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a b s t r a c t

We present and theoretically and experimentally analyze a Quality of Service (QoS) framework for Grids
that provides (i) deterministic delay bounds to Guaranteed Service (GS) users and (ii) fair sharing of
resources to Best Effort (BE) users. The framework adopts concepts fromData Networks and applies them
in the Grid environment.We initially describe the proposed framework assuming that task computational
workloads are known (or can be estimated), and then provide extensions for the more realistic case
where we have no a-priori knowledge of the task workloads. Task migration across multiple resources
is also examined in this context. We also look at a specific implementation of the proposed QoS scheme,
where we distinguish computational resources, based on the type of users (GS or BE) they serve and
the priority they give to each type. We validate experimentally the proposed QoS framework for Grids,
verifying that it satisfies the delay guarantees promised to GS users and provides fairness among BE users,
while simultaneously improving performance in terms of deadlinesmissed and resource utilization. In our
simulations, data from a real Grid Network are used.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The continuing deployment of high speed optical networks
is making the vision of Grid Networks a reality. Grids consist
of geographically distributed and heterogeneous computational
and storage resources that may belong to different administrative
domains, but are shared among users by establishing a global
resource management architecture. A number of applications
in science, engineering and commerce can benefit from the
use of Grid Networks. An important issue in determining a
Grid’s performance is the management of the resources and the
scheduling of the tasks to the available resources. Grids are quite
dynamic, with resource availability and load varying rapidly with
time, while user tasks have very different characteristics and
requirements. The extent to which resource management and
scheduling are able to cope with this unpredictable environment
is key to the success of Grid Networks, since it determines the
efficiency in the use of the resources and the Quality of Service
(QoS) provided to the users.
InDataNetworks, QoSmainly refers to packet delay, delay jitter,

bandwidth and packet-loss rate. In Grid Networks, QoS mainly
refers to the total time it takes for a user task to be completed.
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It can also refer to the time period over which a number of
computational resources (space-sharing), or a percentage of one
such resource (time-sharing), are reserved by a user. In the case
of Storage Area Networks (SAN), QoS can refer to the bandwidth
used for data transfers and to the storage capacity (size) available
for a task. In order for a network to provide QoS guarantees to a
user, a three-step procedure is generally followed. At first the user
informs the network of the exact QoS parameters requested (delay,
required resources, etc). Then the network, through a procedure
called admission control, checks whether it can satisfy the user’s
request for guaranteed service, without violating the guarantees
given previously to other users. If this is possible, then various
mechanisms (resource reservation, scheduling, flow control) are
employed to ensure that the agreed-upon QoS level is provided to
the user.
Today’s Grids provide only a best effort service to the users

and their tasks. This is inadequate if the Grid Network is
to be used for real world commercial applications and time-
critical scientific computations. Best-effort service also limits the
economic importance of Grids, since users will be reluctant to pay,
directly or indirectly (e.g., by contributing resources to the Grid),
for the service they receive, if they are not given performance
guarantees. As a result, there is a growing need for Grid scheduling
and resource management algorithms to be able to provide QoS to
the users. Under these thoughts we believe that future Grids will
serve two types of user. Some users will be relatively insensitive to
the performance they receive from the Grid and will be happy to
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accept whatever performance they are given. Even though these
Best Effort (BE) users do not require performance bounds, it is
desirable for the Grid Network to allocate resources to them in a
fair way. In addition to BE users, we also expect the Grid Network
to serve users that do require a guaranteed QoS. These users
will be referred to as Guaranteed Service (GS) users. By the term
‘‘user’’ we do not necessarily mean an individual user, but also a
Virtual Organization (VO), or a single application, using the Grid
infrastructure.
In this work we present a QoS framework that adopts concepts

fromData Networks and applies them toGrids, for handling GS and
BE users. For GS users, the framework guarantees an upper bound
on the delay of the submitted tasks. A task’s delay is defined as
the time between the task’s creation and the time the results of
its execution return to the user. The delay guarantees imply that a
GS user can choose a resource to execute a task before its deadline
expires, with absolute certainty. In order to achieve this goal,
the GS users are leaky-bucket constrained, so as to follow a self
constrained task generation pattern, which is agreed separately
with each resource during a registration phase. For BE users, the
proposed framework describes a fair scheduling procedure that
provides fairness among users instead of fairness among tasks. This
notion of user fairness ismore appropriate for Grids, since themain
entities in Grids are not the tasks but the users creating them (a
‘‘user’’ may also refer to a Virtual Organization, or VO, using the
Grid infrastructure).We initially describe the proposed framework
assuming that the task computational workloads are known (or
can be estimated accurately) and then provide extensions for the
case where we have no a priori knowledge of the task workloads.
Both single andmulti-CPU resources are examined. Taskmigration
across multiple resources is also considered in the context of the
proposed framework.
We discuss a specific implementation of the proposed QoS

framework, where we distinguish between four types of resource
that serve either GS, or BE, or both types of user, with
varying priorities. GS users are registered to the resources either
statically or dynamically. Distributed, centralized and hybrid
implementations of the QoS framework are analyzed. In addition
to the theoretical analysis, we also implemented the proposed
QoS scheme in the GridSim environment [1] and evaluated its
performance. Our results indicate that as long as GS users respect
their constraints, even with small deviations, the framework
succeeds in providing hard delay guarantees to them. Also, we
observe that the use of resources that handle both GS and BE
users with varying priorities produces better results, in terms
of deadlines missed and resource utilization, than the use of
resources that are specifically assigned to each class (GS or BE) of
user. The benefits obtained are similar to those obtained through
statistical multiplexing in Data Networks. Our results also indicate
that providing delay guarantees without exact a priori knowledge
of task workloads is possible, if the proposed extensions are used.
Furthermore, the user fair scheduling algorithm proposed does not
only provide fairness among users, but also improves performance
in terms of average task delay and probability to miss a deadline.
Finally, in our simulations data from a real Grid Network are used,
validating in this way the appropriateness and usefulness of the
proposed framework.
The remainder of the paper is organized as follows. In Section 2

we report on previous work. In Section 3 we describe the
proposed QoS framework for Grids. In Section 4 and 5 we
propose extensions to this framework. In Section 6 we present the
simulation environment, the parameters used, and the results of
our simulations. Finally, conclusions are presented in Section 7.
2. Previous work

In the Grid related literature a large number of scheduling
algorithms has been proposed [2,3]. A taxonomy of the various
scheduling algorithms is presented in [4]. Relatively recently
Quality of Service (QoS) in Grids started gaining attention, since
it has been realized that the success and the economic impact
of the Grid largely depends on its ability to guarantee QoS
to the users. As mentioned, the term QoS is used differently
based on the types of resources considered (communication,
computational, storage). Most of the scheduling algorithms that
have been proposed so far for Grid computing provide a best
effort service to the submitted tasks, while fewer works provide
hard QoS guarantees [4]. Another categorization of the various
QoS algorithms is whether they handle one-dimension (e.g., only
delay) [5] or multi-dimension (e.g., delay and bandwidth) QoS
issues [6,7]. In the multi-dimension QoS studies the various
parameters are considered jointly [6] or separately [7], with
different weighting factors attached to the various parameters,
reflecting the user preferences.
Best effort scheduling algorithms [3,8] in Grids try to optimize

