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Abstract. Grid Infrastructures have been used to solve large scale sci-
entific problems that do not have special requirements on QoS. However,
the introduction and success of the Grids in commercial applications as
well, entails the provision of QoS mechanisms which will allow for meet-
ing the special requirements of the users-customers. In this paper we
present an advanced Grid Architecture which incorporates appropriate
mechanisms so as to allow guarantees of the diverse and contradictory
users’ QoS requirements. We present a runtime estimation model, which
is the heart of any scheduling and resource allocation algorithm, and we
propose a scheme able to predict the runtime of submitted jobs for any
given application on any computer by introducing a general prediction
model. Experimental results are presented which indicate the robustness
and reliability of the proposed architecture. The scheme has been im-
plemented in the framework of GRIA IST project (Grid Resources for
Industrial Applications).

1 Introduction

Grid computing is distinguished from conventional distributed computing by
its focus on large-scale resource sharing, innovative applications, and, in some
cases, high-performance orientation. It supports the sharing, interconnection and
use of diverse resources in dynamic computing systems that can be sufficiently
integrated to deliver computational power to applications that need it in a trans-
parent way [1], [2].

However, until now grid infrastructure has been used to solve large-scale sci-
entific problems that are of known or open source code and do not have specific
Quality of Service (QoS) requirements [1], [3]. For example, in the current Grid
architecture, there is no guarantee that particular users’ demands, such as the
deadlines of the submitted tasks, are always satisfied. This means that the cur-
rent Grid architecture can not provide an agreed upon QoS, which is important
for the success of the Grid, especially in commercial applications. Users of the
Grid are not willing to pay for Grid services or contribute resources to Grids,
if there are not appropriate mechanisms able to guarantee the negotiated QoS
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users’ requirements. This need has been confirmed by the Global Grid Forum
(GGF) in the special working group dealing with “scheduling and resource man-
agement” for Grid computing [4].

Scheduling and resource allocation is of vital important in the commercial-
ization of Grid, since it allows management of the contradictory and diverse
QoS requirements. Furthermore, scheduling and resource allocation is strongly
related with the adopted charging policy. More resources of the Grid should be
given to users that are willing to pay more. However, efficient scheduling and
resource allocation requires estimation of the runtime of each task requesting for
service in the Grid, which in the sequel requires prediction of the task workload
as well as task modeling. Different applications are characterized by different
properties and thus require different modeling and prediction schemes.

In this paper, we enhance the current Grid architecture by incorporating all
the aforementioned described mechanisms so as to allow guarantees of the diverse
and contradictory users’ QoS requirements. Our focus is oriented on developing
a proper runtime estimation model, which is the heart of any scheduling and
resource allocation algorithm. In particular, we propose a scheme able to predict
the runtime of submitted jobs for any given application on any given computer by
introducing a general prediction model. The model is applied to any application
using features derived from the task modeling module. To achieve this goal, a
set of common parameters is defined, which affect the runtime and are the same
for any application.

The proposed runtime estimation model is separated in two parts. The part
of the consumer’s (client’s) side, which is responsible for workload estimation
and the supplier’s part, which evaluates the resource performance. The resource
performance parameters are designed so that they can be applied to heteroge-
neous platforms, while the workload performance parameters are designed to be
the same for every application.

The workload parameters are classified into a) computation, b) communi-
cation and c) availability parameters. Computation parameters are associated
with the task execution. These are: the number of float point operations per
task, the number of exchanged memory I/0 messages per task and the number
of exchanged disk 1I/O messages per task. The communication parameters are
separated in the two parts; the send and the receive part. In this analysis we
assume that the amount of bytes which is sent and received are used as commu-
nication parameters. Finally, the availability parameters are the minimum free
memory (i.e., the sum of available minimum free memory, which is allocated by
the system during processing), the minimum disk space (i.e., the sum of storage
space, which is allocated by the resource during processing), and the queue time
interval (i.e., the total waiting time in the queue for a newly arrived job).

