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Abstract— In this paper a performance analysis of the packet 
scheduling switch is presented. The scheduling switch uses a 
series of feed forward delays interconnected with elementary 
optical switches. This series of programmable delay blocks 
constitute an optical buffer of depth T, whose purpose is to 
delay/re-arrange incoming packets that request the same 
outgoing link so as to resolve or reduce packet contention. 
Performance results have been obtained for random Bernoulli 
traffic, Pareto traffic, as well as for smooth traffic with an upper 
bound of inherent burstiness. 
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I. INTRODUCTION  
Several innovative packet switch architectures have been 

proposed so far, including switches with re-circulating loops 
[1], the Staggering switch [2], the Switch with Large Optical 
Buffers (SLOB) [3], the Wavelength Routing Switch and the 
Broadcast (WRS) and Select Switch (BSS) [4]. However, work 
on new architectural concepts, node’s performance, and 
intelligent control have lagged behind progress in transmission 
speeds.  

Switches with recirculating loops were the first optical 
packet switches to address the high bandwidth and buffering 
issues [1]. This solution however increases switch block 
complexity, since for an NxN switch with L delay lines for 
buffering, instead of an NxN, an (N+L)x(N+L) space switch is 
required [5]. The Staggering switch was the first optical switch 
designed to truly emulate an output-buffered switch [2]. 
Although very promising and influential, this design exhibits 
unnecessary packet delays and unsatisfactory packet loss 
characteristics for bursty traffic. Reduction of the packet loss 
rate for bursty traffic is achieved by cascading many small 
output-buffered switches, consequently increasing costs, to 
arrive at a larger buffer depth. The SLOB is an example of 
such a design [3]. Renaud et al [4] detailed two WDM shared 
output-buffered packet switching architectures, namely the 
WRS and the BSS switch, that were developed through the 
ACTS KEOPS (Keys to Optical Packet Switching) project. The 
WRS is a two-stage switch that first buffers conflicting packets 
before routing them to their desired output, where a tunable 
wavelength converter is used to route packets to the appropriate 
delay line and output port respectively. The BSS architecture is 
one of the few proposed architectures that can easily provide 
multicasting. In addition, it can be used as the building block in 

a multi-stage switch, to allow for a modular growth, up to 
several hundreds of switch I/Os. 

In this paper, we analyze the performance of the optical 
packet scheduling switch [6] for random Bernoulli traffic, 
Pareto traffic, as well as for constrained and unconstrained 
bursty traffic patterns. The scheduling switch uses a series of 
feed forward delays interconnected with optical switches to 
resolve internally packet contention, and it is guaranteed to be 
lossless when a certain smoothness property holds. In this 
paper we investigate the packet loss performance of the switch 
when this smoothness property does not hold. The analysis 
carried out shows that the scheduling switch exhibits very low 
packet loss ratio for random Bernoulli traffic, while it allows 
lossless communications for sessions that are subject to an 
upper bound of burstiness, hereinafter called (n,T) smoothness 
property. The remainder of the paper is organized as follows. 
Section II presents the scheduling switch architecture and the 
(n,T) smoothness property. Section III presents performance 
evaluation results, while Section IV concludes the paper and 
proposes some future work. 

II. SWITCH ARCHITECTURES AND SMOOTHED TRAFFIC 
MODEL  

The scheduling switch has been designed to provide 
lossless communication for sessions that have a certain 
burstiness property or can be transformed to sessions with such 
a property, tolerating the corresponding delay. It consists of a 
scheduling unit with k input/output ports, and a kxk non-
blocking space switch, as shown in Figure 1. Each branch 
delays the incoming packets, assigning packets to outgoing 
slots resolving contention and maintaining packet ordering for 
the same outgoing link. The problem of scheduling packets 
through a branch of delay blocks to avoid collisions is a 
problem of routing a permutation between inputs and outputs 
in the equivalent Benes network, where non-overlapping paths 
in the network correspond to collision-free transmission 
through the delay blocks [6].  

Each delay branch consist of 2m-1 delay blocks, where 
m = logT. T is assumed to be a power of 2 and corresponds to 
the maximum number of sequential packets from all incoming 
links that request the same output and can be served with no 
contention. The ith

 block consists of a three-state (or two 2x2) 
optical switch and three fiber delay paths, corresponding to 
delays equal to 0, 2i

 and 2i+1
 packet slots. To ensure that the 

packets in the incoming frame can be assigned to any slot in 
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the outgoing frame, the latter must start at least (3T)/2-2 after 
the incoming frame begins. Such an input queuing scheme can 
be viewed as implementing an optical packet buffer of depth T 
[7]. One of the major advantages of the scheduling packet 
switch is its modular buffering scheme design that can be 
easily expanded to accommodate more burstiness in the traffic 
(in a way similar to the way electronic buffers can be expanded 
in a conventional electronic switch). The cost of the switch, 
when measured in terms of the elementary switching elements 
it requires, grows only logarithmically with T. 

