
Received 7 March 2007
Revised 6 February 2008

Copyright © 2008 John Wiley & Sons, Ltd. Accepted 13 May 2008

OpenRSM: a lightweight integrated open source remote 

management solution

Y. Karalis, M. N. Kalochristianakis, P. Kokkinos and E. A. Varvarigos*†

Department of Computer Engineering and Informatics, University of Patras, and Research Academic Computer Technology Institute, 
Patras, Greece

SUMMARY

The management of the corporate information technology (IT) environment is rapidly increasing in complexity as 
server logic architecture becomes more distributed and the number of entities deployed increases, forcing enterprises 
to resort to thick, complex and expensive high-end integrated systems and network management solutions. Invest-
ing in such systems can be ineffi cient for small and medium corporations, since the vast majority of management 
tasks performed are routine tasks, while personnel specialization requirements and costs are high. At the same time, 
the open source community has not yet produced a reliable and complete system and network management solution. 
Even though there are open source initiatives specializing in specifi c fi elds of remote management, such as network 
management, there has been no integrated open source solution yet. This paper introduces the Open Source Remote 
Systems Management (OpenRSM) platform. OpenRSM is an integrated remote management system created by 
integrating individual specialized open source management initiatives and signifi cantly augmenting them to support 
additional functionality, so that a complete lightweight system and network management solution is produced. The 
system implemented facilitates daily management by providing an effi cient, simple and adaptable environment for 
the majority of management operations. Copyright © 2008 John Wiley & Sons, Ltd.

1. INTRODUCTION

The total cost of ownership (TCO) for assets such as workstations, installed software, confi guration, and 
custom code is often far higher than the initial purchase or development cost. The difference between 
the two costs can be very signifi cant [1] for corporations, and thus every IT organization aims at mini-
mizing the TCO for such assets [2]. To this end, organizations employ enterprise management systems 
(EMS) [3] that are generally scalable, well organized, and cost far less than the TCO of the corporate IT 
assets. Systems and network management has always been a critical fi eld for IT organizations, since it 
facilitates management tasks and provides important economies of scale [4].

The EMS market is dominated by few but well-known products, most of which are released by major 
enterprise systems constructors [5]. Such organizations carry profound system-level knowledge and 
experience gained over years of producing management platforms. EMS systems offer a variety of highly 
specialized features and capabilities that extend the network and systems management functionality [6]. 
They cover areas such as systems and assets management, storage management, software development, 
security and business integration, and offer an ecosystem of features, services and tools [7]. Competition 
and marketing strategy has led EMS vendors to introduce and advertise specialized, sophisticated 

INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT
Int. J. Network Mgmt 2009; 19: 237–252
Published online 22 July 2008 in Wiley InterScience 
(www.interscience.wiley.com) DOI: 10.1002/nem.700

*Correspondence to: E. Varvarigos, Research Academic Computer Technology Institute, N. Kazantzaki Str., University Campus, 
26500 Rion, Greece.
† E-mail: manos@ceid.upatras.gr



238 Y. KARALIS ET AL.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

features such as end-to-end root cause analysis, return on investment optimizations [8] and time savings 
estimations [9]. Since EMS are oriented towards the enterprise scale, where marginal profi ts are opti-
mized and competition is minimum, the high-end EMS market is characterized by strong introversion 
in contrast to other IT fi elds where many viable alternatives exist, some of which are based on open 
source software. This is one of the factors that led the EMS market to be expensive in terms of licensing 
and support, at least for small-scale organizations.

Today the picture is changing [10]. The exponential rise in computing power reduces the price of server 
hardware and software and the maturing [11] of the technologies involved is exposing the enterprise 
world to whoever may be interested in IT. One does not need to own a high-end dedicated server machine 
with large physical memory in order to run a heavy application server. The enterprise software market 
is also opening to the open source community and so too is the market of enterprise-supporting tools, 
such as resource management tools. The EMS market has not been left unaffected by this trend; high-end 
EMS providers respond to the changes by releasing express versions of their software, aiming to penetrate 
the new market of mid-sized corporate management systems before open source systems do. However, 
they are criticized for being overly complex, infl exible [12], and diffi cult to deploy, learn and manage. 
Even if many EMS features and tools are technologically advanced, they are not in the fi rst line of needs 
for small organizations. Root cause analysis or fault localization may employ advanced technologies such 
as artifi cial intelligence, model traversing or fault propagation [13]. These solutions, however, may not 
be that useful in managed environments that are small and structurally dynamic. EMS subsystems are 
tightly structured and thus hard infrastructure changes result to ineffi ciency and fl exibility loss. More-
over, a management infrastructure based on a high-end EMS will most probably require specialized 
technical knowledge and devoted personnel in order to return its investment, and most small organiza-
tions cannot afford these costs.

The open source community is, however, still rather immature as far as remote management systems 
are concerned. There are only few network monitoring system (NMS) projects under the SourceForge 
Open Source project hosting site and only a small number of them are on the road to maturity. As far as 
integrated systems and network management tools are concerned, there is none at the moment. The state 
of the European open source management tools market is depicted in the ‘catalogue of available Open 
Source tools for the PA’ [14], where only a couple of network management systems appear in the admin-
istration and management tools section.

