomial time. More specifically,
the optimal multi-cost algorithm uses a path cost vector that has
1 + ul cost parameters, and in particular 1 float (delay) and ul
Boolean costs (path utilization vector), where ul is the size of the
link utilization vectors. The complexity of this algorithm is clearly
exponential since for a given source-destination pair there can be
O(2ul) non-dominated paths.
The basic idea to obtain polynomial time variations of

this algorithm is to define a pseudo-domination relationship
>ps between paths, which has weaker requirement than the
domination relationship > defined in Eq. (3), in the sense that
two paths may not dominate each other with respect to the >
relationship, but one of themmay dominate the other with respect
to the>ps relationship.
In [20] two such pseudo-domination relations were proposed

and evaluated. For the scope of this study we present the better
performing relation. We define a new link metric, called the slot
availability weight of the link, as wl = weight(Ĉl), where the
weight() of a binary vector represents the total number of 1’s in
the vector.
The polynomial-time heuristic variation of the optimal multi-

cost algorithm computes the set of non-pseudo-dominated paths
following exactly the same steps as before. The algorithm still
maintains the binary vectors of the paths but the domination
relationship that is used to prune the paths is not Eq. (3) but the
following:
p1 pseudo-dominates p2(p1>ps p2) iff∑
l∈p1

dl <
∑
l∈p2

dl and weight
(
⊕
l∈p1
Ĉl

)
> weight

(
⊕
l∈p2
Ĉl

)
. (6)



T. Stevens et al. / Future Generation Computer Systems 25 (2009) 912–925 921
This pseudo-domination relation transforms the cost vector of a
link into a cost vector with 2 costs. The first cost is the delay of
the link which is an additive float cost, while the second cost is the
availability weight of the link which is a concave bounded integer.
The upper bound of the integer second cost is the size of the link
vector ul. A cost vector with these 2 costs (1 additive float + 1
bounded concave integer) results in a polynomial-time problem as
proven in [22] and also used in [27]. More specifically, for a given
value of the integer cost, there can be only one non-dominated
path between a source-destination pair, the one with the smallest
delay. Since the integer cost can take values at themost equal to the
length of the vector, an upper limit on the number of non-pseudo-
dominated paths per source-destination pair is the dimension ul of
the link availability vector, which is polynomial in ul and clearly do
not depend on the network size. Assuming the general case where
the size of the problem is proportional to ul (link utilization profiles
are part of the problem and generally require O(ul) bits to record),
this corresponds to a polynomial time algorithm.
The heuristic algorithm obtained by the pseudo-domination

relationship of Eq. (6) avoids the tedious comparisons of the CAVs
of the optimal multi-cost algorithm, by essentially converting a
ul + 1-dimensioned cost vector into a cost vector of dimension
2 that conveys most of the important information contained in
the original vector. Although the set of non-pseudo-dominated
paths that this relationship generates is not guaranteed to always
contain the optimum path, our performance results indicate that
by appropriate choosing the pseudo-domination relationship we
can obtain performance that is very close to that of the optimal
multicost algorithm.

5. Performance evaluation

The aim of this section is to explore the algorithmic perfor-
mance of immediate versus advance reservations, and also com-
pare the proposed algorithms to algorithms that handle only the
computation or only the communication part of the problem. Note
that the scheduling algorithms for communication and compu-
tation resources that are available in the literature do not con-
sider the joint problem in the way the algorithms proposed in
this paper do. Therefore, we were not able to compare the pro-
posed algorithms directly to other approaches. The comparison is
based on the algorithm’s behavior for different job scenarios, more
specifically CPU-intensive, data-intensive and combined CPU- and
data-intensive tasks. The studied performance parameters are job
blocking probability, average end-to-end delay, and algorithmic
complexity in terms of the average number of computed paths and
average number of operations per job.

