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Abstract and performance implications for single-chip multiproces-

sors and parallel/distributed systems based on such compo-

Current VLSI technology allows more than two wiring Nents. Thus, there is currently renewed interest in fi nding
layers and the number is expected to rise in future. In this €fi_cient VLSI layoutsfor variousinterconnection networks
paper, we show that, by designing VLSI layouts directly for 3, \?Llsol |12- 13, Zfl-' 28, 30, 31, 32, 35]. ksi alv d
an L-layer model, the layout area for a variety of networks ay(r)]ut % Interconnection RetWOf SI IS usu : y de-
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aboutL/2, leading to considerably lower cost and/or higher trfg%]rﬁggrasof V\(/ai;inn | er?s ;ﬁz actri?/aeslon erse(?gr : etwo(raE
performance. The proposed layouts for k-ary n-cubes, hy- ¢ des) areboth incr 9 ayb et o & t?eareaofal ot
percubes, butterfl y networks, cube-connected cycles (CCC{}GSi ned for the Thom sor¥mode| can be reduced b Z)liac—
folded hypercubes, generalized hypercubes, k-ary n-cube ogf about t b foldir? the layout, while the volu)r/ne and
cluster-c, hierarchical hypercube networks, reduced hyper- . ; 31 h g the fayout, w atelv th |
cubes, hierarchical swap networks, and indirect swap net- MaXImum wire fength réman gpproximatety the same. in

his paper, we introduce the multilayer 2-D gridand mul-
works, are the best layouts reported for these networks thus; .
far and are optimal within a small constant factor under ulyer 3-D grid modelgfor VLS| layout of networks. We

both the Thompson model and the multilayer grid model. shgw thham, for agvid%vgi%y of rgtworkks ingluding k'??é n-
All of our layouts are optimally scalable in that we can al- CIU esc'zc%?ergg E fu|§r o hy n w%r S, f“ e-cor;?ec edhcy-
low each network node to occupy the largest possible areace‘arifjb%[%[ 9 k-]ér on-cubggletj;lérf[[ 4]]'%%?gcr:izc aI hy:
(e.g., @N/L?) for hypercubes) without increasing the lead- Eercube networks (H>I/-|Ns) [36], reduced hypercubes [3% ’
:ggg(iﬁnstant of the layout area, volume, or maximum wire hierarchical swap networks (HSN) [33, 34], indirect swap

networks (ISNs) [35], designing layouts under the multi-
layer 2-D grid model leads to the following advantages:

(1) theareaof the layout can be reduced by afactor of ap-
proximately t> when we use L = 2t layers of wiresin-
stead of two layers of wires as in the Thompson model

1. Introduction

Twenty years ago many researchers believed that paral-
lel processing would move to the mainstream of computa-
tion due to rapid advance in VLS| technologies. A variety
of famous papers, theses, and books considered the VLS
layout of interconnection networks for parallel processing
[7, 17, 19, 20, 22, 23, 24, 25, 27]. However, the revolu-
tion did not materialize at that time; rather, the increased
VLS density was used to build more complex single pro-
cessors whose performance has improved by two orders of
magnitude since then. Asrecently pointed out by Dally and
Lacy [9], the number of transistors per chip will likely in-

(2) the volume of the layout can be reduced by a factor of
approximately t

(3) the maximum length of wires can be reduced by afac-
tor of approximately t

(4) the maximum total length of wires along the routing
path between any source-destination pair can be re-
duced by afactor of approximately t

crease by another three orders of magnitude in the next two
decadesand few effi cient alternativesto explicit parallelism
exist for exploiting the increased number of transistors and
grid points. Therefore, the expected revolution may begin
soon and the mainstream computing community may shift
from serial computers to parallel and distributed systems.
The layout of interconnection networks has important cost

For many other networks, including star graphs [2], trans-
position networks[16, 18], pancake graphs[2], bubble-sort
graphs [2], and star-connected cycles (SCC) [15], the pre-
ceding argumentsare still true, leading to lower cost and/or
higher performance for most of the architectures consid-
ered thus far for parallel computation. The proposed lay-
outs for butterfl y networks, generalized hypercubes, HSNs,



and ISNs are optimal within a factor of 1+ o(1) under
the Thompson model, and are optimal within a factor of
2+ 0(1) from a trivial lower bound under the multilayer
grid model. These layouts and the proposed layouts for hy-
percubes, CCCs, folded hypercubes, reduced hypercubes,
HHNs, and enhanced cubes constitute the best results re-
ported in the literature for these networks, under both the
Thompson model and the multilayer grid model.

