
Future Generation Computer Systems 27 (2011) 182–194
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Efficient data consolidation in grid networks and performance analysis
P. Kokkinos ∗, K. Christodoulopoulos, E. Varvarigos
Department of Computer Engineering and Informatics, University of Patras, Greece
Research Academic Computer Technology Institute, Patras, Greece

a r t i c l e i n f o

Article history:
Received 4 December 2009
Received in revised form
27 July 2010
Accepted 8 August 2010
Available online 27 August 2010

Keywords:
Grids
Task scheduling
Data migration
Routing

a b s t r a c t

We examine a task scheduling and data migration problem for grid networks, which we refer to as
the Data Consolidation (DC) problem. DC arises when a task concurrently requests multiple pieces of
data, possibly scattered throughout the grid network, that have to be present at a selected site before
the task’s execution starts. In such a case, the scheduler and the data manager must select (i) the data
replicas to be used, (ii) the site where these data will be gathered for the task to be executed, and (iii)
the routing paths to be followed; this is assuming that the selected datasets are transferred concurrently
to the execution site. The algorithms or policies for selecting the data replicas, the data consolidating
site and the corresponding paths comprise a Data Consolidation scheme.We propose and experimentally
evaluate several DC schemes of polynomial number of operations that attempt to estimate the cost of the
concurrent data transfers, to avoid congestion that may appear due to these transfers and to provide fault
tolerance. Our simulation results strengthen our belief that DC is an important problem that needs to be
addressed in the design of data grids, and can lead, if performed efficiently, to significant benefits in terms
of task delay, network load and other performance parameters.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Grids consist of geographically distributed and heterogeneous
computational and storage resources that may belong to differ-
ent administrative domains, but are shared among users by es-
tablishing a global resource management architecture. A variety of
applications can benefit from grid computing; some applications,
called CPU-intensive applications, involve computationally inten-
sive problems on small pieces of data (or datasets), while others,
called data-intensive applications, perform computations on large-
sized datasets, stored at geographically distributed resources. In
the latter case, the grid is usually referred to as a data grid.
Examples of data-intensive applications appear in life sciences,
high-energy physics and astrophysics,where large amounts of data
are created, processed and stored in a distributed manner. It is ev-
ident that, in these applications, communication delays play a key
role and considerably affect the completion times of the tasks. In
such an environment, the collaboration of task scheduling and data
management is essential for boosting grid performance.

Generally, the scheduling of tasks to the available resources is
a difficult problem. This is because grids are quite dynamic, with
resource availability and load varying rapidly with time, while at
the same time tasks have diverse characteristics and requirements.

∗ Corresponding author at: Department of Computer Engineering and Informat-
ics, University of Patras, Greece.

E-mail address: kokkinop@ceid.upatras.gr (P. Kokkinos).

0167-739X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.08.005
Moreover, datamanagement involves various data handling issues
related to the sites at which the datasets are stored, the way
datasets are replicated, and the time instances when these are
replaced–reshuffled or moved across the network.

In this work, we examine a task scheduling and data migration
problem, calledData Consolidation (Fig. 1). Data Consolidation (DC)
applies to data-intensive applications that need more than one
piece of data to be transferred to an appropriate site, before the
application can start its execution at that site. The DC problem
consists of three interrelated subproblems: (i) the selection of the
replica of each dataset (i.e., the data repository site from which to
obtain the dataset) that will be used by the task, (ii) the selection
of the site where these pieces of data will be gathered and the task
will be executed, and (iii) the selection of the paths the datasets
will follow in order to be concurrently transferred to the data
consolidating site. Furthermore, the delay required for transferring
the output data files to the originating user (or to a site specified
by the user) should also be accounted for. In most cases, the
task’s required datasets will not be located into a single site, and
a Data Consolidation operation is therefore required. Generally, a
number of algorithmsor policies canbeused for solving these three
subproblems either separately or jointly. Moreover, the order in
which these subproblems are handled may be different from the
order in which they are presented here, while the performance
optimization criteria usedmay also vary. The algorithms or policies
for solving these subproblems comprise a DC scheme.

The DC problem is considered as a continuous-time problem
(as opposed to a one-time problem), where the decisions ((i)–(iii))

http://dx.doi.org/10.1016/j.future.2010.08.005
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:kokkinop@ceid.upatras.gr
http://dx.doi.org/10.1016/j.future.2010.08.005

P. Kokkinos et al. / Future Generation Computer Systems 27 (2011) 182–194 183
DC site rDC

Task

DC site rDC

User ruUser ru

Data replica l3

Data replica l2

Data replica l1 Data replica lk
Output Data

Fig. 1. A Data Consolidation scenario. Initially, the datasets a task requires are transferred to a single site rDC . After all data transfers have been completed, the task itself is
also transferred to the site, where it is executed. Finally, the task’s output data are transferred back to the task’s originating user ru .
above taken for one task affect the decisions taken for future
tasks and are affected by the decisions taken earlier for previous
tasks. For example, after a task has been scheduled and DC is
performed for it, replicas will move at different locations, and
some computation and communication resources may still be
occupied by it at the time the next task is considered. Therefore,
the performance criteria that we use for evaluating the schemes
are not theDC completion time of a single task, but the average task
delay (at steady state, over an infinite time horizon), the average
network load induced by a task, and the task success ratio. In
Section 4.3, we evaluate the (polynomial in all cases) number of
operations required by the proposed DC schemes.

We propose and experimentally evaluate a number of DC
schemes. Some consider only the computational or only the
communication requirements of the tasks, while others consider
both kinds of requirement. Our proposed schemes calculate, for
each candidate site, the maximum (worst) cost of accessing any
of the best replicas of the task’s requested datasets, selecting the
site that gives the minimum worst transfer cost value. We also
proposeDC schemes,which are based onMinimumSpanning Trees
(MSTs) that concurrently route the datasets so as to reduce the
congestion that may appear in the future, due to these transfers.
We also investigate the required number of operations of the
proposed schemes and show that it is polynomial in the number
of sites comprising the grid network. A number of interesting
issues are also investigated, including ways the proposed schemes
can be extended so as to provide fault tolerance against failures
in the storage resources. We evaluate the proposed schemes by
performing a large number of simulation experiments for different
values of the parameters involved, such as the number of datasets
a task requires, the number of sites, the task computation and
communication requirements, and the task arrival rate. In this
way we investigate the effects of the grid application and network
characteristics on the DC problem, and show that important
performance benefits can be obtained if the DC operation is
performed efficiently. Finally,we compare different approaches for
estimating the access cost of a number of datasets, when these are
requested concurrently.

In ourwork, we study the DC problemmainly from a theoretical
viewpoint, making a number of simplifying assumptions. We as-
sume that a central scheduler is responsible for task scheduling and
datamanagement, and that it has complete knowledge of the static
(such as the computation and storage capacity) and the dynamic
(such as the number of running and queued tasks and the location
of each data replica) characteristics of the computation resources
and of the network connecting them. We also do not take into ac-
count the communication delays of transferringmessages between
the user and the scheduler and between the scheduler and the re-
sources, since we assume that these are negligible compared to
the total execution time of the tasks, at least for the data-intensive
scenarios that are considered in this work. We believe that these
assumptions are necessary so as to make the DC problemmanage-
able, considering the large number of parameters it depends on.
Moreover, we argue that these assumptions do not depart from re-
ality, and they are similar to those used by other works in the lit-
erature. Today, grid networks and the corresponding middleware
(e.g., gLite [1]) follow a two-level scheduling approach. A central
scheduler decides the pool of resources (e.g., belonging to a partic-
ular administrative authority) where a task will be assigned, while
a local scheduler decides upon the exact resource where the task
will be executed. In addition, there aremechanisms (for example in
the gLite middleware, these are the File & Replica Catalog Service,
theWorkload Management System, the Monitoring and Discovery
Service, the Information Super Market, and others) that provide to
the scheduler information regarding the location of data replicas
and the values of several static and dynamic parameters such as the
number of tasks in each resource. An important issue with the dy-
namic information, which changes over time, is its validity. That is,
the information that the scheduler receives from suchmechanisms
may not be accurate since it changes over time,while the scheduler
is updated at periodic intervals. In a previous work of ours [2] we
have investigated such issues for the case of the gLite middleware.