5.1. Simulation setup

The network topology used is the Phosphorus network [32],
consisting of 9 nodes and 16 bidirectional links as shown in Fig. 10
(link distances are also presented). We assume the network is
composed of 1Gbps optical links, each offering a singlewavelength.
Three nodes are randomly selected to function as Computing
Elements (CE), with each CE containing 60 CPUs, and each CPU
offering 25000 MIPS (Million Instructions Per Second—a typical
value for current CPUs). Thus, the total computing power of the
Grid network is given by 3 · 60 · 25 000 MIPS.
The main characteristics of the grid jobs are given by:

• Poisson arrival of jobs with average rate λ (jobs/s).
• Uniform source selection from the nine (9) network nodes for
each job created, which implies that at every node jobs are
created according to a Poisson process with average rate λ/9.
Table 2
Parameter values for different experiments

W (MI) I (MByte) λ (jobs/s)

CPU-intensive 400000 (16 s) 10 1 . . .10
Data-intensive 25000 (1 s) 100 1 . . .10
CPU- and data-intensive 400000 100 1 . . .10

• Exponentially distributed job computation complexity, with
averageW (MI/job).
• Exponentially distributed data input sizes, in the form of a data
burst, with average I (Mbytes/job).

The parameters λ,W and I have to be chosen carefully, in order
to prevent a scenario in which the Grid infrastructure is constantly
overloaded. For this purpose, it is necessary to impose restrictions
on the generated traffic. More specifically, for the Computing
Elements it should hold that:

λ ·W < 3 · 60 · 25 000,

and for the network:

λ · I < sum_of_3_smallest degrees · 1 Gb/s = 6 Gb/s.

Since there are 3 computation resource sites, drawn at random
from the 9 available network nodes, the above network load
limitation guarantees that the last links towards the resources are
not overloaded. This helps us make the assumption that these last
links do not become a network bottleneck.
The total end-to-end delay (in seconds) for a task can be

computed as follows:

Total delay = path_length · (5× 10−6 s/km)
+ (input_size/(1 Gb/s)).

The first component relates to the propagation delay of the link
(5×10−6 s/km is a typical value for the propagation of a fiber with
refractive index 1.5), whereas the second component accounts for
the transmission delay of the input data burst.
In the following, we performed three sets of experiments as

detailed in Table 2.
For all simulation results discussed in the following sections, 5

runs of 10000 jobs were performed for each experiment, all with
independent random seed. To account for the transient regime at
the beginning, measurements only take into account a steady load
and stop when the last job has been submitted.
In order to evaluate the performance of the proposed multi-

cost algorithms for the joint communication and computation task
scheduling, several simulation experiments were conducted and
results are compared with several immediate and advance reser-
vation scheduling algorithms. For advance reservation algorithms,
a job execution deadline is defined as follows:

Job deadline
= 2 · (burst transmission delay+ execution delay)
= 2 · ((burst_size/(1 Gb/s))
+ (execution_time (MI)/25 000 MIPS)).

The following algorithms were implemented and evaluated:

• SAMCRA and SAMCRA HBH, the centralized and distributed
(hop-by-hop) version, as discussed in Section 3.3. These are
multi-constraint immediate scheduling algorithms. Note that in
cases wherewe omit results for SAMCRAHBH, the performance
is very similar to the centralized version of the algorithm.
• Optimal advance reservation multi-cost algorithm for the joint
communication and computation task scheduling (MC-T), as
presented in Section 4.4.



922 T. Stevens et al. / Future Generation Computer Systems 25 (2009) 912–925
Fig. 10. Simulated topology—Phosphorus network.
• AW heuristic advance reservation multi-cost algorithm for
the joint communication and computation task scheduling
(AWMC-T), as presented in Section 4.5.
• Optimal advance reservation multi-cost burst routing and
scheduling algorithm (MC-B). The MC-B algorithm takes into
account only the communication part of the problem, and
routes the input data to the cluster at which the data will
arrive earlier, without using the corresponding time-dependent
utilization profiles of the clusters.
• Earliest Completion time (ECT) advance reservation scheduling.
The ECT algorithm considers only the computation part of
the problem, and sends the task to the cluster where it will
complete execution earlier, using the shortest path and taking
into account contentions on the links that comprise that path.