The organization of the remainder of the paper is as fol-
lows. In Section 2, we discuss existing VLSI layout mod-
els, introduce the multilayer grid models that we propose,
and propose several layout schemes. In Section 3 we present
effi cient multilayer layout for k-ary n-cubes, product net-
works, and related networks. In Section 4 we present effi -
cient multilayer layouts for butterfl y networks, generalized
hypercubes, and related networks. In Section 5 we present
effi cient multilayer layoutsfor hypercubes, CCC, folded hy-
percube, and related networks. In Section 6 we present our
conclusions.

2. VLS layout models and layout schemes

In this section, we describe several modelsfor VLSI lay-
out of interconnection networks.

2.1. The Thompson model

In the Thompson model [23], a network is viewed as a
graph whose nodes correspond to processing elements and
edges correspond to wires. Thegraphisthen embeddedina
2-D grid, where wires have unit width and a node of degree
d occupies asquare of side d. Thewires can run either hor-
izontally or vertically along grid lines. Two wires can cross
each other at agrid point, but cannot overlap or bend at the
same grid point, which would form a knock-knee[6].

The area of alayout is defi ned as the area of the small-
est rectangle that contains al the nodes and wires. (In this
paper we only consider upright rectanglesfor this purpose.)
When there are two layers of wires and a node can be laid
out in a square of area d?, it is guaranteed that we can lay
out the network within the area of that rectangle. More pre-
cisely, we can use one layer of wires to lay out all the hor-
izontal segments of wires and the other layer to lay out all
the vertical segments. When a wire makes a turn, its hori-
zontal and vertical partsin different layers are connected by
an inter-layer connector known as avia.

Note that some authors have assumed that a node occu-
pies a square of side 1 in the layout model they use. Some
such layouts cannot be extended to the Thompson model
without anonnegligibleincreasein area, whilelayoutsunder
the Thompson model can usually be extended to the former
model using comparable area.

2.2. The multilayer grid model

In the multilayer grid model, a network is viewed as a
graph whose nodes correspond to processing elements and
edgescorrespondtowires. The nodesand edgesof thegraph
are then embedded in a 3-D grid, where edges have unit
width, can run along grid lines, but cannot cross or overlap
with each other (i.e., the paths for embedding these edges
must be edge- and node-disjoint). The area A of alayout is
defi ned as the area of the smallest upright rectangle along
the x-y directions that contains all the nodes and wires. The

volume of alayout is equal to the number L of layerstimes
itsareaA.

In the multilayer 2-D grid model, the nodes of the graph
are embedded in the 2-D grid of thefi rst layer (i.e., z=1).
The range of actual node sizes must be specifi ed explicitly
in this model, and is usually taken to be between the min-
imum size required to implement a node (e.g., a square of
sided,d/4, or % for adegree-d nodein sometechnologies)
and the maximum allowable size without affecting the |ead-
ing constants for area, volume, and maximum wire length.
A network with area A under the Thompson model can be
laid out with areano larger than A under the multilayer 2-D
gridmodel with L = 2 layers, so theformer can beviewed as
aspecia case of the latter. Note, however, that we may de-
rive layouts under the two-layer 2-D grid model with area
smaller than the Thompson model. In the multilayer 3-D
grid model, the nodesof thegraph areembeddedin L 5 layers
of the 3-D grid. These Lp layers are called “ active layers’
and do not need to be consecutivelayers. Therangeof actual
node sizesis also required to be specifi ed explicitly, which
is usually between the minimum size required to implement
a node (e.g., a cuboid with sides at least d/h x d/h x h,
1< h<La <L, for adegree-d nodein some technologies)
and the maximum allowable size without affecting the |ead-
ing constants for area, volume, and maximum wire length.
The multilayer 2-D grid model is aspecial case of the mul-
tilayer 3-D grid model with La = 1 active layer. Note that
ad/hx d/h x hcuboid node requires h active layersfor its
implementation, whilead x d x 1 cuboid noderequiresonly
1 activelayer. The cost of alayout under the multilayer grid
model isafunction of A,L, and L, aswell as other param-
eters.