A corresponding traffic model that can guarantee lossless 
communication must be based on the aforementioned buffering 
scheme. To this end, we assume that the time axis on a link is 
divided into packet slots of equal length and every T slots are 
virtually grouped to form a frame. This concept is illustrated in 
Figure 2. Packets are grouped in T-size frames before entering 
the switch, while frame integrity is maintained at the output as 
well. A session is said to have the (n,T)- smoothness property  
at a node if at most n packets of the session arrive at that node 
during a frame of size T. A session can easily be transformed to 
have the (n,T) – smoothness property at the ingress point of the 
network while this property can be preserved throughout a 
network consisting of scheduling switches, due to frame 
integrity maintenance. 

We let nij be the number of packets that arrive during a 
frame over incoming link i and have to be transmitted on link j, 
and k the number of incoming (and outgoing) links of a node. 
If the connection and flow control protocols used guarantee 
that the number of packets which require the same outgoing 
link j in a frame is less than or equal to the frame size T, i.e., 

 

for all j ∈{1,2,..k }.             (1) 

 

then all of the incoming packets can be assigned slots in the 
required outgoing links so that no packets are dropped. Both 
wait-for-reservation and tell-and-go protocols can be used to 
ensure that this property is met. The frame size T is an 
important parameter and can be viewed as a measure of the 
traffic burstiness allowed. The larger T is, the less constrained 
(more bursty) is the incoming traffic allowed to be, and the 

larger is the flexibility –granularity– in assigning rates to 
sessions. For example if each link in a network has capacity C 
and a session has the (n,T)-smoothness property, then this 
session will have an average rate of at most nC/T, implying that 
capacity can only be allocated in discrete multiples of C/T. It is 
important to note that this is not circuit switched data, but 
instead, this is packet switching with built-in flow control to 
ensure lossless transmission. Packets from a particular source 
do not arrive in the same slot and the number of packets that 
arrive per frame is not constant, but is bounded by n. 

III. SCHEDULING SWITCH PERFORMANCE 
In this section, we present results on the packet loss 

performance of the scheduling switch for random Bernoulli 
traffic, for bursty traffic based on a truncated Pareto packet 
distribution model, as well as for (n,Ttraffic) smooth traffic with 
a parameter Ttraffic different than the corresponding parameter T 
used in the switch design. For the aforementioned case studies, 
the scheduling switch is considered as a packet switch with k 
input buffers, each with T available packet slots.  

Regarding our first traffic scenario, we assume that packets 
arrive at each switch input according to a binomial process, and 
their destinations are uniformly distributed over all output 
ports. In reality, traffic is much more bursty than that; more 
specifically, Internet and voice traffic have been shown to be 
better modeled by Pareto and exponentially distributed 
statistics, respectively. The model of independent Bernoulli 
processes is the simplest model that can be considered, 
resulting in a tractable analysis, while still yielding an 

 
Figure 2: Incoming and outgoing frames at a node. Packets arriving in a 
particular frame of an incoming link that want to use the same outgoing 
link are sent over the same frame of the outgoing link. 

 
Figure 1: The Scheduling Switch architecture, consisting of the Scheduler (k inputs) and a kxk space switch. The Scheduler comprises of k branches, 
each with 2log2T-1 delay blocks. The i-th delay block consists of one three-state switch and three delay lines of length 0, 2i and 2i+1 packet slots. 
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appreciation of switch performance. More bursty models for 
the traffic will be considered later. 

Assuming that packets arrive independently at each 
incoming slot with probability p, then the probability of having 
i packets arrivals during the kT slots of the k incoming frames 
requesting the same output j, j = 1…k, and assuming uniformly 
distributed destinations is: 

                         

                     (2) 

 

The packet loss ratio can then be easily calculated as:  

       

 

 

 

 

 

 

 

(3) 

 

In obtaining this equation, we used the fact that the switch 
maintains frame integrity and that if more than T packets arrive 
during the k incoming frames heading for output j, the excess 
packets are lost. Figure 3(a) and (b) show the packet loss ratio 
as a function of link utilization for a scheduling switch with 
k=2 and k=4 input/output ports, while T is varied from 2 to 
1024. From Figure 3, it can be seen that the packet loss ratio is 
very low for values of T higher than 32 and p < 0.8. The 
parameter T can also be viewed as a measure of the buffer size 
available per input. The buffering that can be accomplished 
with the scheduling switch is considerably higher than the 
buffering that can be accomplished with other switch 
architectures that use e.g. fiber delay lines [4],[5], for the same 
implementation cost, because of the logarithmic dependence of 
the complexity of the scheduling switch on T.  