As far as the resource performance parameters are concerned, the CPU
speed (expressed as the MFLOPs rate), the average memory I1/0bandwidth (in
Mbytes/sec) and the average disk I/O bandwidth (in Kbytes/sec) are selected.
The choice of these parameters is due to the fact that they are measurable in
any heterogeneous platform and characterize the performance of a system [5].
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Fig. 1. The proposed architecture adopted for the commercialization of the Grid

The MFLOPs rate is a performance measure independent of the CPU architec-
ture, thus allowing comparing different CPUs. Moreover, most of the MFLOPs
benchmarks take into account the bottleneck due to L1 and L2 cache, eliminat-
ing the need of benchmarking L1 and L2 cache performance. Besides L2 cache,
the main bottleneck in I/O communication is the RAM bandwidth. Since every
application accesses RAM in a different way, in order to cover any option we take
an average measure of memory I/O. For applications that need a huge amount
of disk I/O we consider the disk performance bottleneck, defined as the average
I/O bandwidth in Kbytes/sec [5].

2 The Proposed Commercial Grid Architecture

In this section we present the proposed architecture for a commercial Grid infras-
tructure, which extends the Globus architecture [3] by contributing QoS aspects
in the resource management model. Even that the Globus layered architecture
can be enhanced with such mechanisms, QoS in Grid computing has not been
addressed currently. In the sequel, we present the necessary architectural com-
ponents that implement the QoS mechanism proposed. The architecture has
been implemented in the framework of GRIA project [6]. Figure 1 presents the
proposed adopted architecture.

a. Workload Predictor. It is the part that evaluates the application specific
input parameters that affect the runtime. These parameters are then used to
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predict the workload performance parameters that are needed for the runtime
estimation. It estimates a set of workload parameters for a given set of application
specific input parameters. These are passed to the Runtime Estimator in order
to be used for further processing so as to estimate the execution time of the job.
The Workload Predictors are each one dedicated for each different application
that is incorporated on the system.

b. Capacity Estimator. It calculates the resource performance parameters for
each different resource of the supplier. The Capacity Estimator should calculate
the resource performance parameters of the runtime estimation model, through
a benchmarking process that is the same for every heterogeneous resource plat-
form, thus providing a way to compare heterogeneous resource performance. By
using the same parameters for every heterogeneous resource platform we can
incorporate different platforms on the system and we can define a cost of use
per performance unit.

c. Runtime Estimator. It uses a mathematical model to combine the workload
parameter set from the Workload Predictor, with the resource parameter set
from the Capacity Estimator to give estimation about the execution time of the
specific job on the specific resource.

d. Scheduler. It is the main module that applies the scheduling policy and
procedure based on the Runtime Estimator, and according to the deadlines of
the jobs as they are given by the customer.

3 Runtime Estimation Model

3.1 Resource Performance Parameters for Heterogeneous Platforms

A generic PC architecture consists of a CPU, L1, L2 cache and RAM (memory
hierarchy) and the hard disk. There are several different architectures for each
of the above components and different operating systems. For the CPU perfor-
mance the most suitable generic measurement is the MFLOPS benchmark [5].
Since the majority of the MFLOPS benchmarks take into account the L1 and L2
cache rates, we can assume that the only suitable measurement for the memory
performance is the average RAM I/O bandwidth. Also for the hard disk perfor-
mance we consider as suitable performance measurement the average read/write
disk I/O bandwidth.

We now see that the achieved application performance can be expressed
in conjunction with these three values. Therefore, we denote as r, the resource
parameter vector, the elements of which r;, i=1,2,3 correspond to the CPU speed
(in MFLOPS/sec), average memory 1/O (in MB/sec) and average disk I/0O (in
KB/sec).

r= [rl,rg,rg]T (1)

The resource parameter vector can be calculated for each resource through a
benchmarking process. In this study we assume that the resources that are taken
into consideration are limited to standalone PC platforms and not clusters or
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batch systems. Thus we consider a Grid infrastructure with single node tasks
on single PCs. The important thing about the runtime estimation model is that
on every resource that we want to have runtime estimation we have to use the
same benchmarks. Since the benchmarks can be compiled for different operating
systems and platforms, we can use the same r vector for any heterogeneous
platform, thus having the capability of incorporating any heterogeneous resource
on the Grid infrastructure using the same resource performance description.

