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Abstract

Current VLSI technology allows more than two wiring
layers and the number is expected to rise in future. In this
paper, we show that, by designing VLSI layouts directly for
an L-layer model, the layout area for a variety of networks
can be reduced by a factor of about�L�2�2 compared to the
layout area required under a 2-layer model, and the vol-
ume and maximum wire length can be reduced by a factor of
about L�2, leading to considerably lower cost and/or higher
performance. The proposed layouts for k-ary n-cubes, hy-
percubes, butterfl y networks, cube-connected cycles (CCC),
folded hypercubes, generalized hypercubes, k-ary n-cube
cluster-c, hierarchical hypercube networks, reduced hyper-
cubes, hierarchical swap networks, and indirect swap net-
works, are the best layouts reported for these networks thus
far and are optimal within a small constant factor under
both the Thompson model and the multilayer grid model.
All of our layouts are optimally scalable in that we can al-
low each network node to occupy the largest possible area
(e.g., o�N�L2� for hypercubes) without increasing the lead-
ing constant of the layout area, volume, or maximum wire
length.

1. Introduction

Twenty years ago many researchers believed that paral-
lel processing would move to the mainstream of computa-
tion due to rapid advance in VLSI technologies. A variety
of famous papers, theses, and books considered the VLSI
layout of interconnection networks for parallel processing
[7, 17, 19, 20, 22, 23, 24, 25, 27]. However, the revolu-
tion did not materialize at that time; rather, the increased
VLSI density was used to build more complex single pro-
cessors whose performance has improved by two orders of
magnitude since then. As recently pointed out by Dally and
Lacy [9], the number of transistors per chip will likely in-
crease by another three orders of magnitude in the next two
decades and few effi cient alternatives to explicit parallelism
exist for exploiting the increased number of transistors and
grid points. Therefore, the expected revolution may begin
soon and the mainstream computing community may shift
from serial computers to parallel and distributed systems.
The layout of interconnection networks has important cost

and performance implications for single-chip multiproces-
sors and parallel/distributed systems based on such compo-
nents. Thus, there is currently renewed interest in fi nding
effi cient VLSI layouts for various interconnection networks
[3, 8, 10, 12, 13, 21, 28, 30, 31, 32, 35].

VLSI layout of interconnection networks is usually de-
rived under the Thompson model, where two layers of wires
are assumed. However, the assumption of two wiring lay-
ers cease to be realistic as more and more layers of wires
become available in VLSI chips at reasonable cost. When
the numbers of wiring layers and active layers (for network
nodes) are both increased by a factor of t, the area of a layout
designed for the Thompson model can be reduced by a fac-
tor of about t by folding the layout, while the volume and
maximum wire length remain approximately the same. In
this paper, we introduce the multilayer 2-D gridand mul-
tilayer 3-D grid modelsfor VLSI layout of networks. We
show that, for a wide variety of networks, including k-ary n-
cubes, hypercubes, butterfl y networks, cube-connected cy-
cles (CCC) [22, 18], folded hypercubes [1], generalized hy-
percubes [5, 14], k-ary n-cube cluster-c [4], hierarchical hy-
percube networks (HHNs) [36], reduced hypercubes [37],
hierarchical swap networks (HSNs) [33, 34], indirect swap
networks (ISNs) [35], designing layouts under the multi-
layer 2-D grid model leads to the following advantages:

(1) the area of the layout can be reduced by a factor of ap-
proximately t2 when we use L � 2t layers of wires in-
stead of two layers of wires as in the Thompson model

(2) the volume of the layout can be reduced by a factor of
approximately t

(3) the maximum length of wires can be reduced by a fac-
tor of approximately t

(4) the maximum total length of wires along the routing
path between any source-destination pair can be re-
duced by a factor of approximately t

For many other networks, including star graphs [2], trans-
position networks [16, 18], pancake graphs [2], bubble-sort
graphs [2], and star-connected cycles (SCC) [15], the pre-
ceding arguments are still true, leading to lower cost and/or
higher performance for most of the architectures consid-
ered thus far for parallel computation. The proposed lay-
outs for butterfl y networks, generalized hypercubes, HSNs,



and ISNs are optimal within a factor of 1 � o�1� under
the Thompson model, and are optimal within a factor of
2 � o�1� from a trivial lower bound under the multilayer
grid model. These layouts and the proposed layouts for hy-
percubes, CCCs, folded hypercubes, reduced hypercubes,
HHNs, and enhanced cubes constitute the best results re-
ported in the literature for these networks, under both the
Thompson model and the multilayer grid model.

The organization of the remainder of the paper is as fol-
lows. In Section 2, we discuss existing VLSI layout mod-
els, introduce the multilayer grid models that we propose,
and propose several layout schemes. In Section 3 we present
effi cient multilayer layout for k-ary n-cubes, product net-
works, and related networks. In Section 4 we present effi -
cient multilayer layouts for butterfl y networks, generalized
hypercubes, and related networks. In Section 5 we present
effi cient multilayer layouts for hypercubes, CCC, folded hy-
percube, and related networks. In Section 6 we present our
conclusions.