a metric of interest (for example task delay, resource utilization).
The scheduling algorithm proposed in [8] is a best-effort algorithm
where a metric (called response ratio) is used to define the QoS
provided to an individual task. Soft QoS scheduling algorithms [5,
9,10] also exist that take into account the users’ QoS requirements
(delay, required number of CPUs, etc) and try to serve them in the
best possible way. In [5] the task’s QoS information is embedded
into the scheduling algorithm in order to find a better matching
between the tasks and the resources. In [9] the deadline and bud-
get QoS constraints of a task are taken into account during the task
scheduling process. In the hard QoS case, the requirements of the
users are guaranteed by the scheduling algorithm. Themainmech-
anism used for providing hard QoS guarantees to the Grid users is
the reservation of the resources (communication, computational
or storage). The reservation can be immediate, undertaken in ad-
vance [7] or flexible (malleable) [11]. The Globus Architecture for
Reservation and Allocation (GARA) [12] is a framework for advance
reservations that treats in a uniformway various types of resource
such as communication, computation, and storage. AlthoughGARA
has gained popularity in theGrid community, its limitations in cop-
ing with current application requirements and technologies led to
the proposal of the Grid Quality of Service Management (G-QoSm)
framework [13]. Since their introduction, reservations have been
studied in numerous works [14–17]. The reservation of resources
generally tends to reduce resource utilization efficiency, since in
many cases resources are underused. In this context a number of
works that perform advance reservations, while achieving high
utilization efficiency have been proposed [15,17]. The reservation
of networking resource for Grid applications has been the focus
of a number of works [11,18,19]. In [7], a multi-cost scheme is
presented for jointly reserving computational and communication
resources. In particular the proposed scheme selects the computa-
tion resource to execute the task and determines the path to route
the input data, performing reservations in advance. Furthermore, a
number of other QoS and Grid related issues is investigated. Users
requiring QoS guaranteesmay negotiate a Service Level Agreement
(SLA) with the Grid, to enforce desired level of service [14,20].
In [14] a QoS scheduler is presented that uses SLAs to efficiently
schedule flexible advance reservations for computation services.
Recently QoS and workflow issues were, also, investigated [6].
In the present work we propose a QoS framework, which is

based on the theorem of the Parekh and Gallager [21] where
instead of communication resources we have computational
resources and instead of packet sizewe have taskworkload. In [21]
it was proven that if a user’s flow is leaky-bucket constrained and
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Weighted Fair Queuing (WFQ) scheduling is applied at each router
between the source (the user) and the destination, then hard delay
bounds can be guaranteed for the flow. There have been hundreds
of papers written on WFQ and its variations. Moreover, the
Internet Engineering Task Force (IETF) has proposed the Integrated
Services (IntServ) [22] and the Differentiated Services (DiffServ)
QoS architectures [23] to support QoS differentiation with respect
to bandwidth, latency and other data transfer parameters. The
IntServ architecture can provide hard bounds on end-to-end
packet delays, using the Parekh–Gallager theorem [21]. However
implementing Intserv and its corresponding Resource ReSerVation
Protocol (RSVP) in practice was proven to be quite difficult. The
problem is that all intermediate routers must be RSVP capable,
and also each router must maintain the state for each flow passing
through the router.
Our framework uses ‘‘rules’’ similar to the ones provided by

the Parekh and Gallager theorem [21], in order to guarantee a
bound on the time (single dimension) by which a task will finish
its execution on a resource. This bound is provided without using
hard resource reservations, in contrast to the majority of Grid QoS
related works [12,13]. A user and a resource simply agree upon
the task load the former will generate and the latter will serve.
We call it a framework because it gives conditions that if satisfied
can provide delay guarantees for the completion of a task on a
given resource, but leaves a great deal of flexibility in terms of
the specific scheduling algorithms to be used. In the GARA [12]
and G-QoSM [13] frameworks reserve computational resources
explicitly, either by reserving a number of CPUs in a resource or
by reserving a percentage of a CPU’s capacity (Dynamic Soft Real-
time scheduler — DSRT [24]). Moreover, many of the works that
use advance reservations either assume that the task workloads
are known a priori [7] or a prediction mechanism is used [5].
We initially describe the proposed framework assuming that task
computational workloads are known (or can be estimated), and
then propose a number of novel techniques, which are not based
on prediction mechanisms, to account for the more realistic case
where we have no a priori knowledge of the task workloads.
In our work we concentrated on computational tasks and

presented a way for guaranteeing their delay, assuming that no
data dependencies exist. Trying to provide a unified framework
that would also include guarantees for the possible data transfers
required for executing a task, would complicate our analysis.
Moreover, in the existing Grid literature there are solutions, based
on the reservations of the networking paths that provide time
guarantees on a task’s related data transfers [11,18,19]. Using
these solutions and our proposed framework the task’s delay
time, including the time required for the data transfers and its
actual execution time, can be bounded. Also, in our framework
we do not discuss in detail cost/pricing or implementation
considerations.We decided to concentratemore on the theoretical
basis of our framework and in the proof of its validity. However,
we are already in the process of implementing the proposed
framework in the gLite middleware [25]. In particular, we have
evaluated gLite’s existing scheduling mechanisms and succeed
in implementing our own simple scheduling mechanism, by
changing the Workload Management System (WMS). For the
implementation of our proposed framework in gLitemore changes
are needed in various components, e.g., the User Interface (UI),
the Information SuperMarket (ISM) and other. We hope that in
the near future we will succeed this goal and present our work to
the community.
Finally, fairness is not a new concept for scheduling in general,

and especially for scheduling in Data Networks. Generalized
Processor Sharing (GPS) [21] has been proposed for the fair sharing
of capacity on communications links. Since GPS is difficult to
implement, its approximation Weighted Fair Queuing (WFQ) [26]
is instead often used in Data Networks. Fairness in Grid Network
has been investigated in a number works [27,28]. In this work we
also propose a fair scheduling algorithm for Grids that provides
fairness among users instead of fairness among tasks [28]. In the
literature a number of works have supported user fairness in
Data [29] or in Grid Networks [30], instead of packet, flow or task
fairness.

3. Description of the framework

3.1. General

Weconsider a GridNetwork consisting of a number of users and
resources. There are two kinds of user: Guaranteed Service (GS)
and Best Effort (BE) users, who generate tasks of GS or BE type,
respectively. Also there are various types of resources based on
the types of tasks they serve (GS or BE or both) and on the priority
they give to each type. The objectives that we set for the proposed
QoS framework are: (a) to provide service guarantees to GS users
and (b) to ensure fair sharing of the resources among BE users. In
order to achieve the first objective, the GS users are leaky-bucket
constrained, so as to follow a (ρ, σ ) constrained task generation
pattern that is agreed separately with each resource. That is a user
can, in a very short time interval, submit to a resource σ tasks of
unitary length, even if this way she violates the ρ average task
submission rate constraint; however, in the long term the user
cannot exceed this average rate.Moreover, the ρ and σ parameters
aremeasured in different units, for example tasks of unitary length
(or Million Instructions) per second and number of tasks of unitary
length (or Million Instructions), correspondingly. To determine
the appropriate values for the (ρ, σ ) parameters between a user
and a resource, each user has to estimate his average long term
service requirements (ρ) and its desired burstiness (σ ), based on
past statistics and approximate assumptions (see also Section 4.1).
On the resources, the arriving tasks are queued in a Weighted
Fair Queuing (WFQ) scheduler [26]. This way guaranteed task
service rates (e.g., measured inMillions of Instructions Per Second)
and guaranteed task delays can be given to each GS user, in the
same way WFQ provides guaranteed bandwidth and packet delay
services in Data Networks. BE users, on the other hand, are handled
by our framework with fairness as the main goal. However, in
contrast to most other fairness related works [28], we aim at
providing fairness among users and not among individual tasks.
We assume, unless otherwise stated, that a task execut-

ing at a resource is non-divisible and non-interruptible (non-
preemptable). We initially describe our framework assuming that
eachmachine has a single CPU, and later extend it to themulti-CPU
machine case.

