
INTRODUCTION

Increasing traffic volume due to the introduction
of emerging broadband services and bandwidth
demanding applications with different quality of
service (QoS) requirements are driving carriers
to search for a cost-effective core optical net-
working architecture that is tailored to the new
Internet traffic characteristics. The optical net-

work evolution and migration should aim at
improved cost economics, reduced operations
efforts, scalability, and adaptation to future ser-
vices and application requirements. The main
drivers for this migration are:
• Requirement for high bandwidth and end-

to-end QoS-guaranteed connectivity
• On demand (dynamic) technology-indepen-

dent service provisioning
Optical network architectures can be charac-

terized as either opaque, managed-reach, or all-
optical (or transparent) networks (Fig. 1). In
opaque architectures the optical signal carrying
traffic undergoes an optical-electronic-optical
(OEO) conversion at every switching or routing
node in the network. The OEO conversion
enables the optical signal to reach long distances;
however, this is quite expensive due to the num-
ber of regenerators required in the network and
the dependence of conversion process on the
connection bit rate and modulation formats.
Transparent network architectures were pro-
posed to reduce the associated cost of opaque
networks. In transparent networks the signals are
transported end-to-end optically, without any
OEO conversions along their path. In extended
networks physical signal impairments limit the
transparent reach distance, and in order to regen-
erate signal in the optical domain, all-optical
regenerators are required, but are not commer-
cially available today. Managed reach (semi-
transparent, translucent, or optical-bypass) has
been proposed as a compromise between opaque
and transparent networks [1]. In this approach
selective regeneration is used at specific network
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ABSTRACT

Core networks of the future will have a
translucent and eventually transparent optical
structure. Ultra-high-speed end-to-end connectiv-
ity with high quality of service and high reliability
will be realized through the exploitation of opti-
mized protocols and lightpath routing algorithms.
These algorithms will complement a flexible con-
trol and management plane integrated in the
proposed solution. Physical layer impairments
and optical performance are monitored and
incorporated in impairment-aware lightpath rout-
ing algorithms. These algorithms will be integrat-
ed into a novel dynamic network planning tool
that will consider dynamic traffic characteristics,
a reconfigurable optical layer, and varying physi-
cal impairment and component characteristics.
The network planning tool along with extended
control planes will make it possible to realize the
vision of optical transparency. This article pre-
sents a novel framework that addresses dynamic
cross-layer network planning and optimization
while considering the development of a future
transport network infrastructure.
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locations in order to maintain the acceptable sig-
nal quality from source to destination.

All-optical core wavelength-division multi-
plexing (WDM) networks using reconfigurable
optical add/drop multiplexers (ROADMs) and
tunable lasers appear to be on the road toward
widespread deployment and could evolve to all-
optical mesh networks based on optical cross-
connects (OXCs) in the future. In order to
realize the vision of transparency while offering
efficient resource utilization and strict QoS guar-
antees based on certain service level agreements,
the core network should efficiently provide high
capacity, fast and flexible provisioning of links,
high reliability, and intelligent control and man-
agement functionalities. A very important aspect
is also a high degree of performance manage-
ment at the transparent intermediate nodes to
enable fault localization in the case of a perfor-
mance degradation of the optical channel.

The issues of core optical network planning
and operation have been recognized within the
Dynamic Impairment Constraint Networking for
Transparent Mesh Optical Networks
(DICONET) project. The DICONET project is
funded by the ICT program, European Commis-
sion, and contributes to the strategic objective
“The Network of the Future” by supporting
innovative networking solutions and technologies
for intelligent and transparent optical networks.
In this article the existing static network plan-
ning procedures are extended toward equivalent
ones for a flexible and dynamic networking
paradigm. After introducing the main challenges
involved in transparent optical networks, the
DICONET vision and objectives are presented
including physical layer modeling, optical perfor-
mance and impairment monitoring schemes,
impairment-aware path computation, failure
localization, and control plane extensions.