The Open Source Remote Systems Management (OpenRSM) platform is a pioneering initiative aiming 
to open the lightweight EMS market to open source tools. The initiative has been based on the observa-
tion that most of the components comprising an open source EMS tool can be developed by extending 
existing rated components offered by the open source market. Even though mature open source 
EMS tools are lacking at the moment, the basic market needs for integrated and free enterprise-level EMS 
tools, and the existence of reliable freely redistributable tools that cover the basic requirements of EMS 
subsystems, will ensure the creation of a thriving open source market in this area in the near future [11]. 
OpenRSM aims to earn a place in the area of small management systems, not by competing with high-
end EMS in terms of feature richness and technology solutions, but by offering an effi cient infrastructure 
management solution that is suitable for the highly dynamic and diverse small corporate environments, 
where high-end EMS are heavy and diffi cult to manage, and their technology is poorly utilized.

OpenRSM utilizes the power of third-party tools that have been signifi cantly enhanced and appropri-
ately altered in order to deliver inventory and asset management, software delivery, remote desktop 
control and network monitoring services, all integrated into one system. A great deal of effort has been 
invested in system integration, extending from database back-end migration, to server and web content 
porting, and agent logic concatenation. The combined subsystems have been modifi ed so that informa-
tion can be shared among them. At the same time, the overall system has been designed so that it is 
subject to the minimum possible set of limitations. Its capabilities extend to managing any stations reach-
able through standard IP connectivity in a secure manner. The architecture at the server tier has been 
kept open and thus adaptable to any specifi c needs and business models [15]. Extra care has been taken 
so that OpenRSM can manage stations hidden behind the NAT protocol, using a proxy server developed 



 OpenRSM 239

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

for that reason. The system also supports multi-platform systems management and provides a multilin-
gual user interface.

The remainder of the paper is organized as follows. In Section 2 the architecture and individual com-
ponents are presented in terms of design and functionality. Section 3 discusses security considerations. 
Section 4 describes the tests performed in order to evaluate OpenRSM in realistic usage scenarios. Section 
5 presents our conclusions and directions for future work.

2. THE OpenRSM SYSTEM FOR REMOTE MANAGEMENT

2.1 Design and system components

The design of the OpenRSM system considered several implementation strategies [16–18] and develop-
ment solutions [19], ranging from peer-to-peer technologies and layered server side middleware [20], to 
more traditional client–server approaches. In principle, OpenRSM needed to be simple and lightweight 
so that it can be used by end users who are not specialized in the use of management or asset-reporting 
tools. OpenRSM has also been designed for fast and automatic deployment in order to cover the needs 
of administrators who manage very dynamic environments. The OpenRSM system adopted the open 
source development model so as to exploit the dynamics of open source projects on management tech-
nologies and to gain value from integration. As mentioned above, even if there is no complete, integrated 
open source EMS, the related technologies have matured to the point that the open source community 
can provide all the necessary components [21]. Several open source projects have been examined in order 
to fi nd the most appropriate open source management tools available for the purposes of OpenRSM. 
During the development of the project and the compilation of the present article, the authors have not 
been aware of the existence of any other integrated open source EMS system.

The architecture of the OpenRSM has been chosen to be modular in order to follow the logical catego-
rization of the entities involved [22] and to favour integration with other open source management tools. 
Thus, OpenRSM has been based on the agent–server model. The OpenRSM agents model abstract man-
ageable entities that convey administrative actions from the OpenRSM server. The agents support many 
different operating systems. Administrative actions originate from the OpenRSM management console, 
the tool exposed to the end-users and the administrators of the service; the users perform administrative 
tasks but cannot manage the OpenRSM services. Management commands are conveyed to the OpenRSM 
server and then to the agents. The architecture of the OpenRSM system is presented in Figure 4.

The OpenRSM server (Figure 1) schedules and synchronizes the execution of jobs defi ned by users. 
Each job corresponds to a distinct administrative task manageable within the OpenRSM system. Jobs are 
entities abstracted and designed with the use of the object-oriented model. The OpenRSM design was 
based on the principle that jobs play a central role in terms of usability, design effi ciency and system 
scalability. Thus jobs are designed to behave as standard abstract system tasks, for example, inventory, 
remote control, remote command, or as reusable user-created objects. Jobs can themselves be managed 
by administrators, decoupling their creation and execution stages. Jobs are created by the end-users by 
using the OpenRSM management console, also called administration console. They are then submitted 
to the OpenRSM integration server and are fi nally executed by the OpenRSM agents at the managed 
stations. The integration server is the front-end of the OpenRSM server logic. Its purpose of operation is 
to schedule job execution according to user commands, prepare (wake) the agents for job execution, 
concentrate access to back-end services, and interact with OpenRSM proxy modules and the database. 
The back-end of the OpenRSM server consists of web server(s), database server(s) and proxy server(s).

After a job has been submitted, the integration server checks its syntax and dispatches it to the appro-
priate station(s) for execution. The integration server wakes the agent(s) using a specifi c handshaking 
protocol. Details about this communication are presented in following sections. If there are other comple-
mentary tasks that must be executed as a result of job execution (e.g., due to job dependencies), the 
integration server makes sure they are also dispatched. Even if there are no dependencies among user 



240 Y. KARALIS ET AL.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

commands (see Section 2.4), inconsistencies resulting from arbitrary job execution have to be resolved. 
The OpenRSM integration server is also responsible for monitoring the job execution progress. It sends 
event and logging information back to the management console so that all management scenarios can 
be handled. It is also responsible for communication with the proxy server modules. When jobs reach 
the execution stage they are most likely served by one of the subsystems incorporated in the OpenRSM 
system. For instance, if the job is an inventory query the agent registers inventory information about the 
station it resides on and sends the information to the inventory web application, hosted by the web server 
of the OpenRSM system. Each server subsystem is presented in detail in the corresponding paragraph 
in this section. The OpenRSM approach is to use double-layer server logic. Jobs are served in two levels: 
the actual level of execution and the abstraction layer of job checking, scheduling and routing.