Although the scheduling switch is quite complex requiring 
the integration of numerous elementary switches, however 
improvement in its architecture with state-of the art, all-optical 
technologies can downsize its cost and complexity [8]. We 
believe that the scheduling switch architecture, where buffering 
is accomplished using a logarithmic number of elementary 2x2 
optical switches, offers a feasible way to design modular, high 
capacity all-optical buffers that can take advantage of statistical 
multiplexing. This is more clear in Figure 4(a) and (b) that 
display, for a given utilization factor, the way the packet loss 
ratio varies with T. From these figures, it can be seen that the 
loss ratio drops very fast as T increases. Even with 100% 
utilization (p=1), PLR can be very small when T is of the order 
of 1024 or larger. Increasing T by a factor of 2 requires the 
addition of two delay blocks –and thus four 2x2 switches– per 

switch port.  The modularity of the scheduling architecture 
design allows us to increase the throughout or be able to 
accommodate more bursty traffic for a given PLR with only a 
moderate increase in the complexity and the cost of the switch. 

In our second case study, we assume that the incoming 
traffic obeys the (n,T) smoothness property, but with a 
parameter T higher than the one the scheduling switch has been 
designed to tolerate. More specifically, we assume that the 
parameter T of the traffic, denoted by Ttraffic, is an integer 
multiple of the corresponding parameter T of the switch, 
denoted by Tswitch. The ratio Ttraffic / Tswitch can be treated as an 
index of the traffic burstiness in a Scheduling-switch based 
optical network. The link utilization is assumed to be equal to 
p, meaning that the total number of packets arriving over all 
inputs in an incoming frame of size Ttraffic that request the same 
outgoing link j is:  

traffic

k

i
ji pTn =∑

=1
,

        for all outputs j. 

The position of the packets of an (n,Ttraffic) smooth session 
within an incoming frame is assumed to be distributed 
uniformly among all slots of the incoming frame of size Ttraffic. 
The probability of having i packets within the Tswitch first slots 

 
Figure 3: Packet loss ratio for (a) k=2 and (b) k=4 for binomial packet 
traffic and uniformly distributed destinations 

 
Figure 4: Packet loss ratio versus T for (a) k=2 and (b) k=4 and for a 
utilization p = {0.1, 0.2,…1}. For p=1, packet loss ratio is 9·10-3 and 
11·10-3, when T=210 for k=2 and k=4 respectively. 
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of the k incoming frames is:  

                           

  
  

         (4) 

 

 

From Eq. (4) we can easily derive the corresponding packet 
loss ratio: 

        (5) 

In the above packet loss ratio calculation, we have used the fact 
that the pTtraffic packets that arrive per incoming frame and 
request output j are evenly distributed within the frame of size 

Ttraffic, and can arrive in any of the 








traffic

traffic

pT
kT

possible 

combinations. If more than Tswitch packets arrive during the first 
kTswitch incoming slots, the excess packets will be dropped. 
Figure 5a and b display the loss probability curves for k =2 and 
k = 4. In these figures, fixed values of Tswitch equal to 2 and 16 
have been considered, while Ttraffic is varied to integer multiples 
of the aforementioned Tswitch values. It is worth noting that Eq. 
(5) is valid only for pTtraffic > Tswitch, while for pTtraffic = Tswitch 
or Ttraffic = Tswitch, the packet loss ratio is zero for any utilization 
factor p. From both figures it can be seen that when 
Ttraffic/Tswitch increases (beyond 2), the packet loss ratio 
decreases. This is primarily due to the burstiness averaging as a 
result of the numerous possible packet distributions within a 
Ttraffic frame. 