3.2. Guaranteed Service (GS) users

In the proposedQoS framework, aGSusermust first register to a
resource, before it can actually use it. During the registration phase,
the GS user (or Virtual Organization — VO) and the resource agree
upon the characteristics of the computationalworkload theGSuser
will send to that resource, that is, the leaky-bucket’s parameters.
A GS user can register to a number of resources. Next, when a GS
user creates a task, one of his registered resources is chosen for
its execution, based on various criteria, such as performance (e.g.,
delay), fairness among resources (e.g., uniform utilization of the
registered resources), etc.
Our framework is implemented in a distributed way, and, as

a result, scheduling logic exists at the GS user site and at the
resource site (local scheduler). During the registration phase, a
GS user i and a resource r agree upon the (ρir , σir ) constraints
(Fig. 1) of the user. The parameter ρir is the long term workload
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Fig. 1. The (ρ, σ ) constrained GS users in the Grid Network.

generation rate, measured in computation units per second (e.g.,
Million Instructions Per Second —MIPS), that GS user iwill submit
to resource r . The parameter σir is the maximum size of tasks
(burstiness) that GS user i will ever send, in a very short time
interval, to resource r , and is measured in computation units (e.g.,
Million Instructions—MI). If resource r can accept this average load
and burstiness, then the GS user is registered to the resource. From
then on, the GS user becomes responsible for the observance of
these constraints and the resource for the satisfaction of the QoS
guarantees given to the user, as explained below. Alternatively,
other approaches can be used (such as the centralized and the
hybrid approaches described in Section 5),where ameta-scheduler
is used as an intermediary for the monitoring of the observation of
the (ρ, σ ) constraints.
In order for a resource r to accept the registration of GS user

i, a number of requirements must be met. First, the resource
checks whether it can serve the GS user with the requested
computational workload generation rate ρir without violating the
workload generation rates agreed with the already registered GS
users. The local scheduler of every resource applies Weighted Fair
Queuing (WFQ) to the queued tasks, so the following condition
must hold for new and old GS users:

ρir ≤ gir(t) =
Cr · wir
Nr (t)+1∑
k=1

wkr

, (1)

where Cr is the computing capacity of resource r , Nr(t) is the
number of GS users already registered to resource r at time t , and
wir is the weight of GS user i in using resource r . The weights
wir can depend on various parameters, such as the prices the GS
users are willing to pay, or their other contributions to the Grid (as
in [28]). Condition (1) ensures that resource r can satisfy the task
generation rates of both the new and old GS users.
An additional condition that is agreed during the registration

of GS user i to resource r is that the maximum task workload Imaxir
user i will ever send to resource r will not exceed the resource’s
maximum acceptable task workload Imaxr :

Imaxir ≤ I
max
r . (2)

If both (1) and (2) hold then the GS user can register to the
resource; otherwise, the registration fails and the usermust search
for another resource. The GS user can repeat this procedure
and register to multiple resources. Also a user can cancel his
registration whenever he wants and for whatever reason. Finally,
a user can repeat periodically the registration phase, in order to
register to new resources or to resources from which other users
have canceled their registrations.
Each GS user i is equipped with an input queue to temporarily

withhold tasks that if submitted to a resource r would invalidate
the agreed (ρir , σir ) constraints. Specifically, we denote by
Jir(t), i = 1, 2, . . . ,N , the total computational workload
Fig. 2. The GS user is responsible for the observance of his (ρir , σir ) constraints.

(measured, e.g., in MI) submitted by GS user i to resource r in the
interval [0, t]. Wewill say that GS user i is (ρir , σir ) controlled with
respect to resource r , if the following condition is valid:

Jir(t) < σir + ρir · t, ∀t > 0. (3)

If a GS task j invalidates (3), then the GS user must locally withhold
this task for a time period, denoted by T jir , until (3) becomes valid
again (Fig. 2). So our framework includes in every GS user an
admission control (leaky-bucket) mechanism, to make sure a task
reaches a resource only when some specific constraints are valid.
When a task is created, the GS user searches for the most

suitable resource to which it has already registered. We assume
that task j of user i is characterized by its deadline Dji and its
workload I ji (measured, e.g., in MI). In order for task j to be sent
to resource r again two conditions must hold. First, the task’s
workload must not exceed the one agreed,

I ji ≤ I
max
ir , (4)

and, second, the taskmust notmiss its deadline. One of the benefits
of (ρ, σ ) constrained GS users and of the registration phase is that
the maximum delay until a task is completed on a resource can be
bounded. If conditions (1) and (3) hold and WFQ is used, then it
can be proved, by arguing as in [21], that the delay a task will incur
from the time it reaches resource r until it finishes its execution is
at most

σir

gir
+
Imaxir

gir
+
Imaxr

Cr
, (5)

where gir is theminimumvalue of gir(t) that does not invalidate (1)
for any registered user. This delay includes the maximum time
needed to execute a task of another user that may occupy the
single-CPU resource when the task of user i arrives, I

max
r
Cr
, the

maximum time needed for the previously submitted tasks of user
i to execute in the resource, σirgir , and the maximum time needed

to execute the task itself, I
max
ir
gir
. To this delay we must add the total

communication delay, denoted by djir , required for transferring the
task to the selected resource, and the time T jir theGS userwithholds
the task in its local queue (Fig. 2). So the delay bound Bjir resource
r guarantees to user i satisfies

Bjir ≤ T
j
ir + d

j
ir +

σir

gir
+
Imaxir

gir
+
Imaxr

Cr
. (6)

Based on (1) and assuming thatwir = 1 for all i, r we have:

Bjir ≤ T
j
ir + d

j
ir +

σir + Imaxir

gir
+
Imaxr

Cr
, or

Bjir ≤ T
j
ir + d

j
ir +

(σir + Imaxir ) · (Nr(t)+ 1)+ Imaxr

Cr
.

When the GS user does not have any more tasks to submit,
he can either do nothing, or he can deregister from his registered
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resources. In the latter, dynamic, case the other GS users are
informed for the user’s deregistration and they can try to register
to these resources.
Furthermore, we can pipeline the communication delay djir and

the input queuing delay T jir to obtain:

Bjir ≤ max(T
j
ir , d

j
ir)+

(σir + Imaxir ) · (Nr(t)+ 1)+ Imaxr

Cr
.

By pipelining, we mean that if djir is larger than T
j
ir , then the user i

sends task j to the selected resource immediately, without waiting
for the T jir time period to expire, while if T

j
ir is larger than d

j
ir then

the user sends the task to the resource after T jir − d
j
ir time. In both

cases time savings are achieved.
In order for a task j of GS user i to be scheduled to a resource r ,
its deadline Dji must be larger (or equal) than the resource’s delay
bound Bjir :

Bjir ≤ D
j
i. (7)

If more than one resource fulfills the conditions of Eqs. (4)
and (7), the GS user can choose one based on any other desired
optimization criterion. If no resource fulfills these conditions,
the GS user drops the task or schedules it like a BE task. Also,
from (6) we conclude that it may be beneficial to partition the
resources in groups offering different maximum delay guarantees.
More specifically, the a priori determination of a resource’s
computational capacity C , maximum task length I , maximum
burstiness σ and maximum number of GS users allowed N ,
provides a guaranteed maximum delay for the tasks sent to that
resource:

B(C, I,N, σ ) ≤ max(T , d)+
(σ + I) · N + I

C
, (8)

where T and d do not depend on the resource but on the user side.
If σ is expressed as a multiple of I , σ = m · I (that is, the user
is allowed to send up to m maximum-sized tasks in a very short
interval if he has not sent any other tasks recently), then (8) can
be rewritten as:

B(C, I,N,m) ≤ max(T , d)+
((m+ 1) · N + 1) · I

C
.