TRANSPARENT OPTICAL NETWORK
CHALLENGES

Optical transparency has an impact on network
design, by either putting some limits on the size
of WDM transparent domains in order to neglect
physical impact on quality of transmission (QoT)
or introducing physical considerations in the net-
work planning process (e.g., extra rules for
WDM systems or performance monitoring). The
realization of dynamic and fully automated

transparent optical core networks is an impor-
tant task that is required in order to provide cost
(capital and operating expenditures, CAPEX
and OPEX) reduction and performance benefits.
This goal has not yet been achieved in commer-
cial exploitation due to:
• Limited system reach and overall transpar-

ent optical network performance
• Difficulties related to fault localization and

isolation in transparent optical networks
In transparent optical networks, as the signal

propagates in a transparent way, it experiences
the impact of a variety of quality degrading phe-
nomena that are introduced by different types of
signal distortions. These impairments accumu-
late along the path, and limit the system reach
and overall network performance. There are dis-
tortions of almost “deterministic” type related
only to the pulse stream of a single channel,
such as self-phase modulation (SPM), group
velocity dispersion (GVD), or optical filtering.
The other category includes degradations having
a statistical nature such as amplified sponta-
neous emission (ASE) noise, WDM nonlineari-
ties (four-wave mixing [FWM] and cross-phase
modulation [XPM]), polarization mode disper-
sion (PMD), and crosstalk (XT).

In a transparent optical network, the impact
of failures also propagates through the network
and therefore cannot be easily localized and iso-
lated. The huge amount of information trans-
ported in optical networks makes rapid fault
localization and isolation a crucial requirement
for providing guaranteed QoS and bounded
unavailability times. The identification and loca-
tion of failures in transparent optical networks is
complex due to three factors:
• Fault propagation
• Lack of digital information
• Large processing effort

The placement of monitoring equipment to
reduce the number of redundant alarms and
lower the CAPEX, and the design of fast local-
ization algorithms are among challenges of fault
localization in transparent optical networks.

DICONET SOLUTION
The most commonly adopted approach to over-
come the mentioned issues is utilization of opto-
electronic regenerators on a per channel basis
on all (opaque architecture) or selected (man-
aged-reach) optical nodes. A second approach

�� Figure 1. Optical networks evolution: a) opaque everywhere; b) managed reach; c) all-optical.
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uses impairment management techniques that
may be implemented optically (i.e., optical
means of impairment mitigation or compensa-
tion) or electronically at the optical transponder
interfaces (i.e., electronic impairment mitiga-
tion). In addition, specific routing and wave-
length aassignment (RWA) algorithms are used
for lightpath routing while accounting for the
physical characteristics of lightpaths. We catego-
rize this class of algorithms as impairment-aware
RWA (IA-RWA) algorithms. The vision of the
DICONET project (Fig. 2a) is that intelligence
in core optical networks should not be limited to
the functionalities that are positioned in the
management and control plane of the network,
but should be extended to the data plane on the
optical layer.

The key innovation of DICONET is the devel-
opment of a dynamic network planning tool
residing in the core network nodes that incorpo-
rates real-time assessments of optical layer per-
formance into IA-RWA algorithms and is
integrated into a unified control plane. In order
to realize the DICONET vision, several building
blocks should be considered in an orchestrated
fashion, which are briefly presented in the sequel.

PHYSICAL LAYER MODELING AND MONITORING
In order to realize the IA-RWA algorithms cov-
ered later in this section, physical impairments
should be carefully identified and modeled. Phys-
ical layer impairments may be classified as linear
and nonlinear. Linear impairments are indepen-
dent of the signal power and affect each of the
optical channels (wavelengths) individually, while
nonlinear effects scale with optical power levels
and produce interdependencies of channels.