The motivations for using multilayer layout models in-
clude the signifi cant reduction achieved in the layout area,
volume, and maximum wire length required, leading to con-
siderable improvements in both hardware cost and perfor-
mance. When we use L layers, the number of tracksin the
x and y directions may both be reduced by a factor of about
L/2 in many networks, leading to a factor of about L?/4 re-
ductioninits areacompared to the layout under the Thomp-
son model, and afactor of about L/2 reductioninitsvolume
(since the number of layersis only increased by afactor of
L/2). Hence, the cost of the resultant layout can be signifi -
cantly reduced, or the performance can be signifi cantly im-
proved with the same hardware cost. As apoint of compar-
ison, if wefold alayout derived for the Thompson model in
order to use al the available layers, the area can be reduced
by afactor of only L/2, while the volume is unaffected; if
we extend the collinear layout model to its multilayer coun-
terpart, the volume will not change either since the areacan
only be reduced by a factor of at most L/2 when L layers
are used. The maximum wire length in many networks is
approximately proportional to the number of tracksin the x
or y direction (or to their sum). Therefore, if the numbers of
tracksin the x and y directions are both reduced by a factor
of about L /2, the maximum wire length can also be reduced
by afactor of approximately L/2, leading to signifi cantim-
provement in performance. As a point of comparison, the
maximum wire length in a collinear layout using L layers,
or in alayout obtained by folding the layout derived using
the Thompson model, is not signifi cantly affected in most
cases. These arguments will become clear after examining



the multilayer layouts derived in the following subsections.

We can extend the multilayer grid modd to the multi-
layer layout modeby allowing nodes and edges to run in
other specifi ed directions. Layouts under this model may
have smaller area and volume compared with layouts un-
der its multilayer grid model counterpart. Moreover, wires
in this model may have different width and cross area, de-
pending on the technology used. For example, wires along
the z direction may havelarger cross areain PCB. Inthere-
mainder of the paper, we focus on the multilayer 2-D grid
model. When the number L of layersis equal to 2, the mul-
tilayer layouts presented in this paper become layouts un-
der the Thompson model. Notethat, in general, amultilayer
layout with L = 2 is not necessarily alayout under the grid
model. Layouts under other models, such as the multilayer
3-D grid model and other multilayer layout models, will be
reported in the near future.

2.3. Therecursivegrid layout scheme

In [28, 32], we have proposed the recursive grid layout
schemdor simple and effi cient 2-D layout of interconnec-
tion networks. In this subsection, we extend the scheme to
the 3-D layout model and briefl y present this generally ap-
plicable layout scheme.

To lay out an |-level hierarchical network, wefi rst place
nodes belonging to the same level -l cluster within a block,
which we call alevel-l block We arrange the blocks as a 2-
D gridfor the 2-D layout model or asa 3-D grid for the 3-D
layout model, where neighboring rows (or columns) are sep-
arated by a suffi cient number of horizontal tracks (or verti-
cal tracks, respectively) (see Fig. 1). Wethen lay out level-I
inter-cluster links (i.e., links connecting nodes in different
level-| clusters) outside the blocks. Note that we will even-
tually connect each of the level-I inter-cluster links incident
to alevel-l block to acertain node within the block. We can
then continue to lay out each level-l cluster, including the
M,;_1 level-(l — 1) blocks within it and the links connecting
these level-(1 — 1) blocks, within alevel-l block. This pro-
cessisrepeated recursively until each block containsanode
or until the number of nodes within ablock to belaid out is
small. Then we use any viable method to lay out all these
small clusters.

2.4. The orthogonal multilayer layout scheme

In this subsection, we propose a special case of the re-
cursive grid layout scheme for multilayer layout of general
interconnection networks.