3.3. Best Effort (BE) users

Most Grid scheduling algorithms proposed to date schedule BE
tasks based on various task characteristics, such as its deadline,
workload, or price the user is willing to pay for its execution.
Fairness, however, is another very important criterion that
should be taken into account in Grid scheduling. The number of
different resource types comprising a Grid Network (computation,
communication, storage)makes the application of fairness in Grids
a more complex issue than, for example, in Data Networks. In our
view, a fair Grid scheduling algorithm should have the following
characteristics:

• User fairness: Fairness should not be enforced on a per task
basis, but on a per user basis [29,30], where the term ‘‘user’’
may also refer to a Virtual Organization (VO). For example, it
is not fair for a task belonging to a BE user who creates only this
task, to be handled equally with the possibly thousands of tasks
created by some other BE user. Different weights can also be
given to users (or VOs), in which case we talk about weighted
user fairness.
• Joint fairness: Grids consist of computational, communicational
and storage resources. As a result, fairness must be achieved
jointly for all these types of resources [31].
• Task fairness: Fair scheduling only on a per user basis may not
be the best policy, because of different task characteristics and
requirements (e.g., deadline, task workload, completion time
etc), which should also be incorporated in a fair scheduling
algorithm.
• Resource uniformity: Future Grids will consist of consumers
(users willing to pay for the use of the Grid resources)
and providers (users offering their resources). In such an
environment it is desirable that the resources are fairly used,
even when there is a plethora of resources available for the
execution of the tasks.

In this section we concentrate on user fairness and propose
a centralized user fair scheduling algorithm for Grids, called
WFQ/EST. Other fair algorithms proposed in the literature [28] can
also be used instead of WFQ/EST in the context of the proposed
framework for serving BE tasks. TheWFQ/EST algorithm consists of
two phases, task-ordering and task-to-resource assignment, and it
is executed at periodic intervals. During a period, tasks belonging
to different users arrive at the central scheduler and are handled
by a Weighted Fair Queuing (WFQ) scheduler [26] (Fig. 3). The
WFQ scheduler places these tasks in different queues based on
their originating users, and has similar functionality to that of the
local WFQ scheduler used at the resources for serving GS tasks.
When a period expires, the task-ordering phase is executed, during
which the tasks are dequeued from theWFQscheduler andproceed
to the task-to-resource assignment phase. In the task-to-resource
assignment phase the Earliest Starting Time (EST) algorithm is used
to assign tasks to resources.
Note that WFQ/EST schedules BE tasks in a centralized way,

while the proposed framework schedules GS tasks in a distributed
way. However, as mentioned earlier, WFQ/EST is only an example
of a user fair scheduling algorithm and any other fair (or not)
scheduling algorithm centralized (or not) can also be used in its
place. Furthermore, in the following sections we also describe a
centralized implementation of the proposed scheme for GS users.

3.4. Resource categorization

To obtain a specific implementation of the proposed QoS
framework, we distinguish four types of resources, to be referred
to as GS, BE, GS_BE_EQUAL and GS_BE_PRIORITY resources. GS
resources handle only tasks originating from GS users. When a
GS task arrives at a GS resource, it is queued at the local WFQ
scheduler. When amachine in the resource becomes free, the local
WFQ scheduler selects the next GS task for execution. BE resources
handle tasks originating only from BE users. The arriving tasks
are placed in a queue and served following a First Come First
Serve (FCFS) policy to the first available machine. GS_BE_EQUAL
resources handle tasks originating from both GS and BE users. GS
tasks are served using a local WFQ scheduler as in GS resources.
Each arriving BE task is considered as belonging to a new user
who wants to register to the resource. So a BE task is queued
in the local WFQ scheduler only if the condition of Eq. (1) holds
for all the registered users (the weight in Eq. (1) for any BE user,
equals the smallest weight assigned to any GS user). In this case,
the number of registered users is increased by one and when the
BE task finishes execution it is decreased by one. If (1) is violated
for at least one registered user then the task is rejected and a
failure notice is returned to the originating user. GS_BE_PRIORITY
resources handle both GS and BE tasks, but not in the sameway. GS
tasks are handled by the local WFQ scheduler, while BE tasks are
placed in a FCFS queue.When amachine becomes free, the tasks in
the localWFQ scheduler are handled first. If there are no such tasks,
the BE tasks from the FCFS queue are served. A GS_BE_PRIORITY
resource is characterized as preemptive if upon the arrival of a GS
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Fig. 3. User fair scheduling using a WFQ scheduler.
Table 1
Delay bounds and fairness given to GS and BE users with respect to the resource
type.

Resource Delay bound for GS users Fair/s for
BE users

GS max(T jir , d
j
ir )+

(σir+Imaxir )·(Nr (t)+1)+Imaxr
Cr

–
BE – Yes
GS_BE_EQUAL max(T jir , d

j
ir )+

(σir+Imaxir )·(Nr (t)+1)+Imaxr
Cr

Yes

GS_BE_PRIORITY pr. max(T jir , d
j
ir )+

(σir+Imaxir )·(Nr (t)+1)+Imaxr
Cr

Yes

GS_BE_PRIORITY non-pr. max(T jir , d
j
ir )+

(σir+Imaxir )·(Nr (t)+1)+2·Imaxr
Cr

Yes

task, a BE task currently under execution is paused and replaced
by the new GS task; otherwise, the GS_BE_PRIORITY resource is
characterized as non-preemptive. Finally, a BE task is scheduled to
a GS_BE_EQUAL or GS_BE_PRIORITY resource only when its size is
smaller than the resource’s maximum acceptable size.
When a GS_BE_PRIORITY non-preemptive resource is used, the

delay bound for GS tasks of Eq. (6) becomes

Bjir ≤ T
j
ir + d

j
ir +

σir

gir
+
Imaxir

gir
+
Imaxr

Cr
+ Rr ,

where Rr is the residual time for the BE task found at the resource
(if any) to complete execution:

Rr ≤
Imaxr

Cr
.

In all other resource types (namely, GS, GS_BE_PRIORITY preemp-
tive) Rr equals to 0.
Therefore, delay bounds are provided to GS tasks submitted

to GS, GS_BE_EQUAL or GS_BE_PRIORITY resources, while fairness
is also provided among BE users for tasks submitted to BE,
GS_BE_EQUAL or GS_BE_PRIORITY resources. Table 1 presents the
user/resource combinations that provide either delay bounds or
fairness. In case delay bounds are provided, Table 1 gives their
exact values.

4. Realizing the framework

In order to realize the QoS framework in an actual Grid system
we consider two main topics. First we propose policies based on
which the user selects his (ρ, σ ) parameters. Next, we adapt our
framework in order to operate without the a priori knowledge of
task workloads, which is usually the case.

4.1. (ρ, σ ) constraints selection policy

To determine the appropriate values for the (ρ, σ ) parameters
between a user (or VO) and a resource, each user has to estimate his
average long term service requirements, and its desired burstiness
(or the delay he can afford for ‘‘smoothing’’ the traffic to fit a
given σ ). A user may be based on past statistics and approximate
assumptions about his task generation rate and workload. It is
natural to assume that the price a user pays for the use of the Grid
is an increasing function of ρ and σ . If the user chooses ρ too close
to his average long term needs and/or chooses a small σ , then an
arriving task may have to suffer a long delay T waiting for (3) to
become valid. If the user can afford to pay a higher price, it may
be beneficial to overestimate ρ or σ so as to reduce this delay. The
(ρ, σ ) parameters requested by the user may be too large for the
meta-scheduler to accept. During the registration phase the meta-
scheduler will determine the exact values of these parameters
dynamically, based on the computational power of the resource,
the distance from the user, the resource’s delay bound, the number
of users already registered, etc. For example, the meta-scheduler
may choose to accept the requested (ρ, σ ) values if the resource
has significant computational power, or it may negotiate with the
user smaller values if the resource is less powerful.