The important linear impairments that should
be modeled and monitored are ASE, chromatic
dispersion (CD)/GVD, XT, filter cconcatenation
(FC), and PMD. Although also originating from
transmitter laser diodes, ASE noise is principally
brought by Erbium doped fiber amplifiers
(EDFAs) and degrades the optical-to-signal-noise
ratio (OSNR). CD or GVD is the impairment
due to which different spectral components of a
pulse (frequencies of light) travel at different
velocities. When uncompensated, CD limits the
maximum transmission reach and channel bit
rate. The effect of CD can be minimized using
dispersion compensation devices like dispersion
compensating fibers (DCFs), chirped fiber grat-
ings (CFGs), or periodic filter devices (Gires-
Tournois interferometers, etc.). XT (interchannel
and intrachannel) is the general term given to
the phenomenon by which signals from adjacent
wavelengths leak and interfere with the signal in
the actual wavelength channel. FC is produced
by signal propagation through multiple WDM
filters between source and destination, and
results mainly in the narrowing down the overall
filter pass-band. Finally, PMD manifests itself in
a difference of propagation velocities between
orthogonal polarizations (differential group
delay [DGD]), resulting in a broadening of the
signal pulses. The DGD is a statistical parameter
and evolves over time due to changes in stress
and temperature conditions on the optical fibers.

There are two categories of nonlinear effects.
The first arises due to the interaction of light-
waves with phonons (molecular vibrations) in
the silica medium. The two main effects in this
category are sstimulated Brillouin scattering
(SBS) and stimulated Raman scattering (SRS).

�� Figure 2. The DICONET solution: a) the DICONET vision; b) the DICONET network planning/operation tool.
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The second set of nonlinear effects arises due to
the dependence of the refractive index on the
intensity of the applied electric field, which in
turn is proportional to the square of the field
amplitude. The effects in this category are SPM,
XPM, and FWM. References [2, 3] provide good
overall starting points.

For IA-RWA algorithms it is very important
to be able to accurately predict the performance
of the propagating channel considering all the
impairments that can degrade the signal quality
along the propagation. To establish an accurate
analytical model for our performance estimator
considering these impairments, an experimental
testbed that emulates a transparent mesh optical
network [4] will be used. It includes a recirculat-
ing loop with standard single mode fiber
(SSMF), LEAF fibers, and nodes with wave-
length selective switching (WSS). In Fig. 3a the
section comprising SSMFs and WSS is displayed.
With this testbed it is possible to propagate the
channels several spans of SSMFs pass through a
node. This scenario can be repeated several
times before assessing the quality of the signal at
the reception side. For this setup 21 channels
were propagating, and we measured the central
channel (1550.12 nm). The bit rate was 10.709
GHz and the modulation format was non-return
to zero (NRZ). Odd and even channels are mod-
ulated by two modulators. Total power at the
input of the DCF was 10 dBm. Polarization of
odd and even channels is not controlled. Chan-
nel power at the input of each span is precisely
monitored. Figure 3b depicts the measurement
results for required OSNR for BER = 10–5 as a
function of distance and channel power. Number
of channels and EDFA output power have been
kept constant.

In addition to analytical and simulation tech-
niques for modeling these impairments, monitor-
ing techniques are required for measurements,
which finally enable the IA-RWA mechanism.
The monitoring could be implemented on the
impairment level (optical impairment monitoring
[OIM]) or at the aggregate level where the over-

all performance is monitored (optical perfor-
mance monitoring [OPM]) [4].

The development of a physical layer model-
ing and monitoring scheme will provide the
intelligence to the DICONET platform to:
• Implement novel impairment-aware light-

path routing (i.e., IA-RWA) schemes
• Implement failure localization methods of

single and multiple failures in transparent
optical networks

• Construct and control complex network
topologies while maintaining a high QoS
and fulfillment of service level agreements

IMPAIRMENT-AWARE LIGHTPATH ROUTING
Besides routing a path from source to destina-
tion, in optical networks the wavelength of the
path should also be determined. The resulting
problem is referred to in literature as the RWA
problem, which is known to be NP-complete [5].