Although these assumptions restrict the direct applicability of
the proposed schemes, there are examples of real-world applica-
tions, related to the problem that we examine, that can benefit
from our investigation. Montage [3] is a toolkit for constructing
custom, science-grade mosaics by composing multiple astronom-
ical images. In most cases, the astronomical datasets are massive,
and they are stored in distributed archives that are remotewith re-
spect to the available computational resources. KoDaVis [4] deals
with the visualization of large data sets from atmosphere research.
In KoDaVis, instead of storing data at one central site, where the
simulation is performed, data are distributed at various sites. Frag-
ments of the dataset are sent to the visualization system. This way,
the processing of the data can be achieved without storing the
whole datasets locally. It is true, though, that an application/task
may not need all the datasets at the time it starts executing, but,
as we will show, it is usually beneficial for the application to per-
form the dataset transfers concurrently and before the task’s exe-
cution. If a task requires only a small part of each dataset, then the
DC schemes could be coupledwith remote I/Omethods, so as to re-
duce the amount of data that is transferred to the selected site. In
addition, in MapReduce [6], the data communication between the
Map and Reduce phases could very well benefit from optimized

184 P. Kokkinos et al. / Future Generation Computer Systems 27 (2011) 182–194
communication paths, or from optimized Reduce task placement
as performed by our proposed DC schemes.

The remainder of the paper is organized as follows. In Section 2,
we report on previous work. In Section 3, we formulate the Data
Consolidation problem. In Section 4, we analyze the DC problem,
propose a number of DC schemes, and examine the number of
operations required for their execution. In Section 5, we present
the simulation environment and the performance results obtained
for the proposed schemes. Finally, conclusions are presented in
Section 6.

2. Previous work

The Data Consolidation (DC) problem involves task scheduling,
data management and routing issues. Usually these issues are
handled separately in the corresponding research papers. There are
several studies that propose algorithms for assigning tasks to the
available resources in a grid network. Data replicationmechanisms
are used so as to reduce the time needed for accessing particular
datasets. Similarly, various policies have also been proposed for
selecting the data’s replicas for the execution of a task. Also, a large
number of research papers address routing issues in grid networks.

A survey of the existing grid scheduling policies is presented
in [7]. The scheduling of tasks to resources has been considered
in [8–10], among others works, where several centralized,
hierarchical or distributed scheduling schemes are presented.
Other works incorporate economic models in grid scheduling,
as in [11], which proposes scheduling algorithms that take into
account deadline and budget constraints. Fair scheduling in grid
networks has also been addressed in [12–14].

A usual data management operation in grids is data migration,
that is, the movement of data between resources. Mechanisms
for accessing the whole or part of the data remotely (remote
I/O) also exist. The effects of data migration in grids have been
considered in [15]. The most common data migration technique
is data replication [16–18], which is the process of distributing
replicas of data across sites. When different sites hold replicas
of a particular dataset, significant benefits can be realized by
selecting the best replica among them, that is, the one that
optimizes a desired performance criterion such as access latency,
cost, and security [19,20]. Furthermore, the problem of parallel
downloading different parts of a dataset from various replica
holding resources, as a means to decrease the download time of
that dataset, has been investigated for peer-to-peer networks and
the Internet [21,22], and also for grid networks [23]. A number
of works consider both task scheduling and data replication
issues. The authors in [24] suggest that it is better to perform
data replication and task scheduling separately, instead of trying
to jointly optimize these two operations. In [25], the authors
propose a data management service that proactively replicates
the datasets at selected sites, while an intelligent Tabu-search
scheduler dispatches tasks to resources so as to optimize the
execution time and system utilization metrics. The authors in
[26–28] present the OptorSim simulator and jointly consider task
scheduling and data replication for the case where a task requests
a number of datasets sequentially. In this case, data replication of a
specific dataset to a selected site is performedwhen a task requires
this dataset for its execution. Also, the authors in [29] propose
the Integrated Replication and Scheduling Strategy (IRS) scheduler,
which combines scheduling and replication strategies.

The effective use of the communication/network resources is an
important consideration, especially in data grid networks. Network
resource provisioning and management protocols are developed
in [30] as a way to provide end-to-end Quality of Service (QoS) in
grids. However, routing is not usually taken into account in the
task scheduling and data management related works, which rely
mainly on the routing capabilities of the underlying network (or
simulator). In [31], communication resources are explicitly taken
into account in a bandwidth reservation system within the GARA
framework [32]. In [33], a multicost algorithm for the joint time
scheduling of the communication and computation resources to be
used by a task is proposed. The algorithm selects the computation
resource to execute the task, determines the path to be used for
routing the single input data, and finds the starting times for the
data transmission and the task execution, performing advance
reservations.

The Data Consolidation (DC) problem addressed in the present
work arises when a task requires, before the start of its execution,
multiple datasets stored at different sites. In this case, we believe
that it is beneficial for the application to organize the transfers
of the datasets concurrently so as to decrease the task’s total
execution time. Even though this seems like a logical scenario,
especially for data-intensive applications, most of the related
works seem to ignore it, assuming either that each task needs for its
execution only one large piece of data [24,33], or that it requires a
number of datasets sequentially [16,17,26–28]. Our work does not
consider any specific dynamic data replication strategy; instead,
we assume that a dynamic data replication strategy is in place
that distributes replicas in the grid, while data consolidation is
performed when a task actually requests a number of datasets
before its execution. In most cases the task’s required datasets will
not be located into a single site, and their consolidation to the
selected site will be required before task execution. Furthermore,
most of the related works do not explicitly examine important
issues like the joint replica selection (and estimation of the cost of
the transfers) and the joint routing of these replicas (so as to avoid
congestion delays that each of the corresponding transfers may
cause to each other). Note that the Data Consolidation problem
applies also to the case where data are not moved before task
execution, but are accessed remotely (remote I/O) when needed.
In this case, our Data Consolidation schemes could select the data
replicas, the site where the task will be executed, and the paths
that will be reserved for transferring the datasets (or part of the
datasets) to the site concurrently, when the task actually needs
them (remote file I/O). This way, we could also dynamically re-
estimate our choices regarding the data replicas selected and the
paths established, during the task’s execution. The evaluation of
our Data Consolidation schemes when combined with remote I/O
access is left for future work.

Finally, parts of this work have been presented in [34]. In the
present paper, we provide a more complete analysis of the DC
problem, significantly extending parts of the original paper. In
particular, we introduce new schemes, namely, the TotalCost-Q,
TotalCost-MST, and MST-Cost DC policies, and perform a more
extensive study of the performance of the new and previously
presented algorithms. We also evaluate the number of operations
required for the proposed schemes. In addition, we compare the
sum versus max operation used for defining site access costs and
we consider DC in conjunction with resource resiliency schemes.

3. Problem formulation

We consider a grid network, consisting of a set R of N = |R|
sites (resources) that are connected through a wide-area network
(WAN). Each site r ∈ R contains at least one of the following
entities: a computational resource that processes submitted tasks,
a storage resource where datasets are stored, and a network
resource that performs routing operations. There are also a number
of simple routers in the network. The path between two sites
ri and rj has maximum usable capacity equal to Ci,j,, defined as
the minimum of the path’s links capacities and propagation delay
equal to di,j.

P. Kokkinos et al. / Future Generation Computer Systems 27 (2011) 182–194 185
The computation resource of site ri has total computation
capacity Pi,measured in computation units per second (e.g.,million
instructions per second — MIPS). Each resource also has a local
scheduler and a queue. Tasks arriving at the resource are stored
in its queue, until they are assigned by the local scheduler to
an available CPU. For the sake of being specific, we assume that
the local scheduler uses the first-come first-served (FCFS) policy,
but other policies can also be used. We should note that the
local schedulers, (e.g., Torque scheduler) utilized in the computing
elements (CEs) of a gLite [1] powered grid network, use the FCFS
policy as their default task queuing policy. At a given time, a
number of tasks are in the queue of resource ri or are being
executed in its CPU(s) using a space-sharing policy. The storage
resource of site ri has storage capacity Si, measured in data units
(e.g., bytes). Users located somewhere in the network generate
atomic (undivisible and non-preemptable) tasks with varying
characteristics.

A task needs for its execution L pieces of data (datasets) Ik of
sizes VIk , k = 1, 2, . . . , L. A dataset Ik has a number of replicas
distributed across various storage resources. The total computation
workload of the task is equal to W , and the final results produced
have size equal to ∆. W and ∆ may depend on the number and
size of datasets the task requires. The datasets consolidate to a
single site, which we will call the Data Consolidation (DC) site rDC.
This site may already contain some datasets, so no transferring
is needed for them. The total communication delay that dataset
Ik experiences consists of the propagation, the transmission, and
the queuing delays. The propagation delay of path (ri, rDC) is
denoted by di,DC and its usable capacity by Ci,DC (minimumcapacity
available at all intermediate links). A piece of data Ik transmitted
over a path (ri, rDC) experiences total communication queuing
delay Q Comm

i,DC , because of other pieces of data utilizing the links
of the path. In general, the type of transport media used (opaque
packet switching, transparent networks such as a wavelength
routed optical WDM network or OBS), determines whether
the queuing delay is counted once at the source (transparent
networks) or is accumulated over all intermediate nodes (opaque
networks). Finally, before starting execution at the DC site, a task
experiences a processing queuing delay Q Proc

DC , due to other tasks
utilizing the resource’s computational capacity or already queued.