Inthe orthogonal multilayer layout schemeefi rst parti-
tion network nodesinto clusters and then arrangethese clus-
tersas a 2-D grid for the multilayer 2-D layout model or as
a 3-D grid for the multilayer 3-D layout model. The parti-
tion and arrangement should be carefully performed so that
(most of the) inter-cluster links only connect clusters be-
longing to the same row or column. Note that we in gen-
era prefer to make the clusters small if possible in order
to reduce the additional arearequired to lay out these clus-
ters, and a cluster may consist of asingle node. We then lay
out theinter-cluster links assuming two layers of wires (e.g.,
under the Thompson model, with one layer for horizontal
tracks and the other for vertical tracks) so that the layout
area, volume, and/or other cost/performance criteria (such

Level-/ Level-/ Level-/ Level-/
block block block block
Level-/ Level-/ Level-/ Level-/
block block block block
Level-/ Level-/ Level-/ Level-/
block block block block
Level-/ Level-/ Level-r || [ ..., Level-/
block block block block

Figure 1. Top-view of a layout based on the
recursive grid layout scheme. Level-I blocks

are arranged as a 2-D grid.

as maximum wire length) are optimized. We refer to a 2-D
layout as an orthogonal layoutf all of itsinter-cluster links
connect clusters belonging to the same row or column. As
will be shown in what follows, we can always transform an
orthogonal layout to an effi cient multilayer layout.

Assume that the number of horizontal tracks required
above row i of clustersis h;, the number of vertical tracks
required to theright of column j of clustersisw;, and there
arel layersof wiresavailable. We partitionthe h; horizontal
tracks into [L/2] groups, each having at most [h;/[L/2]]
tracks, and the w; vertical tracks into |L/2| groups, each
having at most [w;/|L/2|] tracks. To obtain an L-layer lay-
out, we assign each groupto acertainlayer. For example, we
can assign the groups for horizontal tracksto layers1, 3, 5,
..., 2[L/2] — 1, and thegroupsfor vertical tracksto layers2,
4,6, ...,2[L/2]. If thecluster is small enough, whichisthe
typical casefor thelayout of most interconnection networks,
the layout area/lvolume is dominated by these inter-cluster
links. The multilayer layout has then been mostly derived
sinceit is easy to lay out small clusters without increasing
theleading constant of layout area/volume. Let A bethelay-
out area using two layers of wires. We can see that when L
layers of wires are available, the area of the multilayer lay-
out can be reduced by afactor of about L2 /4 and the volume
can be reduced by afactor of about L/2.

If the cluster is very large and the number L of layersis
not small, then we may have to lay out these intra-cluster
links carefully. A possible method isto lay out these intra-
cluster links recursively using the above method. The de-
tails are omitted in this paper.



3. Multilayer layout for k-ary n-cubes, product
networks, and PN clusters

In this section, we present multilayer layout of k-ary n-
cubes as an example to illustrate the multilayer grid model
and the associated orthogonal multilayer layout scheme. We
then extend the layout method to arbitrary product networks
(also called Cartesian product graphs), k-ary n-cube cluster-
¢, and product network clusters (PN clusters).

3.1. Multilayer layout for k-ary n-cubes

To apply the orthogonal multilayer layout schemeto a k-
ary n-cube, wefi rst place node {_1,in_2,...,ig) a position
(i,j) of a2-D grid (i.e., each node is viewed as a cluster in
the scheme), where

A T T IELC A IR

J =2 K2 i KA ik,

Then all links connect nodes belonging to the same row or
column. It can be seen that each row is now connected as a
k-ary [n/2]-cube, and each column is connected as a k-ary
|n/2]-cube, so the 2-D layout problemisreducedtofi nding
collinear layout of k-ary n-cubes, whereacollinear layout is
alayout derived by fi rst placing al nodesaong aline.

To describe the 2-layer collinear layout for a k-ary n-
cube, we use a bottom-up approach, starting with a k-node
ring (i.e., ak-ary 1-cube), and inductively moving to k-ary
n-cubes of higher dimensionsn. A collinear layout of aring
can be obtained by placing thek nodes along arow, connect-
ing neighboring nodes through wires in the fi rst track, and
then connecting node 0 with node k — 1, through awire in
the second track. Clearly, thislayout requires 2 tracks. As-
sume that we have a collinear layout for ak-ary n-cube that
requires fi(n) tracks. To obtain the collinear layout of a k-
ary (n+ 1)-cube, we start with k copies of the layout of a k-
ary n-cube. By increasing the horizontal space by afactor of
k, we can placetheit" node of the j copy adjacent (fromthe
right) to theit" nodeof the (j — 1)™" copy, i, j =0,1,...,k—1.
We also increase the number of tracks (i.e., vertical space)
to accommodate the k fc(n) tracks of the k collinear layout
copies. Moreover, to connect the k copies of the k-ary n-
cubeinto ak-ary (n+ 1)-cube, we need two extratracks, one
containing links between adjacent nodes (i.e., the it" nodes
of the k copies) and the other containing a wire connecting
the ending nodes of thering (i.e., theit" nodes of the 0™ and
(k—1)" copies). Figure 2 illustrates a resultant collinear
layout for a 3-ary 2-cube. Therefore, the number of tracks
required for the collinear layout of the k-ary (n+ 1)-cubeis
fu(n+ 1) = kfx(n) + 2. Since f (1) = 2, we have