In most RWA proposals the optical layer is
considered a perfect medium; therefore, all out-
comes of the RWA algorithms are considered
valid and feasible even though the performance
might be unacceptable. The incorporation of
physical impairments in transparent optical net-
work planning problems has recently received
some attention from the research communities.
We can classify impairment-aware algorithms
into two main categories:
• Those that consider separately the RWA

problem and the effects of impairments
• Those that solve the RWA problem includ-

ing impairment constraints in the problem
formulation

In the literature several variations to the first
case have been proposed. In the DICONET pro-
ject, apart from this approach, we also plan to
examine the feasibility and applicability of algo-
rithms belonging to the second case that jointly
consider the RWA problem and the impairment
constraints. The objective of the corresponding
joint optimization problem would be not only to
serve the connection requests using the available
wavelengths, but also to minimize the total accu-

�� Figure 3. Experimental setup and results: a) experimental testbed layout; b) measured OSNR vs. number of loops for several channels’
power.
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mulated signal degradation on the selected light-
paths.

The IA-RWA algorithms can also be classi-
fied as static and dynamic depending on whether
or not the impairments and overall network con-
ditions are assumed to be time-dependent. Physi-
cal impairments may vary over time (i.e., dynamic
network conditions) and thus change the actual
physical topology characteristics. In the static
traffic case (aka offline) the optimization of all
connection requests can be performed, while in
the dynamic case (aka online), the optimization
of a single request has to be considered. Offline
RWA is known to be NP-complete. Making these
algorithms impairment-aware (IA-RWA) is even
more difficult; thus, various heuristics have been
proposed in the literature. However, the offline
algorithmic approaches proposed fail to formu-
late the interference among lightpaths. More-
over, when considering online traffic, the great
majority of algorithms proposed in the literature
only consider static network conditions (time
invariant impairments). IA-RWA algorithms in
the DICONET proposal try to address further
possible scenarios. In particular, the formulation
of the interference among lightpaths in offline
RWA is a significant problem from a theoretical
and practical perspective that will be carried
within the scope of DICONET. Regarding the
offline problem, in Fig. 4 the performance of two
impairment-aware algorithms (IA-RWA-1 and
IA-RWA-2) based on LP relaxation formulations
that model the interference among lightpaths as
additional constraints on RWA is compared to a
typical algorithm that solves the pure RWA
problem and considers impairments only in the
post-processing phase. The network topology
used was the DT optical network, using a realis-
tic traffic scenario, and 10 Gb/s wavelengths. For
assessing the feasibility of lightpaths we used a Q
factor estimator that takes into account all the
most known impairments through detailed ana-
lytical models. The Q factor estimator takes as
input the lightpaths found by the algorithms, cal-

culates the Q factor of all active lightpaths, and
returns how many of them have unacceptable
transmission quality. This graph shows that con-
sidering the impairments in RWA decisions leads
to better performance than an impairment-
unaware approach. Also, the case in which
dynamic traffic demands may induce a different
impairment behavior is the most realistic situa-
tion for the dynamic network paradigm envi-
sioned by the DICONET project. For this
scenario, apart from typical scalar algorithms, we
plan to examine multicost algorithms. In the mul-
ticost case the cost of a link is a vector, not a sin-
gle cost value, with entries corresponding to
individual impairments (or a combination of
impairments). The real “cost” (in €, $, …) of a
path is also another important optimization
parameter for the IA-RWA algorithms.

FAILURE LOCALIZATION
Failure management is one of the crucial functions
and a prerequisite for protection and restoration
schemes. All-optical components are not by design
able to comprehend signal modulation and coding;
therefore, intermediate switching nodes are unable
to regenerate data for all channels, making seg-
ment-by-segment testing of communication links
more challenging. As a direct consequence, failure
detection and localization using existing integrity
test methods are made more difficult.