We assume that a central scheduler is responsible for the task
scheduling and data management. The scheduler has complete
knowledge of the static (computation and storage capacity, etc.)
and the dynamic (number of running and queued tasks, data
stored, etc.) characteristics of the sites.We do not take into account
the communication delay of transferring messages between the
user and the scheduler and between the scheduler and the
resources, since we assume that they are negligible compared to
the total execution time of the task, at least for the data-intensive
scenarios that we consider in this study.

A task created by a user at site ru asks the central scheduler
for the site where the task will execute. Upon receiving the user’s
request, the scheduler examines the computation and data related
characteristics of the task, such as its workload, the number, the
type, and the size of datasets needed, and the sites that hold the
corresponding datasets. The scheduler based on the used Data
Consolidation scheme (Section 4.2) selects (i) the sites that hold
the replicas of the datasets the task needs, (ii) the site where these
datasets will consolidate and the task will be executed, and (iii)
the routes over which to transfer these datasets. The decisions
concerning (i)–(iii) can bemade jointly or separately. Note that the
free capacity of the storage resource rDC must be larger than the
total size of the datasets that will consolidate:

SrDC ≥

L−
k=1

VIk . (1)
The free storage capacity of a resource includes not only the
actual free space but also the space occupied by datasets that
are not used and can be deleted. If needed, the oldest unused
datasets are deleted from the DC site (other policies can also be
applied, however these are not the focus of this work). If no site is
found that fulfils Eq. (1), the corresponding task fails. Otherwise, if
Eq. (1) is fulfilled by at least one site, then the scheduler orders the
data holding sites to transfer the datasets to this DC site. The sched-
uler, also, transfer this task to the DC site (Fig. 1). The task’s execu-
tion starts only when both the task and all of its needed datasets
have arrived at the DC site. After the task finishes its execution, the
results return back to the task’s originating user.

Finally, we assume that no dynamic replication strategies op-
erate in the network. A dynamic replication strategy, such as the
ones presented in [18], permits the dynamicmovement of data be-
tween the storage resources, independently from the various task
requests. For example, a popular dataset can be copied to more
than one resources so as to be easily accessible when needed. Such
strategies are expected to reduce the data transfers required for a
DC operation, reducing at the same time the task’s execution delay.

A table with all the notations used, follows.

R The set of resources
ri A resource i
ru The resource where the user that created the task is

located
N The number of resources/sites in the grid network
Ci,j The maximum usable capacity between two sites ri

and rj
di,j The propagation delay between two sites ri and rj
Pi The computation capacity of site ri
Si The storage capacity of site ri
L The number of datasets a tasks requires for its

execution
Ik A dataset
VIk The size of the dataset Ik
W The workload of a task
∆ The size of the output results produced
rDC The data consolidation (DC) site
Q comm
i,DC The total communication queuing delay a piece of

data experiences, when transmitted over a path
(ri, rDC)

Q Proc
DC The processing queuing delay a task experiences

before starting execution at the DC site

4. Data consolidation

In what follows, we present several Data Consolidation (DC)
schemes.

4.1. Data consolidation delays

We assume that the scheduler has selected the data holding
sites (replicas), rk ∈ R, for all datasets Ik, k = 1, . . . , L, and the DC
site rDC. Note that theDC sitemay already have some pieces of data,
and thus no transferring is required for these pieces (i.e., rk = rDC
for some k). In general, such a data-intensive task experiences
both communication (Dcomm) and processing (Dproc) delays. The
communication delayDcomm of a task, considering also the delay for
transferring the final results from the DC site rDC to the originating
user’s site ru, is

Dcomm = Dcons + Doutput

= max
k=1,...,L


VIk

Ck,DC
+ Q Comm

k,DC + dk,DC



186 P. Kokkinos et al. / Future Generation Computer Systems 27 (2011) 182–194
+


∆

CDC,u
+ Q Comm

DC,u + dDC,u


, (2)

where Dcons is the time needed for the task’s data to consolidate
to the DC site rDC and Doutput is the delay of the output data to
be transferred to the originating user’s site ru. The computational
delay is given by

Dproc = Q Proc
DC +

W
PDC

. (3)

The total delay suffered by a task is
DDC = Dcomm + Dproc. (4)

Note thatQ Comm
k,DC andQ Proc

DC are difficult to estimate since the former
depends on the utilization of the network and the latter depends
on the utilization of the computation resource. For this reason, we
propose a variety of algorithms, some of which assume that this
information is known, while others do not make this assumption,
and we compare their performance.

4.2. Proposed schemes

As stated before, the DC problem consists of three subproblems:
(i) the selection of the repository sites rk from which the dataset
Ik, k = 1, 2, . . . , L, will be transferred to the DC site, (ii) the
selection of the DC site rDC where the datasets will accumulate and
the taskwill be executed, and (iii) the selection of the paths (rk, rDC)
the datasets will follow. In general, DC schemes can make these
decision based on various criteria such as the computation and
storage capacity of the resources, their load, the location and the
sizes of the datasets, the bandwidth availability and the expected
delay, the user and application behaviours, and the price a user is
willing to pay for using the storage and computation resources.

In what follows, we propose a number of DC schemes that
consider only the data consolidation (ConsCost) or only the com-
putation (ExecCost) or both kinds (TotalCost, TotalCost-Q) of task
requirements. Algorithms with similar considerations have also
been proposed in [26–28] that use, however, a different model (se-
quential access). In the proposed algorithms and in the simulation
results that follow, we assume that no output data is returned back
to the user, and as a result Doutput is equal to zero. Even though this
parametermay be important in some cases, we decided to concen-
trate our description and our simulation results on the three more
important and complex subproblems that comprise the DC prob-
lem in data grids, as described above.

(i) Random–Random (Rand) scheme: In this scheme the data
replicas used by a task and the DC site are randomly chosen. The
paths are selected using a simple Dijkstra algorithm. This scheme
was employed for comparison purposes.

(ii) Consolidation-Cost (ConsCost) scheme: We select the replicas
and the Data Consolidation site that minimize the data consolida-
tion time (Dcons), assuming that the communication queuing de-
lays (Q Comm

k,DC) are negligible.
Given a candidate DC site rj, we select for each dataset Ik the

corresponding data holding site ri (Ik ∈ ri) that minimizes the
transfer time:

min
ri∈R,Ik∈ri


VIk

Ci,j
+ Q Comm

i,j + di,j


, (5)

where R is the set of all resources and di,j the propagation delay
between site ri and rj. Note that in this algorithm we consider the
communication queuing delays to be negligible, and thusQ Comm

i,j =

0. The data consolidation time Dcons of candidate DC site rj is equal
to the maximum transfer time of any dataset:

Dcons(rj) = max
k=1,...,L


min

ri∈R,Ik∈r


VIk

Ci,j
+ Q Comm

i,j + di,j


. (6)
In the ConsCost scheme we select the DC site (rDC) that
minimizes the data consolidation time:

rDC = argmin
rj∈R


Dcons(rj)


. (7)

The paths are constructed using the Dijkstra algorithm.
(iii) Execution-Cost (ExecCost) scheme: We select the DC site that

minimizes the task’s execution time:

rDC = argmin
rj∈R


Q Proc
j +

W
Pj


, (8)

while the data replicas are randomly chosen. Since our focus
is more on the communication overhead of the DC problem
combined with the execution times of the tasks, we consider the
processing queuing delay Q Proc

j of a resource rj as negligible and
that the task’s workload is known a priori. In general, it is possible
to estimate this delay based on the tasks already assigned to a
resource and on the average delay tasks previously executed on
it have experienced. Also, regarding the a priori knowledge of the
task’s workload, there are algorithms that can be used to provide
such estimates [35,36]. On the other hand, if the computation
workload of a task is not known a priori, we can simply choose
the resource with the largest computation capacity Pj. Finally, in
the ExecCost scheme the paths are constructed using the Dijkstra
algorithm.

(iv) Total-Cost (TotalCost) scheme: We select the replicas and
the DC site that minimize the total task delay. This delay includes
the time needed for transferring the datasets to the DC site and
the task’s execution time. This scheme is the combination of the
two above schemes. The paths are constructed using the Dijkstra
algorithm.

The pseudocode of the TotalCost scheme is presented below.

Algorithm 1 (Total-Cost (TotalCost) Scheme).