For the MC-T, MC-B and ECT algorithms the used time-
discretization steps and utilization vector dimensions (Section 4.1)
for the links and clusters are: τl = 0.001 s, dl = 10 000, and
τm = 0.04 s, dm = 10 000, respectively.
To assess the performance of the algorithms we used the

following metrics:

• Job blocking probability: the probability of a job to be blocked,
because of lack of network capacity or resource availability.
For immediate scheduling, jobs can be blocked either because
of network burst contention or resource contention (i.e., jobs
arrive in a busy resource). For the algorithms that employ
advance reservations (ECT, MC-B and MC-T), jobs can be
blocked due to time-outs that occur when the job is waiting
too long to be sent over the network or when it is queued upon
arrival in a busy resource.
• Average end-to-end delay: defined as the time between the
task creation and the time the task completes its execution.
End-to-end job delay measurements include job queuing time
(only applicable for advance reservations) and job transmission
and execution duration. As such, delay measurements are only
measured for successfully executed jobs.
• Average number of operations: the number of operations
required to execute the routing and scheduling algorithm.
An operation is defined as an addition, a boolean operation
(e.g., XOR) or a comparison (<,>, 6=, etc.).

5.2. CPU-intensive tasks

Figs. 11 and 12 depict the job blocking rate and average
end-to-end delay for the CPU-intensive experiments as described
in Table 2. Note that the SAMCRA algorithm is an immediate
Fig. 11. Job blocking probability for CPU-intensive tasks.

scheduling approach, dropping tasks if it cannot immediately serve
them, and as such the observed end-to-end delay measurements
serve as a lower bound for all advance reservation algorithms
(i.e., MC-T, AWMC-T, MC-B, and ECT). Also, note that MC-T is
an optimum algorithm, in the context that for a given task and
the specific network instance (link and cluster utilizations), it
schedules the task (even in the future) in order to obtain the
minimum end-to-end delay. A task that is scheduled by MC-T in
the future would be dropped by SAMCRA. However, this task will
have larger end-to-end delay than its transmission and execution
time, due to the advance reservation. To this end, it is expected that
SAMCRA will experience the minimum average end-to-end delay
with a increased blocking rate, whileMC-Twill experience the best
blocking performance with an increased delay (when compared to
SAMCRA).
Indeed, from Fig. 11 we can observe that ECT, MC-T and

AWMC-T experience better blocking performance than the other
algorithms, because of their effective job scheduling on the compu-
tational resources. MC-B optimizes network resource utilization,
but this is not the bottleneck for the CPU-intensiveworkload of this
scenario. As a consequence, when λ increases, MC-B schedules the
jobs in the buffers of already busy clusters, their delay is increased
and they eventually time-out. Note that even SAMCRA (without
buffering capability in resources) outperforms MC-B in terms of
job blocking rate when the load increases. ECT, MC-T and AWMC-T
achieve efficient spreading of the jobs over the available resources,
combining an acceptable end-to-end delay (which is dominated by
the job execution time) with low job blocking rate (Fig. 12).



T. Stevens et al. / Future Generation Computer Systems 25 (2009) 912–925 923
Fig. 12. Average end-to-end delay for CPU-intensive tasks.

Fig. 13. Job blocking probability for data-intensive tasks.

5.3. Data-intensive tasks

In this section we focus on data-intensive tasks (see Table 2).
Generating jobs at a higher rate results in an increasing network
load, while computation resource utilization remains low. For
this scenario, the job blocking rate and average end-to-end delay
are depicted in Figs. 13 and 14, respectively. In terms of job
blocking rate, SAMCRA and ECT cannot compete with MC-B, MC-
T and AWMC-T. This is because both SAMCRA and ECT cannot
schedule the input data in the future, which results in higher data
blocking rates in the network core. In the case of SAMCRA, when
the input data cannot be immediately routed, the job is rejected,
whereas ECT waits for the shortest path to become available. This
increases the end-to-end delay and the job may be rejected if its
deadline is reached. The blocking rate for MC-T, AWMC-T and MC-
B, are similar since all three algorithms consider the utilization
of the communication resources, which is dominant in this Data-
intensive scenario, in a similar way.

5.4. CPU- and data-intensive tasks

In this scenario, the generated jobs increasingly stress both the
network and the computational resources as the job generation
frequency λ increases. As expected, Figs. 15 and 16 show that the
job blocking rate and average end-to-end delay are higher for this
scenario than for the others examined in the previous paragraphs.
SAMCRA still offers a lower bound for the end-to-end delay, at the
expense of the highest job blocking rate. BothMC-B and ECT results
expose a high job blocking rate combinedwith relatively high end-
to-end delay values, because these approaches neglect one aspect
Fig. 14. Average end-to-end delay for data-intensive tasks.