4.2. Scheduling without a priori knowledge of task workloads

The proposed QoS framework offers hard delay guarantees
to GS users that respect their negotiated (ρ, σ ) constraints. The
observance of a GS user’s (ρ, σ ) constraints requires the a priori
knowledge or accurate estimation of the task workloads, which is
not always possible. Even though it is clearly possible for the user to
measure and control dynamically the rate at which he/she submits
tasks to the Grid, it may not be easy to measure and control their
workload.
In what follows we examine how our framework can be

extended to operate without a priori knowledge of the task
workloads. Specifically, we propose the following methods:

• Conservative Task Submission: The meta-scheduler assumes
that each new task has aworkload equal to the user’smaximum
task workload, which is the maximum of Imaxir for all the user’s
i registered resources r , and updates the variable Jir(t) based
on this assumption. In case condition (3) is violated, the task is
backlogged.
• n-Window Aggressive Task Submission: The meta-scheduler
schedules up to n consecutive new tasks of GS user i to a
resource r , assuming their workload is equal to zero. Any new
task j destined for resource r that arrives after the n consecutive
tasks is backlogged, until a workload feedback message for any
of these n tasks arrives from resource r . Specifically, when a task
completes execution on resource r , the resource informs the
meta-scheduler of the task’s actual workload, and the variable
Jir(t) is updated. When this method is used, the delay bound
resource r guarantees to user i for a task j is increased to:

T jir + d
j
ir +

σir + n · Imaxir

gir
+
Imaxir

gir
+
Imaxr

Cr
. (9)
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When no limit is placed on the number n of consecutive tasks
that can be sent without a priori knowledge of their workload,
then no deterministic delay bound can be given.We refer to this
case as Full Aggressive Task Submission method.
• Conservative Task Submission with Feedback: The above two
methods can be combined. The meta-scheduler schedules new
tasks of GS user i to resource r , assuming that their workload is
equal to the user’s maximum task workload, and updates Jir(t)
based on this assumption. When a task completes execution, a
workload update message is sent back to the meta-scheduler,
which corrects its previous assumption on the task workload,
and updates Jir(t) accordingly. In case condition (3) is violated,
the corresponding task is backlogged.

5. Extensions of the proposed framework

5.1. Distributed, centralized and hybrid implementations

In Section 3 we assumed a distributed implementation of our
proposed QoS framework, where registration is performed by each
user (or VO) by communicating directly with the resource and
negotiating its (ρ, σ ) constraints. However, other approaches can
be used.
In the centralized approach the registration of the GS users

to the resources is handled by a central meta-scheduler. The
meta-scheduler accepts, from the GS users, registration requests
containing their requested (ρ, σ ) parameters, and searches for
resources that can satisfy these constraints. The meta-scheduler
is responsible for enforcing the (ρ, σ ) constraints of the GS users.
This centralized approach has various advantages. First, many of
the heavy operations performed by the GS users are transferred to
a central, possibly more powerful, machine. Second, it is possible
to use more than one central meta-scheduler in order to balance
the load and the traffic in the Grid Network. On the other hand, the
use of a single central meta-scheduler increases the risk of a failure
in the Grid Network. Also GS task average total delay increases,
because of the delay induced by the communication between the
GS users and the central meta-scheduler.
This centralized approach is more close to the actual Grid

model, consisting of different administrative domains offering
their resources to the users. That is, each user can negotiate
with the central entity (e.g., the central scheduler) of each
administrative domain in order to find the domain that can satisfy
its (ρ, σ ) constraints. The central entity that receives a user’s
requirements, negotiates with the domain’s resources in order to
register the user to one (or more) of them. Upon the arrival of a
new task, the central entity submits the task to one of the users’
registered resources, so as not to violate its constraints. The user
can concurrently negotiate and use the resources of a number
of different administration domains. Moreover, the exact (ρ, σ )
constraints agreed between a domain and a user can be based on
the domain the user itself belongs to. For example, better (ρ, σ )
parameters can be agreedwith a user belonging to amore powerful
administration domain.
A hybrid approach is also possible, where again a meta-

scheduler is responsible for the registration of the GS users to
the resources, but following the registration, the users submit
their tasks directly to one of their registered resources, and
are themselves responsible for the observance of their (ρ, σ )
constraints. Using this hybrid approach the meta-scheduler is
relieved from the burden of scheduling GS tasks. Furthermore, GS
tasks donot experience thedelay of communicatingwith themeta-
scheduler, reducing in this way the total task delay.
5.2. Multi-machine resources

The proposed framework can easily be extended to the case of
resources that consist of many machine-CPUs, provided that some
of the definitions and conditions given earlier are appropriately
modified. The total computational capacity C ′r of a multi-machine
resource r is expressed as:

C ′r =
Mr∑
j=1

Crj,

where Crj is the computational capacity of machine j, andMr is the
total number of machines (CPUs) in resource r . However, in the
multi-machine resources case the term Cr used in Eqs. (1) and (6)
is not always equal to C ′r . Furthermore, we assume that the local
scheduler assigns tasks to the first available machine-CPU, in a
round-robin manner.
In (1), gir(t) is the average service rate the resource r guarantees

to provide to user i. Since C ′r is the total service rate the user
has access to from resource r , Cr in Eq. (1) has to be replaced by
C ′r , yielding

ρir ≤ gir(t) =

wir ·
Mr∑
j=1
Crj

Nr (t)+1∑
k=1

wkr

.

Since tasks are non-divisible, the resource cannot use its total
computational capacity to process a task. The worst case is
obtained when a task is assigned to the machine (CPU) with the
lowest computational capacity Cminr = minj Crj. Therefore, Cr
in Eq. (6) and in all the other delay bounds given in Section 3 has
to be replaced by Cminr . For example, Eq. (6) becomes:

Bjir ≤ T
j
ir + d

j
ir +

σir

gir
+
Imaxir

gir
+
Imaxr

Cminr
. (10)

5.3. Framework’s application to task migration

Up until now we have assumed the usual scenario where a
task is created by a user, then executed on a resource and finally
returned back to the user. It is possible, however, under certain
conditions, to extend our framework to the case where tasks
migrate among a number of resources, before returning the final
results to the user. Various migration policies exist:

• The user explicitly asks for task migration.
• The resource decides to migrate an executing task to another
resource.
• The task itself decides that it needs more or less computational
power and decides to migrate to another resource.
• The user specifies the price he is willing to pay for task
execution and when a cheaper resource becomes available the
task migrates to it.
• The task migrates in response to network failures or DoS
attacks, providing fault tolerance in this way.