We consider a task that needs for its execution L pieces
of data (datasets) Ik, of sizes VIk , k = 1, . . . , L.
The scheduler performs the following actions in order to
select the DC and the data holding sites

// Find the Data Consolidation site rDC, by looping though
each candidate site:

1 for each candidate site rj do
// Find the data holding site for each dataset:

2 for each dataset Ik do
// For each data holding site calculate the time in order
to transfer Ik from this site to rj:

3 for each data holding site ri, where Ik ∈ ri do
transferTimeIk,i,j =

VIk
Ci,j

+ Q Comm
i,j + di,j

end for

// Select as data holding site for dataset Ik the one that
leads to the minimum time in order
// to transfer Ik to rj:

4 Select ri where transferTimeIk,j
= min

ri∈R
(transferTimeIk,i,j)

end for

// The data consolidation time of the candidate DC site rj is
equal to the maximum transfer time of
// any dataset Ik, from the selected data holding site to rj:

P. Kokkinos et al. / Future Generation Computer Systems 27 (2011) 182–194 187
5 Dcons(rj) = max
k=1,...,L


transferTimeIk,j


end for

6 // Select the DC site (rDC) that minimizes the data
consolidation and task execution time:

rDC = argmin
rj∈R


Dcons(rj) + Q Proc

j +
W
Pj



(v) Total-Cost Queuing (TotalCost-Q) scheme: This scheme is
similar to the TotalCost scheme, but with the addition that we
take into account the communication queuing delays at the
links. Generally, scheduling and routing can be improved if link
queue length information is available. However, in practice, it
is quite difficult to keep such information up to date at all the
sites. In grid networks, there are appropriate mechanisms for
gathering and communicating queue length information, such
as the Network Weather Service [5] or the gLite’s middleware
Monitoring and Discovery Service [1]. In our simulations, for the
Total-Cost Queuing scheme we assume that the central scheduler
has instantly valid and updated queue length information for every
network link. One of our goals is to investigate the benefits induced
to the DC problemwhen such information is used, andwhether the
additional effort and costs (of any kind) to acquire it are justified
by the performance improvements that can be obtained.

Regarding the third subproblem of the DC, that is, the routing of
the datasets, we investigated a number of tree-based DC schemes,
for selecting the paths to be followed by the datasets. Intuitively,
this seems like the right thing to do, since in DC we have many
repository sites (the leaves, or intermediate nodes of a tree) whose
datasets are transferred to a DC site (the root). Since we want
these transfers to occur concurrently, we try to select the tree
using as a criterion either the time for transferring the data over
a link or the load of a link, as measured by the size of data
queued or under transmission at it, minimizing the delay due to
congestion effects that may arise by the concurrent data transfers.
In this way, we execute an offline optimization, where we have
a number of concurrent data transfers to perform, and try to find
the best way to actually perform them, so as to reduce the effects
(e.g., delay on network links) that one transfer may induce to
the other. This optimization is very important, and several other
interesting approaches can be also considered (find the optimum
time instance atwhich these transfers should begin, select the path
and wavelength in an optical network, and others). Other works
consider only the current network congestion that is caused by
the existing traffic in the network due to other data transmissions
under way related to previous tasks’ datasets.

In the algorithms proposed previously, we used the tree con-
structed by Dijkstra’s shortest path algorithm for routing (Shortest
Path Tree — SPT). In the following algorithms, we use Minimum
Spanning Trees (MSTs) obtained by Kruskal’s algorithm. Other tree
algorithms can also be used, such as the Essau–WilliamsMST algo-
rithm [37], or algorithms for solving the Steiner tree problem.

(vi) Total-Cost Minimum Spanning Tree (TotalCost-MST) scheme:
In this algorithm, we first select the data replica holding sites and
the DC sites using the TotalCost algorithm. Next, we assign to each
link a weight, which is equal to the size of the queued data plus
the size of the data that will pass through this link based on the
decisions made using the TotalCost algorithm. Finally, we apply
a Minimum Spanning Tree algorithm (Kruskal) to construct the
paths the datasets will follow.

The TotalCost-MST algorithm tries to improve the routing paths
selected by the TotalCost algorithm between the data holding sites
and the Data Consolidation site. Fig. 2(a) shows an example of the
Fig. 2. The paths selected for transferring datasets A, B and C to the rDC site:
(a) using the original TotalCost algorithm, (b) after the application of the MST
approach in the TotalCost-MST algorithm.

paths initially selected by the TotalCost algorithm, for the datasets
A, B and C , where many datasets cross the same network link(s).
By applying the MST approach, the paths selected are improved
by spreading the network traffic more evenly across the network
(Fig. 2(b)).

(vii) Minimim Spanning Tree-Cost algorithm (MST-Cost) scheme:
In this algorithm, we alter the order in which the three subprob-
lems of DC are handled. Specifically, when a new task requests
service, we assign to each link (i, j) a weight based on the delay
required for transmitting over this link, which includes both the
queuing and the propagation delay:

Q Comm
i,j + di,j. (9)

Next, we apply an MST algorithm (Kruskal) to construct the paths
the datasets should follow, independently of the data replica hold-
ing and DC sites that will be chosen in the next phases. Following
that, we apply the TotalCost algorithm in order to find these sites.

4.3. Number of operations for serving a task

Data consolidation is viewed in this paper as a continuous-time
problem, where the decisions taken for one task affect the de-
cisions taken for the tasks that will arrive in the future and are
affected by the decisions taken earlier for previous tasks. In this
context, we are interested in the number of operations (complex-
ity) required by the proposed DC schemes. For the Rand algorithm
this is polynomial, as it randomly chooses the L + 1 sites used
in the DC operation. Similarly, the ExecCost algorithm complex-
ity is polynomial, since it randomly selects the L data holding sites,
while the rDC site is chosen among the N sites of the grid network
based on the task execution time criterion. All the other proposed
algorithms are based on the ConsCost algorithm. The complexity of
these algorithms is determined by the complexity of the ConsCost
algorithm, since any additional operations performed by these al-
gorithms, for example the construction of the Minimum Spanning
Tree, require polynomial time. The complexity of Kruskal’s MST al-
gorithm is O(E . logN), where E is the number of links of the grid
network. In the ConsCost algorithm, for each candidate DC site, we
choose for each dataset the replica site that minimizes its transfer-
ring delay. That is, for eachdataset, atmost all theN sites (assuming
that all the sites hold a replica of this dataset) are evaluated as can-
didates for participating in theDCoperation. Then, based on the de-
cisions made for all L datasets, we calculate the data consolidation
time for this particular replica selection and candidate DC site. So,
the execution of a shortest path algorithm, with polynomial com-
plexity, is required for each candidate DC site rDC. The complexity
of Dijkstra’s algorithm is O(N2) in order to find the shortest paths
from a single source (the candidate DC site) to all other nodes in
a graph. Next, this operation is performed for all the candidates

188 P. Kokkinos et al. / Future Generation Computer Systems 27 (2011) 182–194
DC sites, that is, for all the N grid sites. At the end of the ConsCost
algorithm, the rDC site and the corresponding L sites with the min-
imum data consolidation time (Eq. (7)) are selected. Consequently,
the total complexity of the ConsCost algorithm, for a single task, is
polynomial and equal to O(N3).

Of course, the polynomial complexity of the ConsCost algorithm
is the result of its suboptimal decisions. The ConsCost algorithm
does not optimize the overall consolidation time over all datasets
and over all candidate replica sites, whose combinations increase
exponentially with the number of sites in the grid network. This
canbe seen fromEq. (5),where for eachdataset the replica sitewith
theminimum transferring delay is chosen,without considering the
effect of one choice (one replica’s selection) to the other.

In addition, we should note that, in this complexity analyses,
we do not consider the complexity of the information gathering
mechanisms, such as the communication and computation queu-
ing delays in the network.

5. Performance evaluation

We implemented the proposed DC schemes and the required
data grid network entities (e.g., computation and storage re-
sources) in the Network Simulator (ns-2) [38]. Ns-2 provides a
manageable environment for simulating the network resources of
the grid, which is particularly important for the evaluation of DC
schemes. The Boost library [39] provided us with the implementa-
tions of the Minimum Spanning Tree algorithms. In all the experi-
ments performed, the algorithms’ running time is a few seconds, for a
single task scheduling operation.

5.1. Simulation environment

Generally, in most data-intensive grid applications, there are
few advanced laboratories and research centers around the world
where large amounts of data (in the scale of TB and GB) are
produced. These data consolidate, when needed, at a central site
for processing. Furthermore, a data grid usually has a hierarchical
structure, as is the case, for example, with the European DataGrid
Testbed [40] (currently know as Enabling Grids for E-sciencE
— EGEE). The hierarchical structure usually consists of multiple
‘‘tiers’’, where each tier has its own storage capacity. Tier 0 holds
all the master files/datasets.

Our simulation environment was based on these facts. Specif-
ically, we used the topology presented in Fig. 3, which is derived
from the EGEE [41] topology. Our network consists of 11 nodes and
16 links, of capacities equal to 10 Gbps. In our experiments we as-
sume a P2P (opaque) network; the delay for transmitting between
two nodes includes the propagation, queuing and transmission de-
lays at intermediate nodes. Only one transmission is possible at a
time over a link, so a queue exists at every node to hold the data
waiting for transmission.