In the DICONET framework an algorithm
that solves the multiple failures location problem
in transparent optical networks is proposed where
the failures are more deleterious and affect longer
distances. The proposed solution also covers the
non-ideal scenario, where lost and/or false alarms
may exist. Although the problem of locating mul-
tiple faults has been shown to be NP-complete,
even in the ideal scenario where no lost or false
alarms exist, the proposed algorithm keeps most
of its complexity in a precomputational phase.
Hence, the algorithm only deals with traversing a
binary tree when alarms are issued. This algo-
rithm locates the failures based on received
alarms and the failure propagation properties,
which differ with the type of failure and the kind
of device that are in the network. Another algo-
rithm has been proposed to correlate multiple
security failures locally at any node and discover
their tracks through the network. To identify the
origin and nature of the detected performance
degradation, the algorithm requires up-to-date
connection and monitoring information of any
established lightpath, on the input and output
side of each node in the network. This algorithm
mainly runs a localization procedure, which will
be initiated at the downstream node that first
detects serious performance degradation at an
arbitrary lightpath on its output side. Once the
origins of the detected failures have been local-
ized, the network management system can then
make accurate decisions to achieve finer-grained
recovery switching actions.

In cases where efficient use of network capac-
ity is important and restoration times on the
order of hundred(s) of milliseconds are accept-
able, shared protection schemes are desirable.
However, as reported in [6], the CAPEX gain of
shared path protection compared to dedicated
path protection is much less in transparent opti-

�� Figure 4. Blocking probability vs. number of available wavelengths per link,
for Deutsche Telekom reference network and realistic traffic demand.
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cal networks than the same metric in opaque
optical networks. Considering the dynamic net-
work condition in IA-RWA algorithms and con-
trol plane integration make the fast response
time (50 ~ 100 ms) of the network operation
tool a key requirement for addressing the failure
recovery and resilience issues. Thus, dedicated 1
+ 1 protection, with one primary (i.e., working)
path and one backup (hot standby path), is clear-
ly a good protection candidate. Two reference
networks, the Deutsche Telekom (DT) national
network and pan-European research network
(GEANT2), are selected for different studies.
Based on the characteristics of the DICONET
reference networks, we computed the link and
node disjoint shortest paths considering physical
layer impairments. On average, the protection
paths for the DT network and GEANT2 refer-
ence network are 46 and 37 percent longer than
their respective primary paths. We also observed
that the average hop count for primary and pro-
tection paths for both reference networks (DT
and GEANT2) are 46 and 30 percent more than
the hop counts of the working paths, respectively.

NETWORK PLANNING TOOL
The key innovation of DICONET is the devel-
opment of a dynamic network planning tool
residing in the core network nodes that incorpo-
rates real-time measurements of optical layer
performance into IA-RWA algorithms and is
integrated into a unified control plane. As
depicted in Fig. 2b, this tool will integrate
advanced physical layer models with novel IA-
RWA algorithms. It will serve as an integrated
framework that considers both physical layer
parameters and networking aspects, and will
optimize automated connection provisioning in
transparent optical networks.

The network planning tool has two opera-
tional modes:
• Offline mode
• Online (or real-time) mode

The offline mode is selected in the planning
phase of a network. In this phase a full map of
network traffic and network conditions is fed
into the tool in order to produce the planning
outcomes. Since offline computation time is not
the main issue, optimization routines are allowed
to have high numerical complexity. The gained
results can be disseminated to the network man-
agement system, controlled by an operator. For
online use of the network planning tool, an
online traffic engineering solution is required
utilizing an interface between the control plane
and the management plane so that the network
situation could be evaluated in real time and its
results periodically disseminated into the net-
work. In online mode this dynamic network
planning tool can be used to support optimum
network operation and engineering under
dynamically changing traffic and physical net-
work conditions.

CONTROL PLANE EXTENSIONS
In order to realize an impairment-aware control
plane (impairment-aware light path routing,
topology and resource discovery, path computa-
tion, and signaling), existing protocols should be
extended properly. The extended control plane
will in turn address traffic engineering, resilien-
cy, and QoS issues, and support automated and
rapid optical layer reconfiguration. The general-
ized multiprotocol label switching (GMPLS)
protocol suite [7] has gained significant momen-
tum as a candidate for a unified control plane
[8]. Figure 5 shows three proposals to address
the integration of physical layer impairments
into the GMPLS control plane.