All these migration policies are dynamic, in the sense that a
task starts execution on some resource and may then migrate to
an other resource if various runtime conditions hold.
In such cases, where the sequence of resources to be visited

is not known a priori, the proposed QoS framework cannot be
applied. It can be applied, however, when the meta-scheduler has
a priori knowledge of the resources a task is going to be executed
on (and the maximum task workload to be executed on each
resource). This can be the case when data replication strategies
are applied and a task needs for its execution various types of data
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located at different predetermined resources. For example, assume
that a task needs for its execution data of type A, B and C, which
are stored at different corresponding resources. In this case the
task can visit sequentially the three resources, containing the A,
B and C type of data. In each resource the task is executed before
migrating to the next one, carryingwith it any intermediate results.
This strategy may be more beneficial in terms of communication
times and storage requirements, than transferring all the data (A,
B and C) to one resource. So in case it is known a priori that a
task will visit for its execution a static sequence of K resources,
then Eq. (6) can be expressed as

Bjir ≤ T
j
i +

K∑
r=1

djir +
σir

gir
+

K∑
r=1

Imaxir

gir
+

K∑
r=1

Imaxr

Cr
, (11)

where T ji is the maximum input delay of task j for all the resources
in the sequence.

6. Simulation results

6.1. Simulation environment and assumptions

We implemented the centralized version of the proposed QoS
framework in the GridSim simulator [1]. For a GS user, his (ρ, σ )
constraints are specified, along with the maximum workload I of
his generated tasks. Each resource is of a specific type and has a
maximum acceptable task workload. In our simulations, a GS user
uses the same (ρ, σ ) parameters for all the resources it registers
to. The central meta-scheduler is responsible for the registration
phase, the observance of the (ρ, σ ) agreements between GS users
and resources, and the assignment of tasks to resources. All users
register to resources at the beginning of the simulation and remain
registered for its entire duration. The local-scheduler of a resource
is equipped with a FIFO queue and a Self-Clocked Fair Queueing
(SCFQ) scheduler. SCFQ is a variation of Weighted Fair Queueing
(WFQ) that is easier to implement than WFQ. Based on their type
and the type of the resources, tasks are assigned either to the
FIFO queue or to the SCFQ scheduler. We assume that the local-
scheduler uses a space-sharing resource allocation policy. We also
assume, unless stated otherwise, that each resource consists of a
single-CPU machine and task workloads are known a priori.

6.2. Parameters and scenarios

In order to obtain realistic simulation parameters, we used the
results of the Grid profiling study of [32], where numeric data (as
well as analytic models) on the cumulative distribution functions,
average values and standard deviations of the task inter-arrival
times, queue waiting times, task execution times, and data sizes
exchanged at the kallisto.hellasgrid.gr cluster (part of the EGEE
infrastructure) were presented.
Based on these results and numeric datawe decided to simulate

three GS users, named U1, U2 and U3, corresponding to three
of the five VOs presented in [32] (the Atlas, Magic and Dteam
VOs). Using the VO’s average task execution times and processor
speed (estimated to be about 26000 MIPS for the processors in
the kallisto.hellasgrid.gr cluster)we calculated their corresponding
average task workloads, measured in Million Instructions (MI).
Based on [32] we decided the following simulation parameters for
modeling GS users:
Also, based on Table 2, the (ρ, σ ) constraints of each GS user were
calculated (Table 3). Specifically, the ρ parameter of each GS user
is calculated by dividing its average task workload by its average
task inter-arrival time, while the σ parameter is selected to be
m = 5 times larger than the corresponding GS user’s average task
workload.
Table 2
GS users task workload and inter-arrival time.

User Characteristic Distribution

Atlas/U1 Task workload Fixed: 419900000 MI
Magic/U2 Task workload Fixed: 71383000 MI
Dteam/U3 Task workload Fixed: 419900 MI
Atlas/U1 Task inter-arrival Fixed: 546 secs/task (s/t)
Magic/U2 Task inter-arrival Fixed: 3278 secs/task (s/t)
Dteam/U3 Task inter-arrival Fixed: 6010 secs/task (s/t)

Table 3
GS users (ρ, σ ) constraints.

User Characteristic Distribution

Atlas/U1 ρ Fixed: 768473 MIPS
Magic/U2 ρ Fixed: 21773 MIPS
Dteam/U3 ρ Fixed: 699 MIPS
Atlas/U1 σ Fixed: 2099500000 MI
Magic/U2 σ Fixed: 356915000 MI
Dteam/U3 σ Fixed: 2099500 MI

Table 4
BE users task workloads and inter-arrival time.

User Characteristic Distribution

U4 Task workload Fixed: 419900000 MI
U5 Task workload Fixed: 419900000 MI
U4 Task inter-arrival Fixed: 5464, 4371, 3278, 2186, 1366, 1093,

820, 546, 55 secs/task (s/t)
U5 Task inter-arrival Fixed: 5464 secs/task (s/t)

Table 5
Resource’s computational capacities.

Resource Simulated CPUs Total computational capacity (MIPS)

R1 30 30× 26000 = 780000
R2 20 20× 26000 = 520000
R3 10 10× 26000 = 260000

Table 6
Resource scenarios.

Scenario R1 R2 R3

GB GS GS BE
GBE GS_BE_EQUAL GS_BE_EQUAL BE
GBP GS_BE_PRIORITY n.pr. GS_BE_PRIORITY n.pr. BE
BE BE BE BE

In our simulations we also included two BE users, named U4
and U5. U4’s average task inter-arrival times change in every
simulation, while U5’s remain the same (Table 4). The task
workloads submitted by these users were equal to the Atlas/U1
average task workload (namely, 419900000 MI).
At the kallisto.hellasgrid.gr cluster presented in [32], 60

working nodes (Intel Xeon processors) are used, with a total
capacity of 60 × 26000 MIPS. In our simulations, we used 3
clusters (resources) each having one machine with one CPU of
computational capacity equal to amultiple of 26000MIPS (Table 5).
The resource type scenarios examined are presented in Table 6.
For example, in the GB scenario of Table 6, resource R1 and R2 are
allocated for serving GS users, while resource R3 serves BE users.
When the BE resource scenario is used then all theGS users (U1, U2,
U3) are treated as BE users with the same characteristics as before.
Themeta-scheduler uses a two-phase procedure for scheduling

BE users, with task collection period equal to 1 s. Unless stated
otherwise, the two-phase scheduling procedure uses the Earliest
Deadline First (EDF) algorithm (the task with the most imminent
deadline is scheduled first) for the ordering phase and the Earliest
Start Time (EST) algorithm (the task is assigned to the resource
where it will start execution sooner) for the assignment phase. All
the users have non-critical deadlines, with values equal to 110 s.
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In general, if a critical deadline expires, the corresponding task is
removed from the Grid, while if a non-critical deadline expires the
task remains in the Grid, but is recorded as a deadline miss. The
deadline’s value was selected based on (5) by adding a small time
overhead to account for the input queuing (T ) and communication
(d) delays. Furthermore, in our simulations we assume that the
created tasks have very small data dependencies; for this reason
we use a simple grid infrastructure where the resources, the users
and the central meta-scheduler communicate directly with each
other over links of equal bandwidth and zero propagation delay.
In particular, the sizes of the data sent to a resource before task
execution and the sizes of the data produced by a resource when
the task is completed are the same for all tasks and equal to
1000 bytes. The resources use a space-sharing policy, and their
maximum acceptable task workload is taken to be larger than
the task workload produced by any user. The GS users maximum
task workload is equal to their corresponding fixed task workload
(Table 2).