We assume that five sites are equipped with computation and
storage resources, while the others act as simple routers. We also
assume that there is a Tier 0 site in the network, which holds all
the datasets, but does not have any computational capability. Each
experimental scenario was run five times, using an independent
random seed. In every repetition, the placement in the network of
the five sites and the Tier 0 was random. Experiments with more
sites equipped with computation and storage resources were also
performed.

The size of each dataset is given by an exponential distribution
with average VI (GB). At the beginning of the simulation a given
number of datasets are generated and two copies of each dataset
are distributed in the network; the first is distributed among the
sites and the second is placed at the Tier 0 site. The storage capacity
Fig. 3. The topology used in our simulations.

Table 1
The average size VI and the number L of datasets each task requests. The total
number of available datasets in the grid network and their total size is also
illustrated.

L VI (GB) Total number of datasets Total size (TB)

2 300 50 15
3 200 75 15
4 150 100 15
6 100 150 15
8 75 200 15

10 60 250 15
2 400 50 20
3 266 75 20
4 200 100 20
6 133 150 20
8 100 200 20

10 80 250 20

of each storage resource is 50% of the total size of all the datasets.
Since the storage capacity is bounded, there are cases where a site
does not have the free storage capacity required to store a needed
dataset. In such a case, one or more of the oldest and unused
datasets are deleted until the new dataset can be stored at the
resource.

In each experiment, users generate a total of 10000 tasks, with
exponential arrival rates of average value λ. Unless stated other-
wise, we assume that λ = 75 tasks/s (but we also examine other
task arrival rates: λ = 50, 75, 100, 125, 150 and 200 tasks/s). In
all our experiments we keep constant the average total data size S
that each task requires:

S = L · VI , (10)

where L is the number of datasets a task requests and VI is the av-
erage size of each dataset. We use average total data size S equal
to 600 and 800 GB and examine the (L, VI) pair values presented in
Table 1. In each experiment, the total number of available datasets
changes in order for their total size to remain the same: 15 TB and
20 TB, respectively (Table 1).

P. Kokkinos et al. / Future Generation Computer Systems 27 (2011) 182–194 189
The task workloadW correlates with the average total data size
S, through a parameter a, as
W = a · S. (11)
In our simulations, we use parameter a as follows: given the total
data size S of a task (different for each task) and a, we use Eq. (11)
to calculate the workload of this task. The parameter a measures
whether a task is a computation-intensive or data-intensive one.
As a increases, the tasks become more CPU-intensive, while as
a decreases the tasks have fewer computation demands. We
alter the parameter a and examine the performance of our DC
strategies. Unless stated otherwise, in our experiments we create
data-intensive tasks by setting a = 0.01. We also examine
CPU-intensive tasks (a takes values up to 11). Also, when a task
completes its execution we assume that there is no output data
returned to the originating user.

5.2. Performance metrics

We use the following metrics to measure the performance of
the algorithms examined.
• The average task delay, which is the time that elapses between

the creation of a task and the time its execution is completed at
a site.

• The average load per task imposed to the network, which is the
product of the size of datasets transferred and the number of
hops these datasets traverse.

• The task success ratio, which is the ratio of the number of tasks
that were successfully scheduled to the total number of tasks
generated. When a large number of tasks are queued or under
execution, it may be impossible for the scheduler to find a
resource with sufficient free storage space, where a new task’s
datasets can consolidate (see Eq. (1)). In this case the task cannot
be scheduled, and it fails.

• The Data Consolidation (DC) probability, which is the proba-
bility that the selected DC site will not have all the datasets
required by a task and as a result data consolidationwill be nec-
essary.

The first metric characterizes the performance of the DC strat-
egy in executing a single task, while the second and the third met-
rics express the overhead the DC strategy induces to the network.
The fourth metric gives information on the way the DC site is se-
lected, with respect to the datasets that are located (or not) at this
DC site.

5.3. Simulation results

5.3.1. Basic schemes
Fig. 4 shows the DC probability for the Rand, ExecCost, ConsCost

and TotalCost schemes, when tasks request different number of
datasets L for their execution. The higher the number L of datasets a
task requests, the higher is the probability that these datasets will
not be located at theDC site, given that the storage capacity of a site
is limited. The ConsCost and TotalCost algorithms exhibit smaller
DC probability than the Rand and ExecCost algorithms, since the
former algorithms select theDC site by taking into account the con-
solidation delay, which is small for sites holding many or all of the
datasets needed by a task. On the other hand, the Rand and Exec-
Cost algorithms select theDC site randomly or almost randomly (as
is the case for ExecCost, given that the tasks have negligible com-
putation complexity). As L increases, the probability of not finding
all the data at a site increases and converges to 1 for all examined
algorithms.

Fig. 5 shows the average task delay for the DC algorithms ex-
amined. We observe that the algorithms that take the data con-
solidation delay into account (namely, the ConsCost and TotalCost
1

0.8

0.6

0.4

0.2

0

D
C

 p
ro

ba
bi

lit
y

1 2 3 4 5 6 7 8 9

Number of Datasets Requested (L)

Rand

ConsCost

ExecCost

TotalCost

Fig. 4. The DC probability for the Rand, ExecCost, ConsCost and TotalCost DC
algorithms, when tasks request a different number of datasets L for their execution.
The average total data size per task is S = 600 GB.

2500

2000

1500

1000

500

0

A
ve

ra
ge

 T
as

k
D

el
ay

 (
se

c)

1 2 3 4 5 6 7 8 9

Number of Datasets Requested (L)

Rand

ConsCost

ExecCost

TotalCost

Fig. 5. The average task delay (in s) for the Rand, ExecCost, ConsCost and TotalCost
DC algorithms, when tasks request a different number of datasets L for their
execution. The average total data size per task is S = 600 GB.

algorithms) behave better than the algorithms that do not con-
sider this parameter (that is, the Rand and ExecCost algorithms), in
terms of the task delay. As the number L of datasets a task requires
increases, the average task delays of all the algorithms converge.
Specifically, for the ConsCost and TotalCost algorithms, the aver-
age task delay increases as the number of datasets a task requires
increases, since the probability that a DC site will not hold all the
data a task needs (i.e., the DC probability) also increases (Fig. 4), re-
sulting in more data transfer. In contrast, in the Rand and ExecCost
algorithms, the average task delay decreases as L increases, because
of the decrease in the size of the concurrent transferred datasets VI
(Eq. (10)). Thus, for the Rand and ExecCost algorithms that (almost)
randomly select the DC site, the data consolidation time and its im-
pact on the average task delay decrease as L increases.

Fig. 6 shows the average network load per task for the various
DC algorithms, when tasks request different number of datasets
L for their execution. We observe that the algorithms that do not
take into account the data consolidation delay (that is, the Rand
and ExecCost algorithms) induce, on average, a larger load on
the network than the algorithms that do take this into account
(ConsCost and TotalCost algorithms). This is because the former
algorithms transfer on average more data, over longer paths.
Moreover, the decisions made by these algorithms are not affected
by the dataset sizes VI or their number L, and as a result they
induce on average the same network load. By analyzing our
results, we observed that these algorithms transfer on average
the same number of bytes over paths of equal on average length,
irrespectively of L and VI . The superior performance of ExecCost
over that of Rand is because ExecCost assigns tasks to resources
in a more balanced way, based on the task execution times. That
is, it first assigns tasks to the most powerful resource, where tasks

190 P. Kokkinos et al. / Future Generation Computer Systems 27 (2011) 182–194
1400

1200

1000

800

600

400

200

0
1 2 3 4 5 6 7 8 9

Number of Datasets Requested (L)

A
ve

ra
ge

 N
et

w
or

k
Lo

ad
 p

er
 T

as
k

(G
B

)

Rand

ConsCost

ExecCost

TotalCost

Fig. 6. The average network load per task (in GB) for the Rand, ExecCost, ConsCost
and TotalCost DC algorithms, when tasks request a different number of datasets L
for their execution. The average total data size per task is S = 600 GB.

and their datasets are stored until they are executed. When this
resource does not have sufficient storage capacity to store the
dataset of the following tasks, the ExecCost algorithm chooses the
secondmost powerful resource, and so on. At some point this cycle
starts (more or less) all over again. In this way, there is a high
probability that consecutive tasks will find some of their required
datasets in the resource where they are assigned by the ExecCost
algorithm. This reduces the network load in comparison to the
Rand algorithm. Of course, this property does not appear in the
DC metric, since the resource selected by the algorithm changes
when it does not have any free space left. The algorithms that take
into account the data consolidation delay (namely, the ConsCost
and TotalCost algorithm) induce a smaller load on the network.
This load increases as the number of datasets L increases, as can be
explained by the increasing probability that a DC site will not hold
all the required data (Fig. 4), and will thus have to transfer more
datasets. In addition, these algorithms are affected mainly by the
tasks’ data dependencies, since their computational load is small
(see step 6 in Algorithm 1). Also, the TotalCost and the ConsCost
use the same policies for selecting the data replicas and the paths;
as a result, both algorithms perform similarly. We should note that
in all the experiments performed very few tasks failed (of the order
of 4–6 tasks per experiment).