One direction deals with enhancement to the
interior gateway routing protocol (IGRP) (e.g.,
Open Shortest Path First with Traffic Engineer-
ing [OSPF-TE]), as shown in Fig. 5a. By flood-
ing link state advertisements (LSAs) enhanced
with physical layer information, all nodes popu-
late their traffic engineering database (TED)

�� Figure 5. Control plane extensions: a) routing protocol extensions; b) signaling protocol extensions; c)
path computation element.
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with network-wide information, which can pro-
vide updated and accurate inputs to the IA-
RWA algorithms. For a connection request, the
source node can interact with the TED to com-
pute a proper route, taking into account the
physical layer information by using the IA-RWA
algorithms. Standard Resource Reservation Pro-
tocol with Traffic Engineering (RSVP-TE) is
used for lightpath establishment. We call this
approach the routing-based optical control plane
(R-OCP). This approach has some issues:
• TED inconsistency, scalability, and stability

when the link information changes very fre-
quently [9]

• Requiring a powerful CPU at each node
and taking more time to solve the multicon-
straint routing problem since not only the
network layer but also the physical layer
must be considered at the same time

• Difficulty in selecting unified mathematical
models for computing the effects of physi-
cal impairments since some of these models
are based on measurements and empirical
formulations
In the second approach, GMPLS signaling

(e.g., RSVP-TE) is extended to include physical
impairments information, as shown in Fig. 5b.
Routes from source to destination are dynami-
cally computed using standard routing protocols
(e.g., OSPF-TE) without knowledge of the opti-
cal layer impairments. Only during the signaling
process does the enhanced RSVP-TE protocol
compute the amount of impairments along the
route; based on the results, the lightpath setup
request can be either accepted or rejected. Fol-
lowing this approach a local database in each
node (e.g., OXCs or ROADM) is required to
store the physical parameters that characterize
the node and its connected links without requir-
ing full knowledge of physical layer information
of the whole network. We call this approach the
signaling-based optical control plane (S-OCP).
This approach can handle frequent changes of
optical parameters, and does not require global
flooding of physical impairments information,
thereby minimizing scalability problems. Due to
the lack of complex path computation algo-
rithms, the load on the nodes’ CPUs is mini-
mized. The main drawbacks of this approach are
longer path setup time due to the increased
number of setup attempts and possible subopti-
mal route decisions due to impairment-unaware
route computation algorithms.

In order to address the scalability require-
ments while maintaining TE support, path com-
putation element (PCE) architecture is also
considered, as shown in Fig. 5c. The PCE can
reside within or external to a network node in
order to provide an optimal lightpath and inter-
act with the control plane for establishment of
the proposed path. The PCE could represent a
local autonomous domain (AD) that acts as a
protocol listener to the intradomain routing pro-
tocols (e.g., OSPF-TE). Using the information
on global topology stored in the TED, the PCE
constructs a reduced topology of the network,
based on which the IA-RWA algorithms proceed
to path computation taking into account the
physical layer parameters.

The DICONET control plane uses extended

GMPLS to facilitate IA-RWA and fault localiza-
tion, which makes the software stack even more
complex than in standard GMPLS implementa-
tions. Therefore, to improve performance of the
control plane, DICONET will undertake a hard-
ware implementation of some control protocol
procedures. The DICONET control plane is
implemented in reconfigurable hardware: field
programmable gate array (FPGA) and network
processors (NPs). To overcome complexity of
the control plane stack, only time-critical proce-
dures of the DICONET control protocols are
implemented in the FPGA and NPs in the form
of a control protocol hardware accelerator.

The main control plane aspects addressed by
the DICONET relate to:
• Multilayer network control
• Routing and signaling-related mechanisms

and physical network characteristics infor-
mation dissemination

• Design and implementation of a hardware
accelerator for impairment-aware forward-
ing and path selection

We have conducted preliminary studies on the
S-OCP and R-OCP approaches dealing with
static network conditions and dynamic traffic
where only linear impairments (loss, ASE, CD,
PMD, and XT) are considered; the mathemati-
cal models can be found in [9].