Fig. 15. Job blocking probability for CPU- and data-intensive tasks.

Fig. 16. Average end-to-end delay for CPU- and data-intensive tasks.

of the job characteristics (as already discussed in the CPU- and
data-intensive scenario cases). To this end, when tasks are CPU-
and data intensive, MC-T and AWMC-T algorithms excel for both
performance criteria due to their combined optimization approach
and their ability to perform advance reservations.
Note that the performance difference with respect to blocking

and end-to-end delay between MC-T and AWMC-T is marginal in
favor of MC-T in this and all the previously examined scenarios.
AWMC-T is a heuristic version of the optimal MC-T and these
performance results indicate that it can fairly approximate the
optimal algorithm. However, it is expected that MC-T will have



924 T. Stevens et al. / Future Generation Computer Systems 25 (2009) 912–925
Fig. 17. Average number of operations required per task (CPU- and data-intensive
tasks).

worse complexity performance, since it is an NP-hard algorithm,
while AWMC-T is polynomial.

5.5. Complexity

Thus far, algorithm complexity has not been taken into account
in the performance evaluation of the proposed algorithms. In
theory we have proven that the exact multi-constraint routing
algorithm for immediate reservations (SAMCRA) with the two
specific costs as presented in Section 3 is polynomial. For
advance reservations, the optimal multi-cost algorithm presented
in Section 4.4 is NP-hard, while its heuristic variation presented in
Section 4.5 is polynomial.
Fig. 17 shows algorithm complexity in terms of the average

number of operations required to schedule a single job. When
the job generation intensity λ increases, it becomes increasingly
important to come up with a scheduling solution in a timely
fashion. The figure shows that the advance reservation algorithms
require a number of operations that are at least two orders of
magnitude larger than those for the SAMCRA (HBH) algorithm. This
is more severe as tasks are more data-intensive, in which case
larger link utilization vectors need to bemaintained and combined
for all advance reservation algorithms. As explained in Section 4,
MC-T optimal algorithm use as cost parameters the delay and the
link (or path) utilization profiles and thus can be viewed as amulti-
cost algorithm with 1 + ul costs. Although reducing the value of
ul would result in decreased complexity, the algorithm’s blocking
performance would deteriorate since this would constrain its
capability of advance scheduling. The value ul = 10 000 was
chosen so as to optimize the blocking probability and in particular,
in all the experiments that we conducted all task requests were
able to find available (temporal) placements for their input data. On
the other hand, AWMC-T heuristic algorithmwas designed so as to
avoid the tedious comparisons between the 1+ ul costs, but it still
has to perform additions between cost vectors and thus the high
number of average operations. However, since it is proven that the
number of non-dominated paths that it computes is polynomial on
the size of the input, its complexity performance is expected to be
acceptable irrespective of the network topology. MC-B algorithm
handles link utilization information similar toMC-T and thus it also
experiences high average number of operations. The ECT algorithm
has to combine the utilization vectors of the links that comprise
the shortest paths to the computation resources, in order to avoid
contention over them. To this end ECT exhibits a higher number
of performed operations than the SAMCRA algorithm. Finally,
it is worth noting that for the SAMCRA algorithm the number
of operations is independent of the generated load, potentially
leading to greater scheduling scalability when the load is high.
6. Conclusions

In this paper, we presented several multi-cost algorithms
for the joint scheduling of the communication and computation
resources that will be used by a task. The proposed immediate
reservation algorithm selects the computation resource to execute
the task and determine the path to route the input data.
Furthermore, we introduced multi-cost algorithms that perform
advance reservations and thus also find the starting times for
the data transmission and task execution. We demonstrated the
inherent trade-off for immediate vs. advance reservations; the
lower blocking probability achieved by advance reservations,
comes at a small or moderate increase in the end-to-end delay.
Finally, an analysis on the complexity of the various algorithms,
in terms of number of paths computed and computational
steps executed, was presented. The quantitative results showed
the increased complexity of the advance reservation algorithms
due to the inclusion of temporal information in the multi-cost
formulation.