5.3.2. Dimensioning task and resource related parameters
Fig. 7 illustrates the average delay and the average network

load induced per task for the proposed DC schemes, when tasks
become more CPU-intensive rather than data-intensive. In order
to examine this effect, we increased the parameter a used in Eq.
(11).Weobserve that the TotalCost algorithmperforms better in all
cases. When tasks are data-intensive, it achieves small task delay
andnetwork load, andbehaves similarly to the ConsCost algorithm.
As tasks become more CPU-intensive (higher values of parameter
α), the TotalCost algorithm continues to achieve small task delay
and behaves similarly to the ExecCost algorithm,while the average
task delay achieved by the ConsCost algorithm becomes very
large. Finally, the network load induced by the TotalCost algorithm
increases as tasks becomemore CPU-intensive, although it remains
smaller than that induced by the ExecCost and Rand algorithms.

Fig. 8illustrates the average delay and the average network load
per task for the proposed DC algorithms, as a function of the task
arrival rate λ. As expected, the average task delay increases for
all the algorithms examined when the task arrival rate increases.
Again, the ConsCost and TotalCost algorithms produced better
results than the Rand and ExecCost algorithms. We observe that
the ConsCost and TotalCost algorithms induce the same network
load per task, without being influenced by the increase in the task
arrival rate. In contrast, the network load induced by the Rand and
ExecCost algorithms decreases as the task arrival rate increases,
since their corresponding DC probability decreases rapidly. This
means that more tasks find a DC site that holds all the needed
datasets, and as a result the load induced to the network by the
various data transfers decreases.

We also performed a number of experiments assuming differ-
ent values for the number of sites that are equipped with compu-
tational and storage resources. In all our previous experiments, we
assumed that five such sites existed, while all the other nodeswere
acting as simple routers. Fig. 9 presents the results obtained when
varying the number of sites between two and ten, while keeping
the total storage capacity of the grid network the same as in the
case where we had only five sites. We observe that, as the number
of sites increases, the average task delay and the load induced to
the network also increase. This is because having a larger number
of sites increases the chance that the data will not be located at the
DC site or at sites close to that. As a result, more data transfers are
needed, increasing the task delay and network load.

5.3.3. Sum versus max operation used for defining the site access cost
In the ConsCost and TotalCost algorithms, we calculate the ac-

cess cost of each DC site, for a given task, as the maximum trans-
fer cost of any of the datasets (best replica of each dataset) the
task requires, and select the site with the minimum access cost.
This seems like the right thing to do, since the maximum cost
of a dataset is the one that influences the duration of the data
9000

8000

7000

6000

5000

4000

3000

2000

1000

A
ve

ra
ge

 T
as

k
D

el
ay

 (
se

c)

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

α (Data-Intensive vs CPU-Intensive)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

α (Data-Intensive vs CPU-Intensive)

Rand

ConsCost

ExecCost

TotalCost

Rand

ConsCost

ExecCost

TotalCost

1400

1600

1200

1000

800

600

400

200

0

A
ve

ra
ge

 N
et

w
or

k
Lo

ad
 p

er
 T

as
k

(G
B

)

a b

Fig. 7. (a) The average task delay (in s) and (b) the average network load per task (in GB) for the Rand, ExecCost, ConsCost and TotalCost DC algorithms, when tasks become
more CPU-intensive rather than data-intensive (increasing values of parameter α) for average total data size per task S = 800 GB.

P. Kokkinos et al. / Future Generation Computer Systems 27 (2011) 182–194 191
A
ve

ra
ge

 N
et

w
or

k
Lo

ad
 p

er
 T

as
k

(G
B

)

A
ve

ra
ge

 T
as

k
D

el
ay

 (
se

c)

a b

1400

1600

1800

1200

1000

800

600

400

200

0

0

0.2

0.4

0.6

0.8

1
D

C
 p

ro
ba

bi
lit

y

Rand

ConsCost

ExecCost

TotalCost

Rand

ConsCost

ExecCost

TotalCost

Rand

ConsCost

ExecCost

TotalCost

4500

4000

3500

3000

2500

2000

1500

1000

500

0
25 45 65 85 105 125 145 165 185 205 225

Task Arrival Rate (tasks/sec)

25 45 65 85 105 125 145 165 185 205 225

Task Arrival Rate (tasks/sec)

25 45 65 85 105 125 145 165 185 205 225

Task Arrival Rate (tasks/sec)

c

Fig. 8. (a) The average task delay (in s) and (b) the average network load per task (in GB) and (c) the DC probability for the Rand, ExecCost, ConsCost and TotalCost DC
algorithms, as a function of the average task arrival rate γ . The average total data size per task is S = 800 GB.
A
ve

ra
ge

 T
as

k
D

el
ay

 (
se

c)

Rand

ConsCost

ExecCost

TotalCost

Rand

ConsCost

ExecCost

TotalCost1400

2000

1800

1600

1200

1000

800

600

400

200

0

1400

2000

1800

1600

1200

1000

800

600

400

200

0

A
ve

ra
ge

 N
et

w
or

k
Lo

ad
 p

er
 T

as
k

(G
B

)

a b

Number of Sites

1 2 3 4 5 6 7 8 9 10

Number of Sites

1 2 3 4 5 6 7 8 9 10

Fig. 9. (a) The average task delay (in s) and (b) the average network load per task (in GB) for the Rand, ExecCost, ConsCost and TotalCost DC algorithms, when the number
of sites increases. The average total data size per task is S = 800 GB.
consolidation operation. However,we also performed experiments
in which we calculated the access cost of each site by summing the
times required to access the datasets (best replica of each dataset).
This approach was followed in [26–28] for the sequential (and not
concurrent) datasets access scenario.

For our experiments, we changed the TotalCost algorithm in or-
der to calculate the access cost of each site as the sum of the ac-
cess costs for each dataset required by the corresponding task. We
named this new algorithm TotalCostSUM. In Fig. 10 we observe
that the TotalCost algorithm achieves smaller task delay than the
TotalCostSUM algorithm. We note that, when a task requests only
a small number of datasets (<4), the two algorithms perform sim-
ilarly, since the sum and max operations result in most cases in
the selection of the same site for task execution. However, as the
number of datasets increases, the TotalCost algorithm outperforms
the TotalCostSUM, showing the importance of considering the
transfers of all the datasets jointly. On the other hand, the Total-
CostSUM algorithm results in a slightly smaller network load than
the TotalCost algorithm.

We performed a number of additional experiments under a
variety of scenarios and assumptions on the traffic load. Our re-
sults indicated that in a number of cases, especially for very large
task loads, the TotalCostSUM algorithm outperformed the Total-
Costwith respect to the task delaymetric. In these heavy load cases
it seems that considering the sum of the transfer access costs of the
datasets, as a metric for selecting the consolidation site, is a better
optimization criterion than considering themaximumdataset’s ac-
cess cost. This is probably expected for heavy loads, since the sum

192 P. Kokkinos et al. / Future Generation Computer Systems 27 (2011) 182–194
700

600

500

400

300

200

100

0

600

500

400

300

200

100

0

1 2 3 4 5 6 7 8 1211109

Number of Datasets Requested (L)

1 2 3 4 5 6 7 8 1211109

Number of Datasets Requested (L)

A
ve

ra
ge

 N
et

w
or

k
Lo

ad
 p

er
 T

as
k

(G
B

)

A
ve

ra
ge

 T
as

k
D

el
ay

 (
se

c)

TotalCostSUM

TotalCost
TotalCostSUM

TotalCost

a b

Fig. 10. (a) The average task delay (in s) and (b) the average network load per task (in GB), for the TotalCost and the TotalCostSUM DC algorithms, when tasks request a
different number of datasets L for their execution. The average total data size per task is S = 800 GB.
1400

1200

1000

800

600

400

200

0

A
ve

ra
ge

 T
as

k
D

el
ay

 (
se

c)

1 2 3 4 5 6 7 8 9

Number of Datasets Requested (L)

450

400

350

300

250

200

150

0

A
ve

ra
ge

 N
et

w
or

k
Lo

ad
 p

er
 T

as
k

(G
B

)

1 2 3 4 5 6 7 8 9

Number of Datasets Requested (L)

100

50

Total Cost-MST

Total Cost-Q

Total Cost

MST-Cost

Total Cost-MST

Total Cost-Q

Total Cost

MST-Cost

a b

Fig. 11. (a) The average task delay (in s) and (b) the average network load per task (in GB), for the TotalCost, TotalCost-Q, TotalCost-MST andMST-Cost DC algorithms, when
tasks request a different number of datasets L for their execution. The average total data size per task is S = 800 GB.
of the transfer access costs is related to the load induced in the net-
work (which at heavy loads has a great effect on the delay), while
for light load the maximum of the access costs is a better mea-
sure of the data consolidation delay. These results also indicate the
complexity of the DC operation and its dependency on a number of
different parameters, such as the network congestion investigated
next.