The OpenRSM project is hosted in SourceForge [14]. The development team numbers three developers. 
The code repository of the project is available for anyone to download and contribute to.

2.2 The OpenRSM server subsystems

This subsection presents the four OpenRSM core server-tier subsystems: inventory, deployment and 
software distribution, network monitoring, and remote control [23]. Subsystem integration software has 
been selected on the grounds of functionality, maturity, compatibility and interoperability. Additional 

Figure 1. OpenRSM integration server architecture



 OpenRSM 241

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

features such as the discovery of managed stations and the creation of dynamic groups are also 
presented.

Inventory
Inventory and asset management constitute the core of remote systems management. Asset management 
provides large organizations with the ability to gather information on the hardware and software of the 
managed workstations. This functionality is signifi cant, because it provides the necessary data for effec-
tive troubleshooting, facilitates the planning of upgrades, increases company control and security and, 
last but not least, helps keep the TCO under control by means of accurate determination of capital and 
administrative costs. Asset management is usually realized through a silent software agent loaded on 
the managed system. The agent retrieves information about the system and presents it in a user-friendly 
way to administrators through the appropriate EMS console. The technologies used, namely CIM/WBEM 
[24], are mature enough to provide vendor interoperability.

The OpenRSM platform is based on the Open Source OpenAudit [25] inventory software. OpenAudit 
is a web application written in PHP, and is designed to read assets/inventory information and store it 
into a MySQL database. The idea is that users need to manually confi gure and run the audit software 
locally on their workstation; the audit software reads information about their system and posts it using 
the http protocol to the web application. Inventory information is then stored in the database and pre-
sented through a web interface. The OpenRSM inventory subsystem builds upon OpenAudit by enhanc-
ing both automation of use and functionality. The audit software is integrated with the OpenRSM agent 
module and can be run from a remote administrative location. Thus, physical presence is not necessary 
and stations can be audited remotely. Moreover, the database schema is integrated with the rest of 
the information stored, making it usable by other components of the OpenRSM system. The dynamic 
groups feature takes advantage of this fact; the administrator is presented with the capability of creating 
groups of stations that share one or more common characteristics so that they can be treated in a uniform 
manner. Integrating database schemas makes asset management information available to all parts of 
the OpenRSM.

Software delivery and deployment
The software distribution and deployment functionalities facilitate the management of already installed 
software, or of software that is to be installed on workstations within an administrative domain. Software 
management is time and resource consuming, in terms of experienced and specialized man hours. The 
lack of software management tools has led system administrators to practices that hinder fl exibility. 
Excessive security is often imposed at the expense of user needs and convenience. However, administra-
tors are required to know and manage the software of their managed stations, along with every other IT 
infrastructure asset.

The functionality provided by the software delivery subsystem is transparent to the users. The admin-
istrator simply chooses the software to be delivered and designates the path to the executable, or the link 
from where it can be downloaded. Then, the software is uploaded and registered within the repository, 
and is subsequently delivered by the server. When software is delivered, the designated installation fi le 
runs, and users may be required to complete the installation procedure. If the silent mode of operation 
is chosen, however, which is a decision made by the administrator, then the installation is not interactive 
and users are not distracted in any way.

OpenRSM uses an extended version of the Windows-get [26] open source tool, specifi cally enhanced 
in order to meet the requirements of the integrated graphical delivery subsystem of OpenRSM. The 
delivery subsystem is complementary with the inventory subsystem; administrators may use the inven-
tory system in order to supervise software distribution and they may use the delivery subsystem in order 
to install/uninstall desired modules. The OpenRSM delivery subsystem is fully automated and complete 
in supporting the installation and uninstallation of software on one or many workstations, silently or 
interactively. Silent is the type of installation/uninstallation where no user interaction is needed. This is 
a basic mode of software deployment for OpenRSM, since silent installations/uninstallations are very 



242 Y. KARALIS ET AL.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

useful for routine administration. The OpenRSM delivery exploits input information about the packages 
used, such as the executable location, name, software description, download URL, application type, 
uninstallation executable, etc. It is capable of running the installation or uninstallation executable using 
various switches, with respect to the type of installation/uninstallation the program itself supports.

Windows-get functionality has been extended to meet the OpenRSM requirements. To start with, it 
has been extended in order to support software uninstallation, implemented by calling the system’s 
uninstaller program and by providing it with appropriate information about the type of uninstallation 
to be performed. For Windows systems this piece of information is typically stored in the Windows 
registry. The rest of the information needed has been integrated in the OpenRSM database and is checked 
and updated as needed after every installation or uninstallation. The way Windows-get handles archive 
fi les has also been extended by the OpenRSM delivery system. Windows-get inherently handles archive 
fi les in no other manner except opening them with the appropriate program. The OpenRSM delivery 
system is capable of opening the majority of archive fi le types and then installing the software they 
contain. The OpenRSM delivery system also supports optimized execution methods for most installation 
package types supported in Windows platforms. Another enhancement made is that the OpenRSM 
delivery system does not rely on Wget, the well-known *nix-world network download utility, which has 
been replaced by custom code [27] designed to provide full control over the delivery procedure. This 
permits, in addition to other advantages, resuming software delivery. If a software delivery command 
fails due to an error, it will resume when the communication is re-established. This may be very useful 
when large software modules are deployed.