Acknowledgements

This work has been supported by the European Commission
through the IP Phosphorus project. M. De Leenheer would like
to thank the IWT for their financial support through his Ph.D.
scholarship. C. Develder acknowledges the support of the FWO for
his post-doctoral grant. K. Christodoulopoulos was supported by
GSRT through PENED project 03E1207, funded 75% by the EC and
25% by the Greek State and the private sector.

References

[1] M. De Leenheer, P. Thysebaert, B. Volckaert, F. De Turck, B. Dhoedt,
P. Demeester, D. Simeonidou, R. Nejabati, G. Zervas, D. Klonidis,M.J. O’Mahony,
A view on enabling consumer-oriented grids through optical burst switching,
IEEE Communications Magazine 44 (3) (2006) 124–131.

[2] I. Foster, C. Kesselman (Eds.), The Grid 2: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 2003.

[3] R. Yahyapour, Ph. Wieder, Grid Scheduling Use Cases, Grid Scheduling
Architecture Research Group, GSA-RG, Open Grid Forum, OGF, Mar. 2006.

[4] W.E. Johnston, Computational and data grids in large-scale science and
engineering, Future Generation Computer Systems 18 (8) (2002) 1085–1100.

[5] K. Czajkowski, I.T. Foster, C. Kesselman, Resource co-allocation in computa-
tional grids, in: Proc. of the 8th IEEE International Symposium on High Perfor-
mance Distributed Computing, HPDC-8, Aug. 1999, pp. 219–228.

[6] R. Raman, M. Livny, M. Solomon, Policy driven heterogeneous resource
co-allocation with gangmatching, in: Proc. of the 12th IEEE International
Symposium on High Performance Distributed Computing, HPDC-12, June
2000, pp. 80–89.

[7] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A. Roy, A distributed
resource management architecture that supports advance reservation and co-
allocation, in: Proc. of International Workshop on Quality of Service, IWQOS,
1999, pp. 27–36.

[8] R. Ali, O. Rana, D.Walker, S. Jha, S. Sohail, G-QoSM:Grid service discovery using
QoS properties, in: Grid Computing, Journal of Computing and Informatics 21
(4) (2002) 363–382 (special issue).

[9] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,
J. Rofrano, S. Tuecke, M. Xu, Web Services Agreement Specification (WS-
Agreement), Open Grid Forum, Mar. 2007.

[10] R.S. Chang, J.S. Chang, S.Y. Lin, Job scheduling anddata replication ondata grids,
Future Generation Computer Systems 23 (7) (2007) 846–860.

[11] M. Tang, B.S. Lee, X. Tang, C.K. Yeo, The impact of data replication on job
scheduling performance in thedata grid, FutureGenerationComputer Systems
22 (3) (2006) 254–268.

[12] S. Venugopal, R. Buyya, L. Winton, A grid service broker for scheduling
distributed data-oriented applications on global grids, in: Proc. 2ndWorkshop
on Middleware for Grid Computing, MGC, Feb. 2004, pp. 75–80.

[13] T. Roeblitz, A. Reinefeld, Co-reservation with the concept of virtual resources,
in: Proc. 5th IEEE International SymposiumonCluster Computing and theGrid,
CCGrid, May 2005, pp. 398-406.

[14] T. Tannenbaum, D. Wright, K. Miller, M. Livny, Condor—A distributed job
scheduler, in: Beowulf Cluster Computing with Linux, TheMIT Press, MA, USA,
2002.



T. Stevens et al. / Future Generation Computer Systems 25 (2009) 912–925 925
[15] J. Cao, S.A. Jarvis, S. Saini, G.R. Nudd, GridFlow:Workflowmanagement for grid
computing, in: Proc. 3rd International Symposium on Cluster Computing and
the Grid, CCGrid, May 2003, pp. 198–205.

[16] R. Buyya, S. Venugopal, The gridbus toolkit for service oriented grid and utility
computing: An overview and status report, in: Proc. 1st IEEE International
Workshop on Grid Economics and Business Models, GECON, April 2004,
pp. 19–36.