5.3.4. Tree and queuing delay based schemes
We performed a number of simulations with the TotalCost-Q,

TotalCost-MST and MST-Cost DC algorithms, and compared them
with the TotalCost algorithm. Our results show that tree-based
algorithms and especially Minimum Spanning Tree algorithms,
fit quite well to the DC problem and can considerably improve
performance. Moreover, we show that taking into account the
queuing delays is not so beneficial, and does not justify the com-
munication and processing overhead required for communicating
such information across the network. Finally, it seems that the or-
der in which the DC operations are performed, and in particular
the order in which the corresponding DC subproblems are solved,
significantly affects the efficiency of the DC schemes.

In Fig. 11, we observe that the TotalCost-MST algorithm per-
forms better than the TotalCost and the TotalCost-Q algorithms.
The TotalCost-MST algorithm makes, in most case, similar deci-
sions regarding the selection of the data holding sites and the DC
site with the other algorithms. This is confirmed by the DC prob-
ability graph, which is identical for all the algorithms. However,
the TotalCost-MST algorithm builds more efficient paths than the
Dijkstra algorithm, resulting in smaller network load and aver-
age task delay. Furthermore, we observe that the TotalCost-Q al-
gorithm produces only slightly better results than the TotalCost
algorithm, though the former takes queuing delays into account.
Generally, the sizes of the queue lengths must be large (corre-
sponding to many and/or large entries), in order for the queu-
ing delays to have a noticeable effect. So, in many practical cases,
the knowledge of the links queuing delay is not necessary for
making efficient DC-related decisions. Finally, we observe that the
MST-Cost algorithm produces worse results than the TotalCost,
TotalCost-Q and TotalCost-MST algorithms. This occurs because, by
applying aMST algorithm first, we limit the number of links, and as
a result the number of possible decisions one can make regarding
the data repository and the DC sites. This has a significant negative
effect on the final results.

5.3.5. Data consolidation and resiliency
An important issue for Data Consolidation (DC) schemes is the

resiliency they can provide against failures of storage or network
resources. In this section, we combine the proposed DC schemes
with two simple resiliency techniques and examine their perfor-
mance. In the first technique, calledDouble Site,we select twoData
Consolidation sites, namely, the ones that are best and second best
according to the corresponding DC scheme used, and we transfer
the required datasets to both sites. The task is transferred only to
the first site, while the other is used as a backup in case the first
site fails. In the second technique, called Half Data, we again se-
lect in the same way two DC sites, but in the second-best site we

P. Kokkinos et al. / Future Generation Computer Systems 27 (2011) 182–194 193
0

0.2

0.4

0.6

0.8

1

Number of Datasets Requested (L) Number of Datasets Requested (L)

T
as

k
S

uc
ce

ss
 R

at
io

0

0.2

0.4

0.6

0.8

1

T
as

k
S

uc
ce

ss
 R

at
io

Total Cost-MST

Total Cost-MST_Double

Total Cost-MST_HalfData

Total Cost

Total Cost_Double

Total Cost_HalfData

a b

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Fig. 12. The task success ratio (a) without and (b) with MST-based routing algorithms for the routing of the datasets, when tasks request a different number of datasets L
for their execution. The average total data size per task is S = 800 GB.
transfer only half (in size) of the datasets needed by the task. This
waywe reduce the load induced to the network, butwe also reduce
the resiliency efficiency, since in a case of failure at the first DC site,
the rest of the datawill have to be transferred to the secondDC site.

When one of the proposed resiliency techniques is applied then
the network load increases and the storage resources occupied
are also increased, reducing the grid’s ability to serve future
task requests and increasing task delay. This results in longer
reservation times of the storage resources and, consequently, it
may be impossible for the scheduler to find a resource with
sufficient free storage space where a new task’s datasets can
consolidate. In this case, the task cannot be scheduled and it fails.
An efficient DC scheme that better handles network congestion
can achieve smaller task delay and smaller storage resource
reservation time per task, and as a result larger task success
ratios. This is indicated in Fig. 12, where the TotalCostMST_Double
algorithm achieves resiliency, while reducing network congestion
and achieving larger task success ratios than the TotalCost_Double
algorithm. We should note that in the Double Site technique more
datasets are transferred, and the success ratio is generally smaller
than in the Half Data technique. However, we observe that when
the MST approach is used (Fig. 12(b)) the TotalCostMST_Double
and the TotalCostMST_HalfData schemes achieve similar task
success ratios. Generally, these results indicate the importance
of concurrently transferring datasets and carefully choosing
the routing paths followed (e.g., tree-based Data Consolidation
scheme) so as to decrease network congestion. Finally, we should
note that the incorporation of the described resiliency techniques
into the Data Consolidation schemes does not increase their
complexity appreciably.

6. Conclusions

In this work, we have examined the Data Consolidation (DC)
problem in grid networks. The DC problem arises when a task
needs for its execution, concurrently, two or more pieces of data,
possibly scattered throughout the grid network, and consists of
three subproblems: (i) the selection of the repository site from
which to obtain the replica of each dataset to be used for task exe-
cution, (ii) the selection of the site where these datasets will accu-
mulate and the task will be executed, and (iii) the selection of the
paths the datasets will follow as they are transferred over the net-
work. These subproblems can be solved jointly or independently.
To the best of our knowledge, this is the first time that these is-
sues have been jointly considered. We have proposed a number
of DC schemes, of polynomial number of required operations, that
consider data consolidation, task execution and/or queuing delays,
and have evaluated them under a variety of scenarios and choices
for the parameters involved. Our simulation results indicated that
the DC schemes that consider both the computation and the com-
munication requirements of the tasks behave better than those
that consider only one of them. We also showed the importance
of optimizing the concurrent transfers of the datasets required for
a task’s execution. In particular, by usingMinimum Spanning Trees
instead of Shortest Paths for routing the datasets concurrently, we
reduced the network congestion that may appear in the future due
to these transfers. Our results also indicated that applying graph
theory concepts, and specifically Minimum Spanning Tree algo-
rithms, in theDC problem can be quite beneficialwhen considering
resiliency issues. Moreover, we showed that in many cases consid-
ering the link queue lengths is not necessary for performing the DC
operation efficiently. Finally, our simulation results showed that
for light load the maximum of the access costs is a better measure
of the data consolidation delay than the sum, while the opposite is
true for heavy loads.

Acknowledgement

This work has been supported by the European Commission
through the IP Phosphorus project.

References

[1] E. Laure, S.M. Fisher, Á. Frohner, C. Grandi, P. Kunszt, A. Krenek, O. Mulmo,
F. Pacini, F. Prelz, J. White, M. Barroso, P. Buncic, F. Hemmer, A. Di Meglio, A.
Edlund, Programming the grid with gLite, Computational Methods in Science
and Technology 12 (2006) 33–45.

[2] A. Kretsis, P. Kokkinos, E. Varvarigos, Developing scheduling policies in gLite
middleware, Cluster Computing Grid (2009) 20–27.

[3] D.S. Katz, et al., Astronomical image mosaicking on a grid: initial experiences,
in: Engineering the Grid—Status and Perspective, American Scientific Publish-
ers, 2006.

[4] KoDaVis: http://www.viola-testbed.de/index.php?id=kodavis.
[5] R. Wolski, N. Spring, J. Hayes, The network weather service: a distributed re-

source performance forecasting service for metacomputing, Future Genera-
tion Computer Systems 15 (1999) 757–768.

[6] J. Dean, S. Ghemawat,Mapreduce: simplified data processing on large clusters,
in: Symposium on Operating System Design and Implementation, 2004.

[7] K. Krauter, R. Buyya, M. Maheswaran, A taxonomy and survey of grid resource
management systems for distributed computing, Software: Practice and
Experience 32 (2) (2002) 135–164.

[8] T. Braun, et al., A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed computing systems,
Journal of Parallel and Distributed Computing 61 (6) (2001) 810–837.

[9] V. Subramani, R. Kettimuthu, S. Srinivasan, P. Sadayappan, Distributed job
scheduling on computational grids using multiple simultaneous requests, in:
HPDC, USA, 2002.