Network management
Network management systems (NMS) are essential tools for remote systems management and are 
capable of managing active network elements using the SNMP protocol. The OpenRSM remote manage-
ment system integrates with the NINO open source NMS tool. NINO has been integrated in terms of 
database, web server components and business logic with the rest of the OpenRSM components. Changes 
in the OpenRSM environment are instantly refl ected in the monitoring output. NINO is a full-featured 
network management system; it utilizes SNMP and WMI [28] technologies for the provisioning of rich 
real-time monitoring information for stations and network active elements. The list of features includes 
network discovery using various methods, events (that is, traps), monitoring presets and groups, various 
presentation methods (web interface device browser, reports, applet graphs), various utilities, such as 
MIB browser, snmpwalk, service response meter (HTTP, FTP, POP), and other useful features.

OpenRSM is designed to extend network management to network segments hidden behind NAT by 
installing one lightweight network monitoring server per hidden network. When the management task 
concerns stations located outside NAT segments, the OpenRSM server is capable of performing it, 
whereas when it concerns stations hidden behind NAT the management task is redirected to the respec-
tive network management server.

Remote control
OpenRSM uses the UltraVNC remote control package to deliver the remote control service. OpenRSM 
is capable of starting the UltraVNC server at a managed station or at a group of managed stations. The 
UltraVNC viewer is then started in order to connect to the managed station(s). If the UltraVNC server 
remains idle, it is closed after a confi gurable timeout period. OpenRSM takes full advantage of the fea-
tures of the underlying open source tools. The remote control server is awakened by the agent after the 
remote control job has been delivered; next, the agent calls back the administration station. Thus no 
synchronization failures may occur, since the server is guaranteed to have started when the remote 
control client (viewer) initiates the connection. Synchronization also enhances security, since the server 
wakes when the agent has been informed of a new connection request. The server sleeps again after a 
specifi c and confi gurable amount of time. Besides the above, the remote control software has been con-
fi gured to ask the users of the managed stations for permission whenever a connection is to open, in 
order to avoid unwanted remote access.



 OpenRSM 243

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

OpenRSM proxies
OpenRSM has been designed to deliver remote management services in all environments. In order to 
meet the requirements posed in the case of networks that are partially exposed to the Internet, such as 
networks running under the NAT protocol, a proxy server has been developed. The role of this server 
is to receive connections that cannot be established directly, and forward them to the desired agents. In 
the case of NAT, forwarding the downlink traffi c is suffi cient, since the agents can send traffi c directly 
to the OpenRSM server. This is widely known as half-proxy operation. In cases where the agents are 
completely isolated, the OpenRSM proxy is designed to operate as an access concentration server, oth-
erwise called full proxy, which handles all uplink and downlink traffi c. Proxies are also designed to be 
able to communicate among themselves (cascaded proxies), and thus trees of proxies that concentrate 
access can be deployed. Full proxy functionality and cascaded proxies have been included in the 
design.

2.3 The OpenRSM agents

The OpenRSM agents (Figure 2) are the OpenRSM client modules residing in the end-user workstations. 
Their functionality is limited to the execution of commands sent by the server, and they do not interact 
with any module of the OpenRSM server system unless it is absolutely necessary. The needs for uniform 
logic design and security converge to this implementation; the execution of each job triggers communica-
tion with the integration server and, from there, with the appropriate server subsystem. The server 
subsystem controls the communication and performs all the complementary actions and database trans-
actions. Agents are implemented by integrating subsystems corresponding to different OpenRSM func-
tionalities: integration logic, communication with the server, system-dependent execution logic and agent 
type implementation.

The fundamental agent module implements the communicational logic. As will be described in Section 
3, this part of the agent ensures consistent and secure communication through a handshaking protocol 
and wake/sleep mechanisms. The remaining modules composing the OpenRSM Agent are the subsys-
tems that implement the job execution logic, namely the asset management, network monitoring, remote 

Figure 2. The OpenRSM agent module



244 Y. KARALIS ET AL.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

control, discovery and remote command. Whenever possible, subsystems take advantage of existing 
software or other open source agent modules (e.g., the inventory subsystem uses the OpenAudit agent 
for asset retrieval, as described earlier). The job execution subsystems integrate with the communication 
logic so that all job execution stages can be monitored by the integration server.

The OpenRSM system is capable of managing both Windows and *nix systems, through corresponding 
agent distributions that take into account the characteristics of each platform. Each distribution includes 
different agent fl avours that correspond to different types of usage; the agent can be executed as a back-
ground process for silent operation, as a graphical application user for verbose interaction, as a service, 
or as a console application.

2.4 The OpenRSM management console

OpenRSM provides a controlling interface (Figure 3) that can be used by the administrators to control 
all the subsystems and their interactions. The design has focused on synthesizing the independent func-
tionalities provided by the subsystems in a user-comprehensive and effective manner, and on the provi-
sioning of additional supervisory functionality.

The OpenRSM management console exposes a multilingual control environment. The console can send 
any system command that is supported by the operating system of the managed stations. Commands 
accept parameters related to CPU priority, type and user visibility. However, the starting point for 

Figure 3. The OpenRSM management console



 OpenRSM 245

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

management is the functionality that discovers the available stations that run OpenRSM agents and are 
therefore manageable. Discovery of OpenRSM agents can be directed towards any part of the Internet 
address space. Only agents confi gured to communicate with the specifi c OpenRSM server that originated 
the discovery packets will respond to the agent discovery. The result of the discovery process is to create 
active interface elements, representing corresponding managed stations. Along with core jobs (of the 
inventory, remote control, delivery or remote execution type), they constitute the basic interface elements. 
Machines and jobs are entities that can be combined, resulting in jobs assigned to specifi c agent-equipped 
machines. They are both presented on the management tree for easy supervision. Both jobs and machines 
can be grouped. Groups of machines and jobs, or groups of jobs and machines, can also be combined 
in order to create submittable machine–job mappings. Groups are generic: a group of jobs can contain 
any kind of jobs and no dependencies are implemented. It is the administrator’s responsibility to create 
a rational sequence of a group of jobs for execution.