[17] A. Streit, D. Erwin, Th. Lippert, D. Mallmann, R. Menday, M. Rambadt,
M. Riedel, M. Romberg, B. Schuller, Ph. Wieder, UNICORE—from project
results to production grids, in: L. Grandinetti (Ed.), Grid Computing: The New
Frontiers of High Performance Processing, in: Advances in Parallel Computing,
vol. 14, Elsevier, 2005.

[18] J. Yu, R. Buyya, A taxonomy of scientific workflow systems for grid computing,
in: Scientific Workflows, SIGMOD Record 34 (3) (2005) 44–49 (special issue).

[19] F. Gutierrez, E.A. Varvarigos, S. Vassiliadis, Multicost routing in max–min
fair networks, in: Proc. 38th Allerton Conf. on Communicating, Control and
Computing, 2000.

[20] E.A. Varvarigos, V. Sourlas, K. Christodoulopoulos, Routing and scheduling
connections in networks that support advance reservatins, Computer
Networks 58 (2008) 2988–3006.

[21] D. Xuan, W. Jia, W. Zhao, H. Zhu, A routing protocol for anycast messages, IEEE
Transactions on Parallel and Distributed Systems 11 (6) (2000) 571–588.

[22] Z. Wang, J. Crowcroft, Quality of service routing for supporting multimedia
applications, Journal on Selected Areas in Communications 14 (7) (1996)
1228–1234.

[23] P. Van Mieghem, F. Kuipers, Concepts of exact QoS routing algorithms,
IEEE/ACM Transactions on Networking 12 (5) (2004) 851–864.

[24] F. Kuipers, P. Van Mieghem, Conditions that impact the complexity of QoS
routing, IEEE/ACM Transaction on Networking 13 (4) (2005) 717–730.

[25] P. VanMieghem, H. De Neve, F. Kuipers, Hop-by-hop quality of service routing,
Computer Networks 37 (3–4) (2001) 407–423.

[26] F.A. Kuipers, Quality of service routing in the internet: Theory, complexity and
algorithms, Ph.D. thesis, Delft University Press, The Netherlands, Sep. 2004.

[27] Shigang Chen, Klara Nahrstedt, On finding multi-constrained paths,
in: Proc. IEEE International Conference on Communications, ICC, June 1998,
pp. 874–879.

[28] R. Guerin, A. Orda, Networks with advance reservations: The routing
perspective, in: Proc. 19th Annual Joint Conference of the IEEE Computer and
Communications Societies, INFOCOM, Mar. 2000, pp. 118–127.

[29] L.O. Burchard, Analysis of data structures for admission control of advance
reservation requests, IEEE Transactions on Knowledge and Data Engineering
17 (3) (2005) 413–424.

[30] C. Barz, U. Bornhauser, P. Martini, M. Pilz, Timeslot-based resource manage-
ment in grid environments, in: IASTED Conference on Parallel and Distributed
Computing and Networks, PDCN, 2008.

[31] E.A. Varvarigos, V. Sharma, An efficient reservation connection control
protocol for gigabit networks, Computer Networks and ISDN Systems 30 (12)
(1998) 1135–1156.

[32] The Phosphorus project. http://www.ist-phosphorus.eu/.

T. Stevens received his M.Sc. degree in Computer Science
from Ghent University, Belgium, in June 2001. Until
July 2003, he was a database and system administrator
for the Flemish public broadcasting company (VRT). At
present, Tim Stevens is a Ph.D. student affiliated with
the Department of Information Technology of Ghent
University. He has been involved in multiple national and
European research projects (IWT Move, IST MUSE, IST
Phosphorus). His main research interests include future
access network architectures, IPv6, Quality of Service
(QoS) and traffic engineering in IP networks, and anycast-

based services.