In the third traffic model we consider, we investigate the 
performance of the scheduling switch under a heavy-tailed 
truncated Pareto distribution, which is considered by many 
researchers as a good model for burst traffic in real networks. 
In our model, packets arrive in bursts (ON periods), which are 
separated by idle periods (OFF periods). To generate a Pareto-
distributed sequence of ON periods, one can generate a Pareto-
distributed sequence of burst (packet train) sizes, followed by 
Pareto-distributed idle times. The minimum burst size is 1 
corresponding to a single packet arrival. The formula to 

generate a Pareto distribution is: 
a

PARETO
x

bX 1= , where x is 

a uniformly distributed value in the range (0, 1], b is the 
minimum non-zero value of XPARETO, denoted by bon and boff for 

the packet train and idle period respectively and a the tail index 
or shape parameter of the Pareto distribution. However 
computer simulations using the above formula generate a 
truncated Pareto distribution, because of the discreet x value. 
On the contrary, any true Pareto distribution of sufficiently 
large length will have values that exceed the range generated 
by computer simulations. To this end, since the mean size of 
the truncated Pareto distribution differs from the mean size of a 
true one, the question that rises is which is the minimum 
possible idle period so that on average the truncated Pareto 
distribution yields a link utilization factor of p. In order to 
define boff, we have assumed, first fixed length packets and 
secondly idle periods to be equal to an integer multiple of a 
single –fixed length- packet. To this end, by expressing the 
utilization factor p as the mean size of ON period over mean 
size of ON and OFF periods:                         

periodperiod

period

OFFON
ONp

+
=                                                   (6) 

  
, calculating the mean value of the truncated Pareto 

distribution, which does not exceed the value 
a

Pareto

x

bX
1

min

max = , 

as shown below: 
 

 (a) 

 
(b) 

 
Figure 5: Packet loss ratio for (a) Tswitch=2 and (b) Tswitch= 16, versus the 
Ttraffic / Tswitch ratio for a k=2 and k=4 scheduling switch and a utilization p 
= {0.25, 0.5, 0.75, 1}. Ttraffic is varied from 2Tswitch to 210. 
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Figure 6: Packet loss ratio for (a) k=2 and (b) k=4 versus link utilization 
for T є [2…64]. Packet arrivals and idle periods follow a truncated 
Pareto distribution with a tail index of 1.7 and 1.2 respectively. 









−

−∫ ==∫=
−

+
a

aX

b
a

aX

b
x

a
abdx

x
abxdxxxfxE

ParetoPareto
1

min1 1
1

)()(
maxmax

       (7) 

 
and substituting eq. (7) to (6), the minimum idle period as a 
function of link utilization can be derived [9]:  
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In the above equations, f(x) is the probability density function 
of the Pareto distribution, xmin is the smallest non-zero value of 
x that is uniformly distributed in (0,1], and αon, αoff are the tail 
indices for the packet train and idle period size respectively. It 
is worth noticing here that our intention was to generate traffic 
load being very close to the specified load with all 
combinations of aon, and aoff.  

After defining boff, we performed computer simulations for a 
k = 2 and k = 4 scheduling switch with αon = 1.7, αoff = 1,2 and 
Xmin=10-4. Figure 6 show the corresponding loss ratio results 
for T є [2…64]. Again packet destinations were evenly 
distributed. In our simulation, we have selected αon to be larger 
that αoff, since in real traffic, the probability of having 
extremely large OFF period is higher then the probability of 
having extremely large ON periods. From Figure 6, it can be 
seen that the scheduling switch loss ratios, in the case of Pareto 
distribution differ significantly from the ones shown in Figure 
3 for random Bernoulli traffic. This is more evident for small T 
values and is attributed to the bursty nature of the Pareto 
distribution. More specifically, since the mean size of the ON 
periods, ~2.4, is close to T then during an ON period, all slots 
of the frame are filled, independent of the resulting workload. 
This results in increased packet loss ratios and especially in the 
case of T = 2, it can be noted that loss varies slightly for all p. 
This is due to the fact that T is smaller than the mean value of 
ON periods. Nevertheless, as T increases, packet loss ratio 
drops fast and for T values higher than 32, an acceptable loss 
ratio of 10-6 for p < 0.6 is obtained. 

IV. CONCLUSIONS 
In this paper, we have analyzed the performance of the 

scheduling switch under a variety of models for the incoming 
traffic. The scheduling switch is guaranteed to be lossless when 
the incoming traffic has the so-called (n,T) smoothness 
property. We have evaluated the switch performance, when this 
property does not hold for three different traffic models 
namely, a Bernoulli model, a truncated Pareto model, and a 
model where traffic is constrained but with a smoothness 
parameter different than the one used in the switch design. In a 
future communication, the delay impairments at the network 
ingress point due to the (n,T) smoothness property enforcement 
will be investigated and a suitable edge router architecture will 
be proposed. 
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