OpenRSM allows the user to create custom jobs. Following a clean installation, only core jobs exist. 
The core jobs include predefi ned inventory, software delivery, remote control and remote command jobs. 
As stated in the previous paragraph, a job must be visually combined with one or more agents. Thus, 
jobs can be considered as templates for submitted administration tasks. Each type of job is created using 
interface components used for that purpose only. For example, a delivery job must ‘know’ the software 
that it has to install/uninstall etc. OpenRSM provides the interface for custom job production. The jobs 
created are stored and made available through the interface so that they can be reused. A user can also 
use the machine and job groups forms to defi ne machine and job groups, respectively. The management 
console also provides means of job execution supervision. Users can submit and monitor the execution 
of jobs in real time through the active job list. The job state is displayed along with information on the 
agent that executes it, related timestamps, etc. Filters can be applied to the job list, creating job–machine 
assignments that meet specifi c characteristics (e.g., owner, date, job type).

One key usability feature of OpenRSM is related to its reporting functionality. This functionality can 
be further combined with the creation of dynamic groups of machines. The management console report-
ing can search across the database produced by inventory jobs for machines that match specifi c user-
defi ned characteristics. The objective is to enable the easy identifi cation of workstations that share 
common characteristics and group them together in new machine groups, or present their selected attri-
butes on a visual form. An example would be the retrieval of all workstations that have, for example, 
more physical memory than a specifi c value, selected by the user. The selection of attributes and the 
results are performed visually. The resulting workstation information can also be presented as a group 
of machines, called ‘dynamic’ because of the way it is created. Dynamic groups behave as normal groups, 
but they also enjoy the special feature that they are associated with the database statement that created 
them. The query that created them may be executed at any time, in which case the group is recreated 
based on updated workstation information.

The reporting functionality is complemented by the data explorer form, created to provide complete 
database supervision. The user is capable of browsing database entities and combining their contents 
whenever internal linking is possible. Combinations are presented in the form of reports that can be 
exported in various formats, such as doc, xls, html, txt and csv.

The management console is also capable of producing cumulative and detailed statistics about system 
utilization. The generated statistics can record general system usage, job distribution, workstation utiliza-
tion and user actions. General information is presented in visual charts providing summary information 
on the job submission rates, job error rates and job distribution with respect to job type and submitting 
user. Detailed information is presented in individual reports.

2.5 Topologies

The OpenRSM server-side components (Figure 4) can reside on one or more servers. Several of these 
components can be treated autonomously, so that many topologies and confi gurations are possible for 
the OpenRSM server tier. The standard installation uses one machine to host the OpenRSM server; 



246 Y. KARALIS ET AL.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

however, the database, web server and OpenRSM integration server modules could also be installed in 
different machines according to needs or specifi cations. The benefi ts that can be derived from a distrib-
uted server topology are mainly related to customization, performance, availability and effi ciency. Since 
overall performance depends on the system load, subsystems that are more frequently used or subsys-
tems that bring greater load to the system can be installed on separate server stations. In that case service 
availability also increases, since if a single server station fails then only a portion of the system service 
fails.

NMS usually poses a heavy load on the overall system, and it might be preferable to set it up on an 
autonomous server. If the server cannot cope with the load, the database server can also be installed on 
a separate machine. The software repositories of the delivery service can also be separated from the web 
server. It can be confi gured to provide service to a subset of the managed terminals so as to balance the 
overall load of the delivery subsystem. Future work includes the decoupling of the two web applications, 
asset management and network monitoring, so that the former can be installable on a different server.

A variety of different topologies are also possible. The system can be set up with many OpenRSM 
integration servers so as to avoid single points of failure. These server modules, each of which orches-
trates the integration of subsystems, form the heart of the OpenRSM system and can be more than one 
per installation, so as to provide enhanced service availability.

Other valuable topologies that may be useful for network traffi c planning purposes make use of the 
OpenRSM proxy server module presented previously. The proxy can be used to aggregate access to the 
integration server if there are network links that can sustain heavier load. The proxy server is also capable 
of establishing communication with agents hidden behind NAT networks. If installed on a machine with 
a visible IP address, it can expose OpenRSM Agents within the NAT network to OpenRSM integration 
servers that are located outside the NAT network. Implementation depends on the management needs 
of each application domain.

3. SECURITY CONSIDERATIONS

User authentication and communication channel safety are two important security issues that are raised 
in most distributed applications, and have also been faced in OpenRSM. Regarding user authentication, 
the mechanisms employed by the OpenRSM system at the management console end are implemented 

Figure 4. OpenRSM architecture



 OpenRSM 247

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

using the secure connection mechanisms of the underlying MySQL database service engine. Furthermore, 
all local access security issues raised by the execution of the OpenRSM management console and the 
agent are covered by the local administrative account security specifi cations. Since no authentication 
information is transmitted in clear text, prospective attackers may listen to commands and management 
metadata during communication with the server, but they cannot gain access to the system, even if they 
manage to take over the station.