In the S-OCP approach, for a connection
request, the source node computes K explicit
routes. The signaling process starts checking the
optical feasibility of the first explicit route by
sending out a PATH message containing signal
properties information and a list of available
transmitters/wavelengths along the route. Upon
reception of the PATH message, each interme-
diate node updates these fields and checks the
wavelength availability. If there is no free wave-
length on its outgoing link, the node sends a
PATH_ERR message toward the source node. If
the destination node receives the PATH mes-
sage, it will evaluate the impairments, and check
for optical feasibility and a suitable transponder
for the connection request. If path establishment
is feasible, the destination node sends an RESV
message along the first explicit route to the
source node with a selected transponder pair;
otherwise, the destination node sends back a
PATH_ERR message. If the source node
receives a PATH_ERR message, it will send the
PATH message on the second explicit route and
repeat the process for the next route out of all K
routes.

In the R-OCP approach the source node will
compute K routes through the IA-RWA algo-
rithm, which takes into account wavelength
availability as well as physical impairments. Once
the source node receives the specific wavelength
availability information per link, it can compute
the optical feasibility through its physical layer
module implementing the equations described in
[9]. The optically feasible computed path would
then be set up through standard RSVP-TE
selecting one of the available wavelengths
according to a First-Fit policy.

AT&T and Daisy networks (Figs. 6a and 6b)
have been used to evaluate the performance of
the S-OCP and R-OCP architectures. The maxi-
mum length of a Daisy network is 80 km. The
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AT&T topology has been scaled down by a fac-
tor of 1:23. The purpose is to avoid in-line opti-
cal amplifiers in all fiber links, and only pre- and
booster optical amplifiers are used inside each
node. Several modifications/extensions are made
to RSVP-TE and OSPF-TE protocols on the
GMPLS Lightwave Agile Switching Simulator
(GLASS) [10]. The traffic and simulation scenar-
ios used in the simulation experiments are same
as described in [9]. The simulation results have a
confidence level of 95 percent.

Figure 6c compares the blocking probability
of R-OCP and S-OCP architectures for AT&T
and Daisy networks. In the AT&T network, it
can be found that the blocking performance of S-
OCP architecture is very close to R-OCP. In the
Daisy network, the blocking performance of S-
OCP is slightly worse than R-OCP. Figure 6d
compares the average lightpath setup time of R-

OCP and S-OCP architectures for AT&T and
Daisy networks. Lightpath setup time is defined
as the elapsed simulation time between the first
PATH message sent and the RESV message
received at the source node. This metric reflects
how fast a connection request can be established.
It can be seen that, in general, the lightpath
setup time for R-OCP and S-OCP architectures
does not change much with traffic load. S-OCP
has the higher setup time, mainly because the
source node tries all K-explicit paths sequentially
until the lightpath is established or blocked.

SUMMARY
Transparent dynamic optical networks are the
next evolution step of translucent optical net-
works. Both of them have been recognized as
the evolution of static WDM networks. In order

�� Figure 6. Network topologies and blocking probability and path setup time performance: a) AT&T network topology; b) Daisy 
network topology; c) blocking probability vs. network load for Daisy and AT&T networks; d) path setup time vs. network load for Daisy
and AT&T networks.
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to provide high-speed and QoS guaranteed con-
nectivity with high reliability, considering the
realistic optical layer, the DICONET vision was
presented in this article as a disruptive and novel
solution for optical networking. Two main chal-
lenges of transparent networks are identified:
• Limited system reach and overall network

performance due to physical impairments
• Challenges related to failure localization

and isolation
Solving these challenges is the main goal of

the DICONET project. It is the vision of
DICONET that intelligence in the core optical
networks should not be limited only to certain
functionalities of control and management
planes, but also be extended to the physical
layer. Following this vision, the main physical
impairments as well as the essential role of opti-
cal performance and impairment monitoring
schemes, IA-RWA algorithms, and failure local-
ization algorithms complemented with an impair-
ment-aware control plane are discussed in this
article.
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