[10] Y. Cardinale, H. Casanova, An evaluation of job scheduling strategies for
divisible loads on grid platforms, in: HPC&S, 2006.

[11] R. Buyya, M. Murshed, D. Abramson, S. Venugopal, Scheduling parameter
sweep applications on global grids: a deadline and budget constrained cost-
time optimisation algorithm, International Journal of Software: Practice and
Experience (SPE) 35 (5) (2005) 491–512.

http://www.viola-testbed.de/index.php?id%3Dkodavis

194 P. Kokkinos et al. / Future Generation Computer Systems 27 (2011) 182–194
[12] K.H. Kim, R. Buyya, Fair resource sharing in hierarchical virtual organizations
for global grids, in: Intl. Conf. on Grid Computing, 2007.

[13] N. Doulamis, E. Varvarigos, T. Varvarigou, Fair scheduling algorithms in grids,
Transactions on Parallel and Distributed Systems 18 (11) (2007) 1630–1648.

[14] P. Kokkinos, E. Varvarigos, A framework for providing hard delay guarantees
and user fairness in grid computing, Future Generation Computer Systems 25
(6) (2009) 674–686.

[15] H. Shan, L. Oliker, W. Smith, R. Biswas, Scheduling in heterogeneous grid
environments: the effects of data migration, in: Intl. Conference on Advanced
Computing and Communication, 2004.

[16] R. Rahman, K. Barker, R. Alhajj, Study of different replica placement and
maintenance strategies in data grid, in: IEEE/ACM International Symposium
on Cluster Computing and Grid, 2007, pp. 171–178.

[17] R. Rahman, K. Barker, R. Alhajj, Replica placement strategies in data grid,
Journal of Grid Computing 6 (1) (2008) 103–123.

[18] A. Dogan, A study on performance of dynamic file replication algorithms for
real-time file access in data grids, Future Generation Computer Systems 25 (8)
(2009) 829–839.

[19] R.M. Rahman, K. Barker, R. Barker, A predictive technique for replica selection
in grid environment, in: Intl. Symposium on Cluster Computing and the Grid,
2007, pp. 163–170.

[20] S. Vazhkudai, S. Tuecke, I. Foster, Replica selection in the globus data grid, in:
Intl. Symp. on Cluster Computing and the Grid, 2001.

[21] J. Byers, M. Luby, M. Mitzenmacher, Accessing multiple mirror sites in
parallel: using tornado codes to speed up downloads, in: IEEE INFOCOM, 1999,
pp. 275–283.

[22] P. Rodriguez, E. Biersack, Dynamic parallel access to replicated content in the
internet, IEEE/ACM Transactions on Networking 10 (4) (2002) 455–465.

[23] R. Chang, M. Guo, H. Lin, A multiple parallel download scheme with server
throughput and client bandwidth considerations for data grids, Future
Generation Computer Systems 24 (8) (2008) 798–805.

[24] K. Ranganathan, I. Foster, Decoupling computation and data scheduling in
distributed data-intensive applications, in: Intl. High Performance Distributed
Computing Syumposium, 2002, pp. 352–358.

[25] A. Elghirani, R. Subrata, A. Zomaya, Intelligent scheduling and replication in
datagrids: a synergistic approach, in: Symposium on Cluster Computing and
the Grid, 2007, pp. 179–182.

[26] W.HBell, D.G Cameron, L. Capozza, A.P.Millar, K. Stockinger, F. Zini, Simulation
of dynamic grid replication strategies, optorsim, in: LNCS, vol. 2536, 2002,
pp. 46–57.

[27] W. Bell, D. Cameron, L. Capozza, A. Millar, K. Stockinger, F. Zini, Optorsim: a
grid simulator for studying dynamic data replication strategies, International
Journal of High Performance Computing Applications 17 (4) (2003) 403–416.

[28] D. Cameron, A.Millar, C. Nicholson, R. Carvajal-Schiaffino, F. Zini, K. Stockinger,
Optorsim: a simulation tool for scheduling and replica optimisation in data
grids, in: Computing in High Energy and Nuclear Physics, 2004.

[29] A Chakrabarti, R. Dheepak, S Sengupta, Integration of scheduling and
replication in data grids, in: LNCS, vol. 3296, 2004, pp. 375–385.

[30] Phosphorus: http://www.ist-phosphorus.eu/.
[31] G. Hoo, W. Johnston, I. Foster, A. Roy, QoS as middleware: bandwidth reser-

vation system design, in: Intl. Symposium on High-Performance Distributed
Computing, HPDC, 1999, pp. 345–346.

[32] I. Foster, et al., A distributed resource management architecture that supports
advance reservations and co-allocation, in: Intl. Workshop on Quality of
Service, IWQoS, 1999.

[33] T. Stevens, M. De Leenheer, C. Develder, B. Dhoedt, K. Christodoulopoulos,
P. Kokkinos, E. Varvarigos, Multi-cost job routing and scheduling in grid
networks, Future Generation Computer Systems 25 (8) (2008) 912–925.

[34] P. Kokkinos, K. Christodoulopoulos, A. Kretsis, E. Varvarigos, Data consolida-
tion: a task scheduling and datamigration technique for grid networks, Cluster
Computing Grid (2008) 722–727.

[35] Peter A. Dinda, Online prediction of the running time of tasks, Cluster
Computing Grid 5 (3) (2002) 225–236.
[36] N. Doulamis, A. Doulamis, A. Litke, A. Panagakis, T. Varvarigou, E. Varvarigos,
Adjusted fair scheduling and non-linear workload prediction for QoS
guarantees in grid computing, Computer Communications 30 (2007) 499–515.

[37] L. Esau, K. Williams, On teleprocessing system design, IBM Systems Journal 5
(1966) 142–147.

[38] Ns—network simulator. http://www.isi.edu/nsnam/.
[39] Boost: http://www.boost.org/.
[40] W. Hoschek, F. Jaén-Martínez, A. Samar, H. Stockinger, K. Stockinger, Data

management in an international data grid project, in: Intl. Workshop on Grid
Computing, 2000.

[41] EGEE: http://www.eu-egee.org/.

Panagiotis Kokkinos received his Diploma in Computer
Engineering and Informatics in 2003, andhisM.S. degree in
Integrated Software and Hardware Systems in 2006, both
from the University of Patras, Greece. He has worked in
the private sector. He is currently a Ph.D. student in the
Department of Computer Engineering and Informatics of
the University of Patras. His research activities are in the
areas of ad hoc networks and grid computing.

Konstantinos Christodoulopoulos received his Diploma
of Electrical and Computer Engineering from the National
Technical University of Athens, Greece, in 2002, and his
M.Sc. degree in Advanced Computing from Imperial Col-
lege London, UK, in 2004. He received his Ph.D. degree
from the Computer Engineering and Informatics Depart-
ment of the University of Patras, Greece. His research in-
terests are in the areas of protocols and algorithms for
optical networks and grid computing.

Emmanouel (Manos) Varvarigos received his Diploma in
Electrical and Computer Engineering from the National
Technical University of Athens in 1988, and his M.S. and
Ph.D. degrees in Electrical Engineering and Computer
Science from the Massachusetts Institute of Technology in
1990 and 1992, respectively. He has held faculty positions
at the University of California, Santa Barbara (1992–1998,
as an Assistant and later an Associate Professor) and Delft
University of Technology, the Netherlands (1998–2000, as
an Associate Professor). In 2000 he became a Professor in
the Department of Computer Engineering and Informatics

at the University of Patras, Greece, where he heads the Communication Networks
Laboratory. He is also the Director of the Network Technologies Sector (NTS) at
the Research Academic Computer Technology Institute (RA-CTI), which, through
its involvement in pioneering research and development projects, has a major
role in the development of network technologies and telematic services in Greece.
Professor Varvarigos has served on the organizing and program committees of
several international conferences, primarily in the networking area, and on national
committees. He has also worked as a researcher at Bell Communications Research,
and has consulted with several companies in the US and in Europe. His research
activities are in the areas of protocols for high-speed networks, ad hoc networks,
network services, parallel and distributed computation and grid computing.

http://www.ist-phosphorus.eu/
http://www.isi.edu/nsnam/
http://www.boost.org/
http://www.eu-egee.org/

	Efficient data consolidation in grid networks and performance analysis
	Introduction
	Previous work
	Problem formulation
	Data consolidation
	Data consolidation delays
	Proposed schemes
	Number of operations for serving a task

	Performance evaluation
	Simulation environment
	Performance metrics
	Simulation results
	Basic schemes
	Dimensioning task and resource related parameters
	Sum versus max operation used for defining the site access cost
	Tree and queuing delay based schemes
	Data consolidation and resiliency

	Conclusions
	Acknowledgement
	References