Equation (1) refers to the computational resource parameters. Concerning
the communication parameters, we use the Send Communication Bandwidth and
the Receive Commaunication Bandwidth both measured in Kbytes/sec. For the
availability resource parameters we use the Minimum Free Memory (in MB)
and Minimum Free Disk Space (in KB) of the resource where the task will be
allocated. However these additional parameters are not being taken into consid-
eration within the scope of this paper, since the work presented in this paper
is focused on the Runtime Estimation model. The overall system that has been
designed and implemented within the framework of GRIA project [6] uses the
aforementioned parameters to calculate a Remote Runtime that consists ad-
ditionally of the communication time (send and receive time intervals of the
application data) and the queue time interval that is the waiting time for the
application to start execution on the selected resource. However the scope of this
paper is to propose and validate a new model of Grid architecture incorporat-
ing QoS aspects, and thus it is focused on proving the validity of the proposed
Runtime Estimation model, which is used to calculate the execution time only.

The proposed scheme is not used for application tasks that run in parallel.
Thus the latency factor has not been taken into consideration because there are
no continuous transaction between the individual resources during the execution
phase of a job.

3.2 Definition of Application Workload Parameters

The workload parameters must be defined in conjunction with the resource pa-
rameters, in order to use the same runtime estimation model for every applica-
tion. In this paper we have used for the resource parameters the MFLOPS/sec,
the average memory I/O and the average disk I/O (see section 3.1), and thus
the workload parameters are defined only by the computational parameters. Ex-
tension of our study for including the affect of the other workload parameters
can be performed in a similar way.

To estimate the workload of a task we need a) to extract features which
describe the specific application from which the task derive and b) to define a
set of parameters which are in conjunction with the three resource performance
values [see equation (1)].

Let us first denote as x a vector which describes the “computational load” of
a task derived from an application. We call vector x workload parameter vector.
In our paper and without loss of generality we assume that vector x consists of
three elements

x = [z1, 32, 23], (2)
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where the elements x;, i=1,2,3 correspond to the CPU instructions per task (in
MFLO), the average memory I/O amount per task (in MB) and the average disk
I/O amount (in KB).

To estimate vector x, we need to extract for each specific application those
features which affect the respective workload. Let us denote as s the descriptor
parameters vector

S = [s1,52, ..., 80", (3)

the elements of which s;, +=1,..,n correspond to the individual application de-
scriptors. The descriptors s; are independent of the execution environment. For
example, in case we refer to 3D rendering applications the descriptors s; are the
image resolution, number of polygons, number of light sources and so on. It is
clear that for different applications different descriptors are required [7], [8], [9].
So, for each application incorporated to the system we must construct a different
predictor for estimating vector x.

3.3 Workload Prediction

Vector s is used as input to the Workload Predictor module, which is responsible
for estimating vector x from s, through a non-linear model x = g (s). Generally,
the function ¢ (s) is unknown and thus it can not be estimated in a straightfor-
ward way. For this reason, modeling of function g(-) is required for predicting
vector x from vector s. Usually, linear models cannot effectively estimate the
application workload. This is caused since usually there does not exist a simple
linear relation, which maps the specific input parameters (e.g., vector s) with
the corresponding workload parameters (e.g. vector x). Alternatively, modeling
can be performed using simplified non-linear mathematical models (such as ex-
ponential and/or logarithmic functions) and applying estimation techniques [10]
for predicting the vector x. However, these approaches present satisfactory re-
sults only in case of data that follow the adopted pre-determined function type,
which is not be extended to any type of application.

In order to have a generic workload prediction module, which can be applied
to any type of application, modeling of the unknown functiong(-) is performed
through a neural network architecture. This is due to the fact that neural net-
works are capable of estimating any continuous non-linear function with any
degree of accuracy [11]. In particular, neural networks provide an approximation
of function g(+), say §(-), through a training set of samples consisting of appropri-
ate selected vectors x; and the respective vectors s;. Training is performed based
on a Least Squares algorithms, such as the Marquardt-Levenberg algorithm [11].