fe(n) = kf(n—1) + 2k = K2 f(n—2) + 2k +- 2k = --.

_ _ 2k"-1) 2(N-1)
_ n-1 n-2_, ... 1 0y _ —
=2(K" +K" -+ kK 1 1
If we connect nodes bel onging to the same row (or column)
as a2-layer collinear layout of ak-ary nq-cube (or k-ary n,-
cube, respectively), weobtain a2-layer 2-D layout of ak-ary
(N1 + ny)-cube.

el =l Eme

00 || O1 ([ 02 || 10 || 11 || 12 || 20 || 21 || 22

Figure 2. Collinear layout for a 3-ary 2-cube.

We then use the approach described for the orthogonal
multilayer layout scheme to transform the 2-layer orthog-
onal layout to obtain an L-layer layout. When L is even,
the number of tracks per layer above arow is [%1
and there are kI"/2] rows; the number of tracks per layer
to the right of a columniis [%] and there are kL"/2|
columns. Therefore, theareaof the L-layer k-ary n-cubelay-

out becomes

16N? N2

e "\ e )
and the volume becomes

16N? ‘o N2

Lk2 Lk2 )’

assuming that k is not a constant. To reduce the maximum
wire length, we fold each row and column and the resultant
maximum wire length becomes

N

O(W)'
The areafor an L-layer k-ary n-cube layout with odd L is

16N? N?
- °\ize

and the volumeis
16N2L ‘o N_2
(L2—1)k2 Lk2 )

3.2. Multilayer layout for product networks, PN
clusters, and k-ary n-cube cluster-c

The preceding multilayer layout method can be easily ex-
tended to general meshes and tori, and can aso be further
generalizedto all product networks[11]. Moreprecisely, for
aproduct network G = A x B, we can use the collinear lay-
outs for the factor graphs A and B to lay out G. To do so,
we simply arrange network nodes as a 2-D grid, and con-
nect nodes belonging to the same row as a collinear layout
of the factor graph A and nodes belonging to the same col-
umn as acollinear layout of the factor graph B. We then ob-
tain a 2-layer orthogonal layout of the product network G,
which can then be transformed to an L-layer layout using



the techniques described for the orthogonal multilayer lay-
out scheme. Clearly, this layout method is applicable to bi-
nary hypercubes and generalized hypercubes, special cases
of product networks, as will be demonstrated in the follow-
ing sections.

A network obtained by replacing each node of a product
network with a cluster is referred to as a product network
cluster (PN cluster)In other words, the quotient graph ob-
tained by shrinking each cluster of a PN cluster into a su-
pernode will become a product network. In what follows
we further extend the layout method to PN clusters. We can
lay out such networksby fi rst deriving an L-layer layout for
the quotient graph, and then using the recursive grid layout
method (Subsection 2.3) to lay out the clusters. More pre-
cisely, we expand each node (which correspondsto asupern-
ode of the PN cluster) in the layout of the quotient graph
into a rectangular block and arrange these blocks as a 2-D
grid, where neighboring rows (or columns) are separated by
asuffi cient number of horizontal (or vertical, resp.) tracks
(see Fig. 1). We then lay out the cluster within each of the
blocks, and connect incident inter-cluster linksfrom outside
ablock to network nodes within the block in the way spec-
ifi ed by the topology. If the areaincrease due to the expan-
sion of nodes in the quotient graph into rectangles (to lay
out the clusters) does not dominate the area of the resultant
layout, then the area of the PN cluster remains asymptoti-
cally the same as that of the quotient PN layout. Since the
clusters and the nodes within the clusters are arranged as 2-