6.3. Performance metrics

In our simulations we recorded the following metrics:
• the per user percentage of the number of tasks that miss their
non-critical deadlines over the total number of tasks the user
creates
• the resource use, defined as the total time duration a resource
is used for the execution of tasks
• the per user percentage of the number of failed BE tasks over
the total number of tasks the user creates. A BE task fails (and
is dropped) when it arrives at a GS_BE_EQUAL resource and
finds that it cannot be scheduled without violating the delay
guarantees given to the already registered GS users
• the percentage of GS tasks that have to wait at the input
(backlogged), so that the GS user remains (ρ, σ ) constrained,
over the total number of GS tasks the user creates
• the average delay of a computation unit (taken to be 1 MI) of
a task’s workload. A computation unit’s delay is defined as the
time between its creation as part of a task, and the time this
task’s results return to the user
• the standard deviation of the computation unit delay
• the deadline fairness metric, defined as the average relative
deviation of the demanded task deadlines from the actual task
delays:

1
N

∑
i,j

|Dji −max(Y
j
i ,D

j
i)|

Dji
,

where Dji is the deadline and Y
j
i is the actual delay of the jth

task of user i. A task’s delay is defined as the time that elapses
between its creation and the time its execution results return
to the user. N is the total number of tasks created by all users.
Tasks whose delays are smaller than their respective deadlines
do not contribute to this metric.

6.4. Results obtained

A number of simulations were conducted to validate that the
proposed framework indeed provides hard delay guarantees to GS
users and fairness to BE users. In our simulations we used 3 GS
and 2 BE users, 3 single-machine and single-CPU resources, and a
meta-scheduler. We examine all the resource scenarios presented
in Table 6. The task workloads and inter-arrival times follow
a fixed (deterministic) distribution with the values of Tables 2
and 4, respectively. The task inter-arrival times (task generation
rates) of user U4 change in many simulation scenarios. Using the
previous parameters in our simulations, we observe that the GS
users register to one resource; specifically, U1 registers to R1, and
U2 and U3 to R2.
Fig. 4. The per user percentage of the number of tasks that miss their non-critical
deadlines, for various resource scenarios and task inter-arrival times (in secs/task)
of BE user U4.

Fig. 5. The per user percentage of the number of failed tasks, for various resource
scenarios and task inter-arrival times (in secs/task) of BE user U4.

6.4.1. Guaranteed delay bounds for GS users
Fig. 4 shows that our scheme succeeds in providing hard delay

guarantees to the GS users. Fig. 4 presents the per user percentage
of tasks that miss their non-critical deadlines, for all resource
scenarios (GB, GBE, GBP, BE), and for different values of the task
inter-arrival times of BE user U4 (1093, 546, 55 secs/task). First, and
most importantly, we observe that in all cases users U1, U2 and U3
do not miss any of their deadlines, verifying that our framework
succeeds in providing hard delay guarantees to GS users. Only
when the BE resource scenario is used, where GS users are treated
as BE users, do users start missing many of their deadlines.
In the GBE and the GBP scenarios (Table 6) fewer BE tasks miss

their deadlines; however, in the GBE resource scenario many BE
tasks fail (Fig. 5). So the GBP resource scenario, where resource
R1 and R2 are used by both GS and BE users but with different
priorities, seems to be the best in terms of the number of tasks
successfully scheduled without missing their deadlines. This is
because in this resource scenario better use of the available
resources is achieved, by multiplexing GS and BE users (with
different priorities) on resources R1 and R2.
In Fig. 6 the total time each resource is used is presented for

the same scenarios as before. Resource R3 is utilized more in the
GB resource scenario, since it handles exclusively BE tasks. In the
other resource scenarios, all resources can serve both GS and BE
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Fig. 6. The resource use, for various resource scenarios and task inter-arrival times
of BE user U4.

Fig. 7. The standard deviation of the resource use, for various resource scenarios
and task inter-arrival times of BE user U4.

tasks and as a result the use of resource R3 is smaller. Finally, in
Fig. 7 the standard deviations of the resources use are presented.
The standard deviation is high in the GB scenario, where resource
R3 is more utilized than resources R1 and R2, while it is very small
in the GBP scenario. This indicates that the GBP scenario makes
more efficient and uniform use of the available resources than the
other scenarios.
We also observed that the total task delays of the GS users have

very small deviations, compared to the total task delay deviations
of the BE users. The tasks of GS user U1 have a smaller total task
delay than the equally-sized tasks of BE users U4 and U5. Also, the
total task delays of users U4 and U5 are larger in the GS scenario
than in the other scenarios, because in the first case only one
resource is available for BE users. The total task delays and the
corresponding standard deviations for all the users increase, as
expected, when the task inter-arrival rate of user U4 increases.
Also, because the generated GS user tasks conform to the agreed
(ρ, σ ) constraints, none of their tasks is ever backlogged at the
input of the Grid.
Finally, we conducted a number of experiments using resources

with multiple CPUs and measured the per user percentage of tasks
that miss their non-critical deadlines. The results were obtained
for the case where resources R1, R2 and R3 have 30, 20 and 10
CPUs, respectively, each of computational capacity equal to 26000
MIPS. In the experiments conducted the delay bounds given to the
GS users and the deadlines of all users tasks are calculated based
on (10).Weobserve that in all cases theGSusers (U1, U2, U3) donot
miss their deadlines. So even when multi-CPU resources are used,
our framework again succeeds in providing hard delay guarantees
to GS users.
Fig. 8. The per user percentage of the number of tasks that miss their non-critical
deadlines under the GBP resource scenario, for various task inter-arrival times
(secs/task) of GS users U1, U2, U3 (Fixed, Un.5, Un.20, Un.50, Mixed) and of BE
user U4.

6.4.2. (ρ, σ ) constraints violation
Next, we look at the behavior of the proposed schemes when

theGSusers violate their (ρ, σ ) agreementswith theGridNetwork.
In theory when a GS user starts violating his (ρ, σ ) constraints,
then either his GS tasks are backlogged until condition (3) becomes
valid again, or some of his GS tasks are handled as BE tasks
because there is no GS resource that can complete them before
their deadline expires. In the first case we expect the total task
delay of GS tasks to increase. In the second case we expect many
GS tasks to miss their deadlines.
In addition to the fixed (deterministic) distribution, we also

considered in our simulations the following distributions for the
task inter-arrival times of GS users U1, U2 and U3:

• uniform distribution with minimum value 5%, 20%, or 50%
smaller than the corresponding fixed value of Table 2 and
maximum value 5%, 20%, or 50% larger than the corresponding
fixed value of Table 2, to be referred as Un.5, Un.20, Un.50
distributions, respectively.
• uniform distribution with minimum value 50% smaller than
the corresponding fixed value of Table 2 and maximum value
20% larger than the corresponding fixed value of Table 2, to be
referred as Mixed distribution.

Fig. 8 shows the per user percentage of tasks that miss their
non-critical deadline in the GBP resource scenario (Table 6), under
various distribution scenarios (Fixed, Un.5, Un.20, Un.50, Mixed),
and for mean inter-arrival times of 1093, 546 and 55 secs/task
for user U4. We observe that in the Un.5 and Un.20 distribution
scenarios the number of non-critical deadlines expired for all the
users is almost the same as that of the original fixed distribution
scenario. However, we observe a small rise in the number of
backlogged GS tasks and a corresponding increase in their average
delay. On the other hand, in the Un.50 and the Mixed distribution
scenarios, the number of non-critical deadlines expired increases,
and,more importantly, theGS usersmissmany of their non-critical
deadlines. This happens because these GS tasks cannot be served
by any GS capable resource before their deadline expires, and are
consequently handled as BE tasks, without delay guarantees. From
these results we conclude that as long as the GS users respect their
(ρ, σ ) constraints, even with small deviations, our QoS framework
succeeds in providing them with hard delay guarantees.
Fig. 9 shows the per user percentage of tasks that miss their

non-critical deadline for the GBP and BE resource scenarios, under
the Mixed distribution scenario. We observe that even though GS
users miss many of their non-critical deadlines, the use of the
proposed framework (under the GBP resource scenario) reduces
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Fig. 9. The per user percentage of the number of tasks that miss their non-critical
deadlines, for various resources scenarios and task inter-arrival times (in secs/task)
of BE user U4. We assume inter-arrival times that follow the Mixed distribution for
the GS users.