3.4 The Runtime Estimation Model

As already mentioned, the amount of workload that is served per second is given
by the resource capability. We recall that x; is the workload of the i-th task being
executed on a resource characterized by a resource parameter r;. We denote as
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t; the time interval needed to accomplish the execution of x; on a resource with
related resource parameter r;. The ¢; is related with z; and r; as follows

T

ty = 2.

4
@)

To estimate the total run time of a task, we assume that total execution time
equals the sum of individual execution times. Therefore, we have that

n

n
trun = Zti> or lryn = sz : 7";1 (5)
i=1

i=1

However, estimation of the total run time based on the previous equation does
not result in reliable results since only one measure is taken into consideration.
To have a more reliable estimate of the total run time, several measurements
are taken into account and a linear system is constructed for estimating t,,.
In particular, the total run time ¢,,, is provided by minimizing the following
equation

trun = argmin F, (6)

where
n

N
E:Z{frun—zxi7j~7“;]'1 2 (7)
j=1

i=1

In previous equation x; ;, r; ; is the j-th sample of the x; and r; respectively.
Minimization of (7) is accomplished through the Least Square method.

4 Scheduling

The purpose of a scheduling algorithm is to determine the “queuing order” and
the “processor assignment” for a given task so that the demanded QoS param-
eters, i.e., the task deadlines, are satisfied as much as possible. The “queuing
order” refers to the order in which tasks are considered for assignment to the
processors. The “processor assignment” refers to the selection of the particular
processor on which the task should be scheduled.

In the proposed Grid architecture, two approaches for queuing order selec-
tion have been adopted, which are described shortly in the following. The first
algorithm exploits the urgency of the task deadlines, while the second is based
on a fair policy. The most widely used urgency-based scheduling scheme is the
Earliest Deadline First (EDF) method, also known as the deadline driven rule
[12],[13]. This method dictates that at any point the system must assign the high-
est priority to the task with the most imminent deadline. The concept behind
the EDF scheme is that it is preferable to serve first the most urgent tasks (i.e.,
the task with the earliest deadline) and then serve the remaining tasks according
to their urgency. The above mentioned queuing order selection algorithm does
not make any attempt to handle the tasks requesting for service in a fair way.
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Fig. 2. The actual and the estimated total run time for the two PCs that have been
used for the 32 different 3D image rendering tasks

The second algorithm uses a Max-Min fair sharing approach for providing fair
access to Grid resources to all users. When there is no shortage of resources, the
algorithm assigns to each task enough computational power for it to finish within
its deadline. In case of congestion the CPU rates assigned to the tasks are reduced
fairly, so that the share of the resources that each user gets is proportional to the
users’ contribution to the Grid infrastructure or alternatively to the price he is
willing to pay. As an example, we can assume three tasks whose fair completion
times are 8, 6 and 12 respectively. As a result, the second, first and finally the
third task is assigned for execution.

5 Experimental Results

The Grid architecture of the GRIA Project has been tested for two different ap-
plications, 3D image rendering with BMRT2.6 and the Finite Element Method
(FEM) with INDIA, used in construction engineering. The results indicate the
validity of the Runtime Estimation model that has been described in this paper.
Ten computers of the Grid infrastructure have been used in this study as re-
sources and they were benchmarked with SiSoftware Sandra Standard Unicode
(32-bit x-86) 2003.1.9.31 under Microsoft Windows 2000.

For the 3D rendering application the runtime of 32 different tasks has been
measured over the 10 different computers. For each one of the 8 PCs out of the
10 we formed the equation (5). We solved this over-determined system of the
8 equations (N=8), so as to calculate the x vector in (2). The actual values
of the execution on the remaining 2 PCs are compared against the estimated
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Fig. 3. 3D image rendering case - The error for the runtime estimation is calculated as
the relative absolute error (in percentage) for a) the first of the 2 PCs and b) for the
second PC
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time which is calculated using this x vector. Figure 2 presents the actual and
predicted runtime of the 3D rendering application for the two PCs used for
testing the results, while Fig. 3 presents the error for the two PCs. We can see
that the error of the runtime estimation model is less than 13%.