The link between the OpenRSM server and the agent uses a protection mechanism based on the a priori 
knowledge of server location at installation time, the complex server–agent communication protocol, and 
the agent no-reply connectionless wakening mechanism. The agent state is initially idle and no connec-
tions are held open. The server–agent protocol uses combined UDP/TCP communication for the initia-
tion/negotiation mechanism. If a command is to be addressed to an agent, the server informs the agent 
by sending a UDP packet on a known, customizable port. The agent then wakes up and commences 
standard TCP communication with the predefi ned server without exposing any other network traffi c. 
Therefore, network connections are practically server initiated, while server address is statically pre-
defi ned in the agent. The communication protocol followed consists of a several-step procedure, where 
each step corresponds to a state in the core FSM of the OpenRSM Agent. After the communication ends 
or times out, the agent shuts down all connections. When the agent enters this state it is practically 
immune to remote attacks and invisible to port scans or any network attacks. Even if attackers gain access 
on the system, they can solely shut down the agent. They cannot send commands to the server, since the 
communication is server initiated and the communication protocol does not allow the agent to send 
commands. Even if attackers beat the above mechanism, they will have to use advanced networking 
techniques to gain control of the agent. This task is far harder than attacking the station itself, and attack-
ers can gain nothing more than the control of the station at best, where their control will again be confi ned. 
They can still not damage the OpenRSM system or take control of the server so as to control the stations 
within the managed domain. Advantages of this design model include the absence of communication 
problems related to fi rewalls and routing after the agent has woken up.

4. SERVER TESTING

4.1 Test description and rationale

The OpenRSM system characteristics have been tested through an extended set of experiments emulating 
realistic usage scenarios. Our goal was to determine the performance levels that can be attained, formal-
ize the corresponding end-user experience, and identify the factors that infl uence performance. In our 
experiments and tests, the system was brought close to its limits, in order to verify conceptual and imple-
mentation correctness. We focused our experiments on testing the integration server module, and not on 
the constituent server modules, which are well-known open source web or database servers or applica-
tions, utilities or libraries. The following paragraphs present the testing procedure used and the perfor-
mance results obtained for the integration server module of the OpenRSM system.

The OpenRSM server was installed on a Fujitsu-Siemens RX300S3 machine using four double-core 
Xeon 5050 3 GHz, 2 × 2 MB processors running Windows 2003 server. Ten custom workstations of 
varying power were used as the managed agents. The weakest managed system used was a Pentium II, 
400 MHz, 256 MB memory workstation. All stations were running Windows 2000 or XP operating system, 
and all but one resided in the same local network segment. For the purposes of testing, and specifi cally 
for the task of sending large numbers of jobs to the server, a particular visual component has been devel-
oped. This component, called the testing form, enabled the tester to send multiple copies of one or more 
selected jobs to the managed workstations. New jobs were treated as new job entities ready for execution, 
so that the system was not burdened with the overhead of new job creation but only dealt with their 
successful execution. This choice enabled the emulation of active job submissions without the overhead 
of the job creation process.



248 Y. KARALIS ET AL.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

Since the objective has been to test the behaviour of the server alone, a lightweight job has been chosen 
for execution. Remember that the integration server is responsible for the management of jobs, and not 
for their execution. Thus, sending a heavy job instead of a lightweight one adds nothing to the informa-
tion we can obtain on the performance of the integration server. The testing form was used to send 4, 
16, 64, 256, 512, 1024, 2048 and 4096 remote command execution type jobs to the 10 agents, for a total 
load of the server of up to 40 960 job service requests. During the execution of the test cases, measure-
ments were taken using the Windows native logging system, and a variety of system counters represent-
ing the machines and processes states were logged.

4.2 Test results and conclusions

During the testing procedure the server responded in the desired manner to all the system loads we 
experimented with. It responded to requests and to visual component rendering and always processed 
data correctly, without halts or hangs. This is also illustrated in Figure 5, where the server throughput 
is presented. The throughput is a good measure of the overall performance perceived by the end-user. 
Beyond the quantitative results, Figure 5 also shows that performance degrades smoothly as the load 
increases up to the rather heavy total load of about 40 000 jobs. The results in Figure 5 also indicate that 
the software design is sound and appears to be free of major fl aws. The diagram starts linearly and then 
bends smoothly; linear behaviour is maintained up to about 10 000 jobs, at which point the diagram starts 
to bend smoothly. Figure 5 also shows that the OpenRSM server is capable of dispatching management 
requests in reasonable amounts of time. In 1 min the server can dispatch about 1250 jobs. This service 
rate is maintained for a total load up to 10 000 jobs, yielding a throughput of about 21 jobs s−1. When the 
load reaches 20 000 jobs the throughput falls to 19 jobs s−1, corresponding to a total delay of 17 min. If 

Figure 5. Total test case execution time duration (in seconds) versus the number of served jobs for each 
test case



 OpenRSM 249

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

the load is doubled to 40 000 jobs the throughput falls to 13 jobs s−1. The above numbers refl ect that the 
user-perceived performance is maintained practically stable for up to 20 000 submitted jobs, while beyond 
this point the performance degrades gracefully.

Figures 6 and 7 illustrate the available memory and the CPU utilization at the server machine, as 
measured by corresponding operating system counters. It is evident that the OpenRSM server has a small 
memory footprint, since it causes the reservation of only 5 MB of memory under the heaviest test case. 
Note that the server machine RAM size was 4 GB. It is also evident that memory allocation takes place 
uniformly. Figure 6 shows that CPU utilization is low and rises linearly with the number of submitted 
jobs, indicating that the system scales in a predictable and desired way. It must be noted that CPU uti-
lization never reached high levels. This fact can be explained by the cumulative delays (execution, com-
munication protocol and network) introduced by the slowest of the agents. Threads serving fast stations 
completed job execution rapidly, whereas threads serving slow machines waited for agent response. The 
slower the agent was, the longer were the waiting times for the respective server threads, and the more 
were the resources available for fast threads. The reason the server did not reach its limits was that the 
jobs submitted were far too many for standard workstations to cope with. This result might have been 
expected since the server was tested against job quantity alone. Another possible series of tests, left for 
future work, would be to test the way server performance varies with respect to the number of agents 
or with respect to the speed of the agents.