D grids, a network node can occupy o w) area
without increasing the leading constants of the layout area,
volume, and maximum wire length. For example, a hyper-
cube node can occupy an areaaslargeaso(N) and ak-ary n-
cube node can occupy an areao(N/k?) when L isaconstant,
instead of areas logsN and 4n? = 4logZ N, respectively, as
assumed in most previous papers. Such layouts (including
all thelayouts proposed in this paper) are optimally scalable
in terms of node size since the leading constant of the lay-
out area must become larger when network nodes are larger

(i.e., with area Q(LYOULATER )

Let usnow consider ak-ary n-cube cluster-c [4] as an ex-
ample of PN clusters. Assume that the clustersin the k-ary
n-cube cluster-c are c-node hypercubes. Then a block with
areaO(c?/L?) issuffi cient to accommodate the c-node clus-
ter and its inter-cluster links (see Section 5or [31]). Since
these blocks are arranged as a k"2 x k"2 grid, the increase
in area is negligible as long as the number ¢ of nodesin a

cluster isnot verylarge that is, c = o(k"/21) so that K¢ kn/ =
(L(k iy ) (or o( )Whenklsnotaconstant) whlchlsthe

case except When cislarge and/or nissmall. Clearly, this
conclusion appliesto any k-ary n-cube cluster-c whose clus-
ter isat most as dense as hyercubes. Similarly, we can show
that even if the clusters are complete graphs, a k-ary n-cube
cluster-c still has asymptotically the same area (witin afac-

tor of 14 0(1)) asak-ary n-cubeaslong asc = o(k"/4-1),

4. Multilayer layout for generalized hyper-
cubes, butterfl ies, and related networks

In this section we present effi cient multilayer layouts for
generalized hypercubes, butterfl y networks, HSNs, HHNs,
and ISNs.

4.1. Multilayer layout for generalized hypercubes

A generalized hypercube [5] is the Cartesian product of
two smaller generalized hypercubes. Therefore, we can use
the layout method for product networks introduced in Sub-
section 3.2 to lay out generalized hypercubes.

To describe the 2-layer collinear layout for an n-
dimensiona radix-(r,_1,rn_2,...,f1,ro) generaized hyper-
cube, we use a bottom-up approach similar to that for laying
out k-ary n-cubes. We start with an ry-node complete graph
(i.e., a 1-dimensional radix-rq generalized hypercube), and
inductively moving to generalized hypercubes of higher di-
mensions n. We have proposed a strictly optimal collinear
layout for N-node complete graphs that requires |[N2/4]
tracks (see Fig. 3 for an example) [30, 35]. Assumethat we
haveacollinear layout for an n-dimensional generalized hy-
percube that requires f,(n) tracks. To obtain the collinear
layout of an (n+ 1)-dimensional generalized hypercube, we
start with r, copies of the layout for an n-dimensional gen-
eralized hypercube. By increasing the horizontal space by
a factor of r,,, we can place the it" node of the ji copy
adjacent (from the rlght) to the it" node of the (j — 1)t
copy, i,j = 0,1,. — 1. We also increase the number
of tracks (i.e., vertlcaJ space) to accommodate the rp, fx(n)
tracks of the r, collinear layout copies. Moreover, to con-
nect the r, copies of the n-dimensiona generalized hyper-
cubeinto an (n+ 1)-dimensional generalized hypercube, we
need [r2/4] extratracks to connect ry, adjacent nodes (i.e.,
the it nodes of the r,, copies) as a complete graph. There-
fore, the number of tracks required for the collinear layout
of the (n+ 1)-dimensional generalized hypercubeis f;(n+
1) = rnfe(n) + [r2/4], where f, (1) = [r3/4]. It is easy
to solve the recursive function f;(n) once the mixed-radix
(fn_1,_2,...,r1,ro) is knowdni. For aradix-r generalized
hypercube(i.e., rn_1 =rh_o =--- =rg=r), we have

fr(n) = fr(n—2)+(r*+1%)[r?/4|

== (M2t 19) r2/4)

(M =D[r¥/4] - (N-1)[r?/4)
- r—1 - r—1

By connecting each row as an m-dimensional radix-
(rm-1,"m-2,-.-,ro) generalized hypercube and each column
asan (n— m)-dimensional radix-(rn_1,r_2,...,fm) general-
ized hypercubeusing the preceding collinear layouts, we ob-
tain a2-layer orthogonal layout for an n-dimensional radix-
(rn—1,f—2,--.,rg) generalized hypercube. We then use the
approach described for the orthogonal multilayer layout
schemeto transform the 2-layer orthogonal layout to obtain
an L-layer layout. For an n-dimensional radix-r generalized
hypercubewith an even number L of wiring layers, the num-

ber of tracks per layer abovearow is [w_n{;)] and

rfr(n—1)+r°r?/4] =r?