For the FEM application we measure the runtime of 39 different tasks over
6 different computers. The over-determined system of 5 equations (N=5) has
been solved to estimate the run time model, while the remaining 1 PC has been
used to compare the estimated time with the actual one. Again, we can see that
the error does not exceed 19%. Figure 4(a) presents the actual and the predicted
run time, while Fig. 4(b) the error for the 1PC.

6 Conclusions

In order to commercialize the Grid infrastructure, we need to satisfy the QoS
requirements imposed by the users who are willing to use the Grid infrastructure
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for fulfilling their commercial needs. To accomplish such Grid commercialization
we need a modification of the existing architectures, so that the QoS require-
ments are satisfied as much as possible. This is proposed in this paper by intro-
ducing a Workload Predictor, a Capacity Estimator, a Runtime Estimator and a
Scheduler. We also propose an accurate Runtime Estimation model. This model
has been implemented and evaluated in the framework of the GRIA EU funded
project. The experimental results illustrate accurate runtime prediction of the
model in all the examined cases. The results have been obtained using 2 dif-
ferent commercial applications, the 3D image rendering and the Finite Element
Method used in construction engineering.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. Inter. Journal Supercomputer Applications. 15 (2001).

2. Leinberger, W., Kumar, V.: Information Power Grid: The new frontier in parallel
computing? IEEE Concur., 7 (1999), 75-84.

3. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid, An Open
Grid Services Architecture for Distributed Systems Integration. www.globus.org
(The Globus Project), 6/22/2002.

4. Scheduling Working Group of the Grid Forum, Document: 10.5, September 2001.

5. Vraalsen, F., Aydt, R., Mendes, C., Reed, D.: Performance Contracts: Predicting
and Monitoring Grid Application Behavior. Proceedings of the 2nd International
Workshop on Grid Computing/LNCS, 2242 (2001), 154-165.

6. IST-2001-33240: Grid Resources for Industrial Applications (GRIA). European
Union program of Information Societies Technology.

7. Doulamis, N., Doulamis, A., Panagakis, A., Dolkas, K., Varvarigou, T., Varvari-
gos, E.: A Combined Fuzzy-Neural Network Model for Non-Linear Prediction of
3D Rendering Workload in Grid Computing. IEEE Trans. on Systems, Man and
Cybernetics -Part B (to be published in 2004).

8. Doulamis, N., Doulamis, A., Panagakis, A., Dolkas, K., Varvarigou T., Varvarigos,
E.: Workload Prediction of Rendering Algorithms in GRID Computing. European
Multigrid Conference, (2002), 7-12.

9. Doulamis, N., Doulamis, A., Dolkas, K., Panagakis, A., Varvarigou T., Varvarigos,
E.: Non-linear Prediction of Rendering Workload for Grid Infrastructure. Interna-
tional Conference on Computer Vision and Graphics, Poland Oct. 25-28, 2002.

10. Kobayashi, H.: Modeling and Analysis. Addison-Wesley 1981.

11. Haykin, S.: Neural Networks: A Comprehensive Foundation. New York: Macmillan.
12. Peha, J.M., Tobagi, F.A.: Evaluating scheduling algorithms for traffic with hetero-
geneous performance objectives. IEEE Global Telecom. Conf., 1, (1990) 21-27.

13. Ku, T.W., Yang, W.R., Lin, K.J.: A class of rate-based real-time scheduling algo-

rithms. IEEE Trans. on Computers, 51 (2002),708-720.



	1 Introduction
	2 The Proposed Commercial Grid Architecture
	3 Runtime Estimation Model
	3.1 Resource Performance Parameters for Heterogeneous Platforms
	3.2 Definition of Application Workload Parameters
	3.3 Workload Prediction
	3.4 The Runtime Estimation Model

	4 Scheduling
	5 Experimental Results
	6 Conclusions
	References