Table 7
GS users task workloads.

Workload Distribution
scenario

S0 Exponential:
Average task workload equal to the orig. value
U1= 419900000 MI
U2= 71383000 MI
U3= 419900 MI

S-10 Exponential:
Average task workload equal to−10% of the orig. value
U1= 377910000 MI
U2= 64244700 MI
U3= 377910 MI

S-30 Exponential:
Average task workload equal to−30% of the orig. value
U1= 293930000 MI
U2= 49968100 MI
U3= 293930 MI

the percentage of non-critical deadlines missed, compared to the
case where the QoS framework is not used (that is, under the BE
resource scenario).

6.4.3. Scheduling without a priori knowledge of task workloads
In this subsection we evaluate the extensions proposed in

Section 4 for the case where we have no a priori knowledge of
the task workloads. We show that by using these extensions the
observance of the GS users (ρ, σ ) constraints is possible even if we
do not have a priori knowledge or accurate estimation of the task
workloads.
The GS user task inter-arrival times and (ρ, σ ) constraints used

are those of Tables 2 and 3. The GS task workload scenarios used
are presented in Table 7, while the BE task inter-arrival times and
workloads are those of Table 4. U4 user’s task inter-arrival times
equal to 1093 secs/task. Finally, in our experiments we focused in
theGBP resource scenario, and assumed that the BE taskworkloads
are always known. Fig. 10 presents the percentage of non-critical
deadlines missed by GS users. Fig. 11 presents the percentage of
tasks originating from GS users that are handled as BE tasks when
their deadlines cannot be met with absolute certainty.
The Exact method presented in the figures corresponds to the

casewherewehave exact a priori knowledge of the taskworkloads,
in which case we can always accurately detect GS user constraint
violations, and either handle the corresponding tasks as BE tasks
or backlog them. Some of the tasks handled as BE tasks (Fig. 11)
are the ones missing their deadlines in Fig. 10. The Exact method
Fig. 10. The percentage of the non-critical deadlines-missed by GS users, using the
GBP resource scenario, for various workload scenarios of GS users and task inter-
arrival times for BE user U4 equal to 1093 secs/task.

Fig. 11. The percentage of tasks originating from GS users that are handled as BE
tasks, using the GBP resource scenario, for various workload scenarios of GS users
and task inter-arrival times for BE user U4 equal to 1093 secs/task.

produces the smallest number of tasks missing their deadlines,
since it uses the correct task workload values to accurately detect
when the (ρ, σ ) constraints are to be violated.
The Full-Aggressive and the Conservative methods, however,

cannot always accurately detect the GS user constraint violations
and handle many tasks as GS tasks, instead of BE tasks, even when
their deadlines cannot actually be met. This is shown in Fig. 11,
where no task originating from GS users is ever handled as BE
task. As a result, many GS tasks miss their deadlines (Fig. 10),
while no tasks are ever backlogged at the input. Specifically, in the
Full-Aggressivemethod the updatemessages sent to the scheduler
about an executed task’s actual workload, may arrive too late,
while in the Conservative method the scheduler assumes that all
tasks have the same (maximum) workload, even when the task
workloads are actually different (smaller or bigger). As a result the
Jir(t) variable of condition (3) is not updated correctly or on time.
The Conservative Task Submission with Feedback method, pro-

duces better results than the Full-Aggressive and the Conservative
methods, in terms of deadlinesmissed (Fig. 10), because GS user vi-
olations are often detected and tasks are backlogged. Again, many
GS tasks miss their deadlines, but some of them are handled as BE
tasks (Fig. 11).
In our experimentswe also evaluated the n-WindowAggressive

method, where n = 5, 10, 20. In this case the deadlines of the
tasks were calculated based on (9). It was observed that by using
this method we can always accurately detect GS users constraint
violations, and either handle the corresponding tasks as BE tasks or
backlog them, similarly to the Exact method (Fig. 10). However, by
using the n-WindowAggressivemethodmoreGS tasks are handled
as BE tasks than by using the Exact method (Fig. 11), deteriorating
this way the QoS provided to the GS users. Furthermore, the size
of the window n offers a tradeoff between the number of GS tasks
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Table 8
The average delay and the standard deviation of a computation unit using the BE
resource scenario (for task inter-arrival time of BE user U4 equal to 3278 secs/task).

EDF/EST WFQ/EST

Average delay (s) 21.96 13.63
Standard deviation (s) 48.48 30.07

Fig. 12. The deadline fairness metric using the BE resource scenario, for various
task inter-arrival times (secs/task) of BE user U4.

missing their deadline (Fig. 10) and the number of GS tasks handled
as BE tasks (Fig. 11). Also, the tasks average delay is larger than the
one achievedwith the othermethods and it is increased alongwith
thewindow size n. So, the choice of thewindow size n is important
for the success of the n-Window Aggressive method and its value
must be selected based on the exact QoS requirements (e.g., delay)
of the users.

6.4.4. Fairness for BE users
In order to evaluate the proposedWFQ/EST user fair scheduling

algorithm we used the BE resource scenario, where all the users
are BE users with the characteristics presented in Tables 2 and 4.
The only variation from these tables are the BE task workloads,
which are fixed and equal to 419900000MI, 71383000MI, 419900
MI, 209950000 MI, 2099500000 MI, for users U1, U2, U3, U4,
and U5, respectively. In the experiments conducted we compared
the WFQ/EST and the EDF/EST scheduling algorithms, using both
performance and fairness metrics.
Table 8 shows the average delay and the standard deviation

of a computation unit (MI), for task inter-arrival time of BE user
U4 equal to 3278 secs/task. The average delay of a computation
unit metric is more appropriate than the average task delay
for comparing the service received by each BE user, given that
they generate tasks of different workloads. We observe that
the WFQ/EST algorithm achieves a smaller average delay of a
computation unit than the EDF/EST algorithm. Also, we observe
that the standard deviation of the computation unit delay is
smaller for the WFQ/EST fair scheduling algorithm than for
the EDF/EST scheduling algorithm, indicating that the former
algorithm allocates computational capacity more fairly among
the users. Furthermore, in Fig. 12 we observe that the WFQ/EST
also outperforms the EDF/EST algorithm in terms of the deadline
fairness metric. The difference between these two algorithms with
respect to thismetric increases as the BEuser’s U4 task inter-arrival
time decreases, and more BE tasks miss their deadlines. So when
more tasks are produced than the Grid Network can serve, the
WFQ/EST scheduling algorithmgives amore fair degradation of the
probability to miss a deadline among the BE tasks.
7. Conclusions

We proposed and theoretically and experimentally analyzed
a Quality of Service (QoS) framework for Grid Computing that
provides hard delay guarantees to Guaranteed Service (GS) users
and user fairness to Best Effort (BE) users. We initially described
the proposed framework assuming that the task computational
workloads are known (or can be estimated accurately), and then
provided extensions for the more realistic case where we have no
a priori knowledge of the task workloads. Our simulation study
indicated that the proposed framework succeeds in providing hard
delay guarantees to the GS users as long as they respect their
constraints, even with small deviations. Also, we proved that the
proposed extensions make the framework effective even when
the task workloads are not known a priori. We examined several
resource allocation scenarios and found that the use of resources
that serve both GS and BE users with varying priorities, results
in fewer missed deadlines and better resource usage. Finally, the
proposed fair scheduling algorithm provides fairness among BE
users, while also improving task delay performance.
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