Figure 3. Collinear layout for a 9-node com-

plete graph.

there are r/™/2l rows; the number of tracks per layer to the
right of a column is (%j%ﬂ_”] and there are r."/2
columns. Therefore, the area of the L-layer generalized-
hypercube layout becomes

r2N2 r2N2

2z O (?) ~
Thevolume of the layout is

r2N2 r2N2

TR (?) -
The maximum wirelengthis
rN <rN )
— 40— )and
the maximum total length of wires along a shortest routing
pathis

N (N
L L/’

When L is odd, the area of the resultant generalized-
hypercubelayout is

r2N2 ‘o r2N2
HL2-1) z )

assuming that r is not a constant.

4.2. Multilayer layout for butterfly networks

In[35], we have shown that by appropriately partitioning
abutterfl y network into clusters, these clusters can be con-
nected as a generalized hypercube with multiple links. It is
interesting, therefore, that butterfl y network can be viewed
as a PN cluster (i.e., a generalized hypercube cluster) and
laid out using the approach introduced in Subsection 3.2.
More precisely, we can partition an R x R butterfl y network
into r(log, R+ 1)-node clusters so that these clusters are

connected as an %e—node generalized hypercube where

each pair of neighboring clusters are connected by 4 links,
where N = Rlog, R. Since a cluster only contains several

copies of small butterfl y networks, the layout area is dom-
inated by inter-cluster links and is 16 times that of the area

of an %z-node generalized hypercube. Therefore, when
L iseven, the area of the resultant L-layer butterfl y layoutis

2 N 2 2 N 2
16 % - (FTogyw) +ofl (regn)
42 L2

4N? 2
= +0 :
L2logiN <L2IogzN>
the volume of the L-layer layout is
4N? N2

———+0| ——— |,
LlogsN Llog®N

and the maximumwire length is

2N ‘o N
Llog,N LlogN /"

When the number L of wiring layersis odd, an N-node but-
terfl y network can belaid out using area

4N? 2
+o0 .
(L2—1)logsN <L2|ogZN>
More details can be found in [35].

4.3. Multilayer layout for hierarchical swap net-
works and related networks

An|-level hierarchical swap network (HSN) based on r-
node nucleus graphs [33, 34] can be derived by replacing
each node of an (I — 1)-dimensional radix-r generalized hy-
percube with an r-node nucleus graph. Therefore, we can
derive multilayer layout for HSNs using our layout for gen-
eralized hypercubes. When L is even, the area of the resul-
tant L-layer layout for an N-node HSN is

r’(N/r)? r2(N/r?\ N2 N2
az \Tr= )Tazte\z)
N2 N2
I”(T)’

the maximum wire length is

N ‘o N

2L L)’
and the maximum total length of wiresalong ashortest rout-
ing pathis

N (N

L L)’

assuming that r is not a constant. When L is odd, the area of
the resultant HSN layout is

N2 N2
a2-7) +°<F> '

the volumeis
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Figure 4. Collinear layout for a 4-cube.

The HSN layout can be easily generalized to general swap
networks. Since hierarchical hypercube networks (HHNS)
[36] areaspecial case of HSNswhere the basic modulesare
hypercubes, they can belaid out in asymptotically the same
area, volume, and maximum wire length (within a factor of
1+0(2)).

Similar to butterfl y networks, we can partition an Rx R
indirect swap network (ISN) [35] into r(log, R+ o(logR))-
node clusters so that these clusters are connected as an
(fragsn + O(frogr))-node generalized hypercube with two

links connecting each pair of neighboring clusters. There-
fore, we can show that the multilayer layout for an ISN has
areaand volumesmaller than thoseof asimilar-size butterfl 'y
network by a factor of approximately 4, and the maximum
wire length and the maximum total length of wires along a
shortest routing path are smaller than those of asimilar-size
butterfl y network by afactor of approximately 2.