2. VLSI layout models and layout schemes

In this section, we describe several models for VLSI lay-
out of interconnection networks.

2.1. The Thompson model

In the Thompson model [23], a network is viewed as a
graph whose nodes correspond to processing elements and
edges correspond to wires. The graph is then embedded in a
2-D grid, where wires have unit width and a node of degree
d occupies a square of side d. The wires can run either hor-
izontally or vertically along grid lines. Two wires can cross
each other at a grid point, but cannot overlap or bend at the
same grid point, which would form a knock-knee [6].

The area of a layout is defi ned as the area of the small-
est rectangle that contains all the nodes and wires. (In this
paper we only consider upright rectangles for this purpose.)
When there are two layers of wires and a node can be laid
out in a square of area d2, it is guaranteed that we can lay
out the network within the area of that rectangle. More pre-
cisely, we can use one layer of wires to lay out all the hor-
izontal segments of wires and the other layer to lay out all
the vertical segments. When a wire makes a turn, its hori-
zontal and vertical parts in different layers are connected by
an inter-layer connector known as a via.

Note that some authors have assumed that a node occu-
pies a square of side 1 in the layout model they use. Some
such layouts cannot be extended to the Thompson model
without a nonnegligible increase in area, while layouts under
the Thompson model can usually be extended to the former
model using comparable area.

2.2. The multilayer grid model

In the multilayer grid model, a network is viewed as a
graph whose nodes correspond to processing elements and
edges correspond to wires. The nodes and edges of the graph
are then embedded in a 3-D grid, where edges have unit
width, can run along grid lines, but cannot cross or overlap
with each other (i.e., the paths for embedding these edges
must be edge- and node-disjoint). The area A of a layout is
defi ned as the area of the smallest upright rectangle along
the x-y directions that contains all the nodes and wires. The

volume of a layout is equal to the number L of layers times
its area A.

In the multilayer 2-D grid model, the nodes of the graph
are embedded in the 2-D grid of the fi rst layer (i.e., z� 1).
The range of actual node sizes must be specifi ed explicitly
in this model, and is usually taken to be between the min-
imum size required to implement a node (e.g., a square of
side d, d�4, or d

4L for a degree-d node in some technologies)
and the maximum allowable size without affecting the lead-
ing constants for area, volume, and maximum wire length.
A network with area A under the Thompson model can be
laid out with area no larger than A under the multilayer 2-D
grid model with L� 2 layers, so the former can be viewed as
a special case of the latter. Note, however, that we may de-
rive layouts under the two-layer 2-D grid model with area
smaller than the Thompson model. In the multilayer 3-D
grid model, the nodes of the graph are embedded in LA layers
of the 3-D grid. These LA layers are called “ active layers”
and do not need to be consecutive layers. The range of actual
node sizes is also required to be specifi ed explicitly, which
is usually between the minimum size required to implement
a node (e.g., a cuboid with sides at least d�h� d�h� h,
1 � h� LA � L, for a degree-d node in some technologies)
and the maximum allowable size without affecting the lead-
ing constants for area, volume, and maximum wire length.
The multilayer 2-D grid model is a special case of the mul-
tilayer 3-D grid model with LA � 1 active layer. Note that
a d�h�d�h�hcuboid node requires h active layers for its
implementation, while a d�d�1 cuboid node requires only
1 active layer. The cost of a layout under the multilayer grid
model is a function of A�L� and LA, as well as other param-
eters.

The motivations for using multilayer layout models in-
clude the signifi cant reduction achieved in the layout area,
volume, and maximum wire length required, leading to con-
siderable improvements in both hardware cost and perfor-
mance. When we use L layers, the number of tracks in the
x and y directions may both be reduced by a factor of about
L�2 in many networks, leading to a factor of about L2�4 re-
duction in its area compared to the layout under the Thomp-
son model, and a factor of about L�2 reduction in its volume
(since the number of layers is only increased by a factor of
L�2). Hence, the cost of the resultant layout can be signifi -
cantly reduced, or the performance can be signifi cantly im-
proved with the same hardware cost. As a point of compar-
ison, if we fold a layout derived for the Thompson model in
order to use all the available layers, the area can be reduced
by a factor of only L�2, while the volume is unaffected; if
we extend the collinear layout model to its multilayer coun-
terpart, the volume will not change either since the area can
only be reduced by a factor of at most L�2 when L layers
are used. The maximum wire length in many networks is
approximately proportional to the number of tracks in the x
or y direction (or to their sum). Therefore, if the numbers of
tracks in the x and y directions are both reduced by a factor
of about L�2, the maximum wire length can also be reduced
by a factor of approximately L�2, leading to signifi cant im-
provement in performance. As a point of comparison, the
maximum wire length in a collinear layout using L layers,
or in a layout obtained by folding the layout derived using
the Thompson model, is not signifi cantly affected in most
cases. These arguments will become clear after examining



the multilayer layouts derived in the following subsections.
We can extend the multilayer grid model to the multi-

layer layout modelby allowing nodes and edges to run in
other specifi ed directions. Layouts under this model may
have smaller area and volume compared with layouts un-
der its multilayer grid model counterpart. Moreover, wires
in this model may have different width and cross area, de-
pending on the technology used. For example, wires along
the zdirection may have larger cross area in PCB. In the re-
mainder of the paper, we focus on the multilayer 2-D grid
model. When the number L of layers is equal to 2, the mul-
tilayer layouts presented in this paper become layouts un-
der the Thompson model. Note that, in general, a multilayer
layout with L � 2 is not necessarily a layout under the grid
model. Layouts under other models, such as the multilayer
3-D grid model and other multilayer layout models, will be
reported in the near future.