M. De Leenheer received his M.Sc. degree in Computer
Science Engineering from Ghent University, Belgium, in
June 2003. He is now a research assistant and Ph.D.
student affiliated with the Department of Information
Technology at Ghent University and has received a
scholarship by the IWT (Institute for Innovation in
Science and Technology-Flanders). His main interests
include modeling and optimization of Grid management
architectures, specifically in the context of photonic
networks.
C. Develder received the M.Sc. degree in Computer Sci-
ence Engineering and a Ph.D. in Electrical Engineering
from Ghent University (Ghent, Belgium), in July 1999 and
December 2003 respectively. From October 1999 on, he
has been working in the Department of Information Tech-
nology (INTEC), at the same university, as a Researcher
for the Research Foundation—Flanders (FWO), in the field
of network design and planning, mainly focusing on op-
tical packet switched networks. In January 2004, he left
University to join OPNET Technologies, working on trans-
port network design and planning. In September 2005, he

re-joined INTEC at Ghent University as a post-doctoral researcher, and as a post-
doctoral fellow of the FWO since October 2006. Since October 2007 he holds a part-
time professor position at the same institute. He was and is involved in multiple
national and European research projects (IST Lion, IST David, IST Stolas, IST Phos-
phorus, IST E-Photon One). His current research focuses on dimensioning, modeling
and optimising optical Grid networks and their control and management. He is an
author or co-author of over 45 international publications.

B. Dhoedt received a degree in Engineering from the
Ghent University in 1990. In September 1990, he joined
the Department of Information Technology of the Faculty
of Applied Sciences, University of Ghent. His research,
addressing the use of micro-optics to realize parallel
free space optical interconnects, resulted in a Ph.D.
degree in 1995. After a 2 year post-doc in opto-
electronics, he became professor at the Faculty of Applied
Sciences, Department of Information Technology. Since
then, he is responsible for several courses on algorithms,
programming and software development. His research

interests are software engineering and mobile & wireless communications.
Bart Dhoedt is author or co-author of approximately 150 papers published in
international journals or in the proceedings of international conferences. His
current research addresses software technologies for communication networks,
peer-to-peer networks, mobile networks and active networks.

K. Christodoulopoulos received the Diploma of Electrical
and Computer Engineering from the National Technical
University of Athens, Greece, in 2002 and the M.Sc. degree
inAdvancedComputing from Imperial College London, UK,
in 2004. He is currently working toward the Ph.D. degree
at the Computer Engineering and Informatics Department
of the University of Patras, Greece. His research interests
are in the areas of protocols and algorithms for optical
networks and grid computing.

P. Kokkinos received a Diploma in Computer Engineering
and Informatics and a M.Sc. in Integrated Software and
Hardware Systems from the Department of Computer
Engineering and Informatics, University of Patras, Greece.
Currently, he is pursuing a Ph.D. degree in the same
University. His research activities are in the areas of ad-
hoc networks and grid computing.

E. Varvarigos received a Diploma in Electrical and Com-
puter Engineering from the National Technical Univer-
sity of Athens in 1988, and the M.S. and Ph.D. degrees
in Electrical Engineering and Computer Science from the
Massachusetts Institute of Technology in 1990 and 1992,
respectively. He has held faculty positions at the Univer-
sity of California, Santa Barbara (1992–1998, as an Assis-
tant and later an Associate Professor) and Delft University
of Technology, the Netherlands (1998–2000, as an Asso-
ciate Professor). In 2000 he became a Professor at the de-
partment of Computer Engineering and Informatics at the

University of Patras, Greece, where he heads the Communication Networks Lab.
He is also the Director of the Network Technologies Sector (NTS) at the Research
Academic Computer Technology Institute (RA-CTI).His research activities are in the
areas of high-speed networks, protocols, network architectures, distributed com-
putation and grid computing.

http://www.ist-phosphorus.eu/

	Multi-cost job routing and scheduling in Grid networks
	Introduction
	Related work
	Exact multiple constraints routing: Immediate reservations
	Grid network and resources model
	Routing towards anycast destinations
	Self-adaptive multiple constraints routing algorithm: SAMCRA
	Avoiding sub-optimal SAMCRA results
	Complexity analysis

	Multi-cost task routing and scheduling: Employing advance reservations
	Time dependent utilization profiles
	Grid network and resources model in the case of advance reservations
	Binary capacity availability vector of a path and binary cluster availability vector over a path
	Optimal advance reservation multi-cost algorithm (MC-T)
	Polynomial algorithm for computing the set of non-dominated paths

	Performance evaluation
	Simulation setup
	CPU-intensive tasks
	Data-intensive tasks
	CPU- and data-intensive tasks
	Complexity

	Conclusions
	Acknowledgements
	References