We can use similar strategies to obtain effi cient multi-
layer layouts for star graphs and other Cayley graphs [2],
such as transposition networks[16, 18], pancake graphs|[2],
bubble-sort graphs[2], macro stars [29], and star-connected
cycles (SCC) [15]. The details will be reported in the near
future.

5. Multilayer layout for hypercubes, CCCs,
and related networks

In this section, we present multilayer layouts for hyper-
cubes, folded hypercubes, CCC, and reduced hypercubes.

5.1. Multilayer layout for hypercubes

An n-dimensional hypercubeis the Cartesian product of
two smaller hypercubes of dimensions [n/2] and |n/2].
Therefore, we can use the layout method for product net-
works introduced in Subsection 3.2 to lay out hypercubes.
We have proposed an effi cient collinear layout that requires
| 2N/3] tracks, derived by a bottom-up approach as that for
k-ary n-cubes (Subsection 3.1) and generalized hypercubes
(Subsection 4.1). Thelayout is based on a 2-track collinear
layout for 2-cubes (rather than the 1-track collinear layout
for 1-cubes) asthe basic building block (see Fig. 4) [28, 31].
Therefore, we can show that the area of the resultant L-layer
hypercubelayout is

16N? N2\
oz ol )
16N?

N2
oL2 +0 (F) )

the volumeis

and the maximum wire length is

N (N
3L L/’

More details can be found in [31].

5.2. Multilayer layout for CCC and reduced hyper-
cubes

Ann-dimensional cube-connected cycles (CCC) graphis
obtained by replacing each nodein an n-cubewith an n-node
cycle[22]. A reduced hypercube, RH(log, n,log,n) [37],
can be obtained by replacing each n-node cycle in a CCC
with alog, n-dimensional hypercube. Clearly, both of them
can be viewed as PN clusters (i.e., hypercube clusters) and
laid out using the method presented in Subsection 3.2.

To lay out a CCC, wefi rst lay out an n-cube using the
2-D layout introduced in Subsection 5.1, and then lay out
the n-node cycles within each of the hypercube nodes us-
ing the recursive grid layout scheme. Since the size of an
n-dimensional CCC isN = n2" and its areais dominated by

its hypercube links, which require %24 +0(2"/L?) area, an
N-node CCC can belaid out in

16N? +0< 2 >
9L2l0g3N L2log?N

areawhen L is even. The layout area is better than that of
arecently proposed CCC layout [8]. Using the same layout
method, the reduced hypercube can belaid out in asymptot-
ically the same area.

5.3. Multilayer layout for folded hypercubes and
related networks

An enhanced-cube is a hypercube with one additional
outgoing link per node leading to a random node [26]. A
folded hypercube[1] isahypercubewith one additional link
per node, where each node Shas alink connecting it to the
node whose label is the bitwise complement of S

By adding additional links to our hypercube layout we
can lay out folded hypercubes effi ciently. More precisely,
we fi rst lay out an N-node hypercube in a square of side
%—'t' +0(N/L). Tolay out an additional link, we need at most
one additional vertical track and one additional horizontal
track, besides the two ending segments connecting the link
totwo nodes. SincethereareN /2 additional linksinafolded
hypercube, we need at most N/2 extravertical and horizon-
tal tracksto accommodateall the diameter links. Theselinks
can be partitioned into L /2 groups easily and laid out using
L layers. Therefore, the area for the layout of a folded hy-
percubeis

2
(;—t'm(g)) < (;—'t' +o(%)> _ 4§L'\i +0(N?/L2),

when L is even. Since there are N additional links in an
enhanced-cube, we need at most N vertical and horizon-
tal tracks to accommodate al the additional links. There-

fore, the area for the layout of an enhanced-cubeis 1%3’;‘2 +

0(N?/L?). Some of these additional links may be placed in
the same tracks so that the layout areas may be reduced.




6. Conclusion

In this paper, we introduced the multilayer grid model
and showed that, for a variety of networks, the area can be
reduced by a factor of L?/4, and the volume and the maxi-
mum wire length can be reduced by afactor of L/2, relative
to layouts using two layers of wires. The proposed layouts
arethe best layouts reported for these networksthus far and
are optimal within a small constant factor under the multi-
layer grid model. The techniques introduced in this paper
can also be applied to avariety of other networks.
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