5. CONCLUSIONS AND FUTURE WORK

The Open Source Remote Systems Management (OpenRSM) system, described in this report, covers 
all core systems and network management needs in a reliable and scalable manner. OpenRSM is an 

Figure 6. Available memory versus the number of submitted jobs for each test case



250 Y. KARALIS ET AL.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

integrated remote management system, implemented by integrating individual specialized open source 
management tools, and signifi cantly augmenting them to support additional functionality. Use cases in 
OpenRSM are simple and functional, hiding unnecessary complexity through the utilization of a realis-
tic user-centred design. The OpenRSM system has been deployed in three small-scale pilot installations 
at the Citizens Convenience Offi ces [29] under the Ministry of Interior—Public Administration and 
Decentralization [30], the independent Body of Public Administrator Inspection [31] and the Local Pre-
fecture Offi ces [32]. The OpenRSM system has been successful in the above pilot installations. OpenRSM 
has also been gathering attention from the open source community, where medium-size installations 
numbering several hundreds of managed stations have been reported in the forums of the project. During 
2006 the project was downloaded 708 times, corresponding to a volume of 20.7 GB. The corresponding 
numbers for 2007 are 17.086 downloads and 376.5 GB traffi c.

Future work will focus on the extension of the platform to cover a wider range of administrative needs 
and business goals [18,33]. Although the half proxy module, described in Section 2.2, enables the manage-
ment of workstations hidden behind NAT, the full proxy module is expected to complete the proxy archi-
tecture by providing deterministic management traffi c routes to traffi c originated by the agent. Along with 
cascading proxies, it is expected to enable the defi nition of management traffi c paths according to admin-
istrative needs. The same architecture can be implemented for the integration service. Future work will 
also include the development of mechanisms for dynamic failover among integration servers. The separa-
tion and installation autonomy of different modules is another future task expected to enable easy deploy-
ment, server logic decoupling and application confi guration. Another important enhancement expected 
to impact usability would be the introduction of virtual domain management, a feature not included in 
the fi rst releases of OpenRSM. Introducing additional tasks that may enhance core administrative use 
cases, such as simple fi le transfer, OS unattended installation and managed domain policing [34], also 
constitute work scheduled for the future. OpenRSM will consider best practices, standards and models 
such as ITIL and ITSM [19,35–37].

Figure 7. Processor consumption versus the number of jobs submitted. Processor time is categorized 
into total, privileged and user time



 OpenRSM 251

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

ACKNOWLEDGEMENTS

We would like to thank the contributing community of the following projects: Winventory/OpenAudit, 
MySQL direct, Windows-get, Winget, Nino, Xampp, VTree, Jvcl, Jcl libs, Libcurl, 7-Zip and OCS for 
Linux. We would also like to thank the Greek Information Society program for providing fi nancial 
support for this work. This work was supported by the Information Society program with 75% funding 
by the EC through ETPA, and 25% by the Greek State.

REFERENCES

 1. Design principles for IT monitoring systems. GroundWork Open Source: San Francisco, CA, 2006.
 2. Aziz M.H., Ong ConNie, Jesse Chan Mei Yam, Lee Chang Wei. TCO reduction, In the proceedings of the 9th Asia-

Pacifi c Conference on Communications, 2003, vol. 3, 1147–1151.
 3. Kakadia D, Thomas T, Vembu S, Ramasamy J. Enterprise management systems part I: architectures and stan-

dards, Sun BluePrints TM, April 2002. http://www.sun.com/blueprints [14 June 2008].
 4. Hochstein A, Zarnekow R, Brenner W. ITIL as common practice reference model for IT service management: 

formal assessment and implications for practice. In Proceedings of the IEEE International Conference on e-Technology, 
e-Commerce and e-Service, 2005; 704–710.

 5. From OpenView to Open Source. GroundWork Open Source: San Francisco, CA, 2006.
 6. List of IT service management vendors. http://en.wikipedia.org/wiki/List_of_IT_Service_Management_

providers [January 2008].
 7. Offi cial Computer Associates Infrastructure and Operations Management web site: http://ca.com/us/

products/category.aspx?ID=315 [January 2008].
 8. Grieser T, Perry R. Achieving business value and gaining ROI with CA’s EITM software for optimizing IT infra-

structures. http://ca.com/fi les/IndustryAnalystReports/eitm_roi_idc_white_paper.pdf [April 2007].
 9. Bladelogic operations manager datasheet. http://www.bladelogic.com/products/pdfs/Operations_ Manager_

Datasheet.pdf [January 2008].
10. Westerinen A, Bumpus W. The continuing evolution of distributed systems management. IEICE Transactions on 

Information and Systems 2003; 86: 2256–2261.
11. Sale M. IT service management and IT governance: review, comparative analysis and their impact on utility 

computing. HP Laboratories: Palo Alto, CA, 2004.
12. Ding J, Kramer B, Xu S, Chen H, Bai Y. Predictive fault management in the dynamic environment of IP networks. 

In Proceedings of the IEEE Workshop on IP Operations and Management, 2004; 233–239.
13. The OpenRSM project site. http://sourceforge.net/projects/openrsm/ [14 June 2008].
14. Consortium for studying, evaluating and supporting the introduction of Open Source software and Open Data 

Standards in the Public Administration. Deliverable 2.1 for WP2 ‘Catalogue of available Open Source tools for 
the PA’. COSPA: Bozen-Bolzano, Italy, 2005.

15. Dekhil M, Machiraju V, Wurster K, Griss M. Remote management services over the web. HP laboratories, Palo 
Alto, CA, May 2000.

16. Wren M, Gutierrez J. Agent and web-based technologies in network management. In Proceedings of the Global 
Telecommunications Conference (GLOBECOM), Vol. 3, 1999; 1877–1881.

17. Lee S, Choi M, Yoo S, Hong J, Cho H, Ahn C, Jung S. Design of a wbem-based management system for ubiqui-
tous computing servers. http://www.dmtf.org/education/academicalliance/ [January 2008].

18. Carey K, Reilly F. Integrating CIM/WBEM with the Java enterprise model. http://www.dmtf.org/education/
academicalliance/ [January 2008].

19. Hochstein A, Zarnekow R, Brenner W. Evaluation of service-oriented IT management in practice. In Proceedings 
of the International Conference on Services Systems and Services Management, Vol. 1, 2005; 80–84.

20. Qin J, Meng D, Gu Z. Research of remote management technology in cluster management system. In Proceedings 
of the International Conference on Parallel and Distributed Computing, Applications and Technologies, 2003; 492–496.

21. The list of available projects in the SourceForge hosting portal. http://sourceforge.net/softwaremap/index.php 
[December 2007].

22. Bailey I. A simple guide to enterprise architecture. Model Futures TM white paper, 2006. http://www.
modelfutures.com/fi le_download/4/SimpleGuideToEA.pdf [January 2008].



252 Y. KARALIS ET AL.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2009; 19: 237–252
 DOI: 10.1002/nem

23. Troni F, Coza R. Client management: a comparison of the leading PC vendors. Technology Overview. Gartner: 
Stamford, CT, 2004.

24. WBEM. http://www.dmtf.org/standards/wbem/ [14 June 2008].
25. OpenAudit. http://sourceforge.net/projects/openaudit/ [14 June 2008].
26. Windows-get. http://windows-get.sourceforge.net/ [14 June 2008].
27. Curl. http://curl.haxx.se/ [14 June 2008].
28. WMI and SNMP. http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/ [14 June 

2008].
29. Citizens Convenience Offi ces. http://www.kep.gov.gr [January 2008].
30. Ministry of Interior—Public Administration and Decentralisation. http://www.ypes.gr [December 2007].
31. Independent Body of Public Administrator Inspection. http://www.seedd.gr/ [December 2007].
32. Achaia Prefecture Offi ces. http://www.achaia.gr/ [December 2007].
33. Braet O, Ballon P. Business model scenarios for remote management. Journal of Theoretical and Applied Electronic 

Commerce Research 2007; 2: 62–79.
34. Granville L, Tarouco L. QAME: QoS Aware management environment. In Proceedings of the International Computer 

Software and Applications Conference on Invigorating Software Development, 2001.
35. Bellur U. Automating applications management in the enterprise using DMTF information models. http://www.

dmtf.org/education/academicalliance/ [January 2008].
36. Schaaf T. Frameworks for business-driven service level management: a criteria-based comparison of ITIL and 

NGOSS. In Proceedings of the IEEE/IFIP International Workshop on Business-Driven IT Management 2007; 65–74.
37. Shwartz L, Ayachitula N, Buco M, Surendra M, Ward C, Weinberger S. Service provider considerations for IT 

service management. In Proceedings of the IFIP/IEEE International Symposium on Integrated Network Management, 
2007; 757–760.

AUTHORS’ BIOGRAPHIES

Yiannis Karalis received a Diploma in Computer Engineering and Informatics in 2005 from the University of Patras, 
Greece. He is working as an engineer for the Research Academic Computer Technology Institute of Patras and is 
pursuing the MSc program at the Department of Computer Engineering and Informatics of the University of 
Patras.

Michalis N. Kalochristianakis is currently occupied as an engineer at the Research Academic Computer Technology 
Institute of Patras and is also a PhD candidate at the Department of Computer Engineering and Informatics, Uni-
versity of Patras. He has worked in the software industry as a programmer/analyst. He has received the MSc degree 
in Computer Science from the Computer Science Department, University of Crete, and a Diploma in Electrical Engi-
neering and Computer Technology from the University of Patras.

Panagiotis Kokkinos received a Diploma in Computer Engineering and Informatics in 2003 and an MSc degree in 
Integrated Software and Hardware Systems in 2006, both from the University of Patras, Greece. He is currently a 
PhD student at the Department of Computer Engineering and Informatics of the University of Patras.

Emmanouel (Manos) Varvarigos was born in Athens, Greece, in 1965. He received a Diploma in Electrical and 
Computer Engineering from the National Technical University of Athens in 1988, and MS and PhD degrees in Elec-
trical Engineering and Computer Science from the Massachusetts Institute of Technology in 1990 and 1992, respec-
tively. He has held faculty positions at the University of California, Santa Barbara (1992–1998, as an assistant and 
later an associate professor) and Delft University of Technology, the Netherlands (1998–2000, as an associate profes-
sor). In 2000 he became a professor at the Department of Computer Engineering and Informatics at the University 
of Patras, Greece, where he heads the Communication Networks Lab. He is also the Director of the Network Tech-
nologies Sector (NTS) at the Research Academic Computer Technology Institute (RA-CTI), which through its involve-
ment in pioneering research and development projects has a major role in the development of network technologies 
and telematic services in Greece. Professor Varvarigos has served on the organizing and programme committees of 
several international conferences, primarily in the networking area, and in national committees. He has also worked 
as a researcher at Bell Communications Research, and has consulted with several companies in the USA and in 
Europe. His research activities are in the areas of protocols for high-speed networks, network architectures, ad hoc 
networks, network services, parallel and distributed computation and grid computing.