2.3. The recursive grid layout scheme

In [28, 32], we have proposed the recursive grid layout
schemefor simple and effi cient 2-D layout of interconnec-
tion networks. In this subsection, we extend the scheme to
the 3-D layout model and briefl y present this generally ap-
plicable layout scheme.

To lay out an l -level hierarchical network, we fi rst place
nodes belonging to the same level-l cluster within a block,
which we call a level-l block. We arrange the blocks as a 2-
D grid for the 2-D layout model or as a 3-D grid for the 3-D
layout model, where neighboring rows (or columns) are sep-
arated by a suffi cient number of horizontal tracks (or verti-
cal tracks, respectively) (see Fig. 1). We then lay out level-l
inter-cluster links (i.e., links connecting nodes in different
level-l clusters) outside the blocks. Note that we will even-
tually connect each of the level-l inter-cluster links incident
to a level-l block to a certain node within the block. We can
then continue to lay out each level-l cluster, including the
Ml�1 level-�l �1� blocks within it and the links connecting
these level-�l � 1� blocks, within a level-l block. This pro-
cess is repeated recursively until each block contains a node
or until the number of nodes within a block to be laid out is
small. Then we use any viable method to lay out all these
small clusters.

2.4. The orthogonal multilayer layout scheme

In this subsection, we propose a special case of the re-
cursive grid layout scheme for multilayer layout of general
interconnection networks.

In the orthogonal multilayer layout schemewe fi rst parti-
tion network nodes into clusters and then arrange these clus-
ters as a 2-D grid for the multilayer 2-D layout model or as
a 3-D grid for the multilayer 3-D layout model. The parti-
tion and arrangement should be carefully performed so that
(most of the) inter-cluster links only connect clusters be-
longing to the same row or column. Note that we in gen-
eral prefer to make the clusters small if possible in order
to reduce the additional area required to lay out these clus-
ters, and a cluster may consist of a single node. We then lay
out the inter-cluster links assuming two layers of wires (e.g.,
under the Thompson model, with one layer for horizontal
tracks and the other for vertical tracks) so that the layout
area, volume, and/or other cost/performance criteria (such
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Figure 1. Top-view of a layout based on the
recursive grid layout schem e. Level- l blocks
are arranged as a 2-D grid .

as maximum wire length) are optimized. We refer to a 2-D
layout as an orthogonal layoutif all of its inter-cluster links
connect clusters belonging to the same row or column. As
will be shown in what follows, we can always transform an
orthogonal layout to an effi cient multilayer layout.

Assume that the number of horizontal tracks required
above row i of clusters is hi , the number of vertical tracks
required to the right of column j of clusters is wj , and there
are L layers of wires available. We partition the hi horizontal
tracks into dL�2e groups, each having at most dhi�dL�2ee
tracks, and the wj vertical tracks into bL�2c groups, each
having at most dwi�bL�2ce tracks. To obtain an L-layer lay-
out, we assign each group to a certain layer. For example, we
can assign the groups for horizontal tracks to layers 1, 3, 5,
... , 2dL�2e�1, and the groups for vertical tracks to layers 2,
4, 6, ... , 2bL�2c. If the cluster is small enough, which is the
typical case for the layout of most interconnection networks,
the layout area/volume is dominated by these inter-cluster
links. The multilayer layout has then been mostly derived
since it is easy to lay out small clusters without increasing
the leading constant of layout area/volume. Let Abe the lay-
out area using two layers of wires. We can see that when L
layers of wires are available, the area of the multilayer lay-
out can be reduced by a factor of about L2�4 and the volume
can be reduced by a factor of about L�2.

If the cluster is very large and the number L of layers is
not small, then we may have to lay out these intra-cluster
links carefully. A possible method is to lay out these intra-
cluster links recursively using the above method. The de-
tails are omitted in this paper.



3. Multilayer layout for k-ary n-cubes, product
networks, and PN clusters

In this section, we present multilayer layout of k-ary n-
cubes as an example to illustrate the multilayer grid model
and the associated orthogonal multilayer layout scheme. We
then extend the layout method to arbitrary product networks
(also called Cartesian product graphs), k-ary n-cube cluster-
c, and product network clusters (PN clusters).

3.1. Multilayer layout for k-ary n-cubes

To apply the orthogonal multilayer layout scheme to a k-
ary n-cube, we fi rst place node �in�1� in�2� ���� i0� at position
�i� j� of a 2-D grid (i.e., each node is viewed as a cluster in
the scheme), where

i � in�1kdn�2e�1� in�2kdn�2e�2� � � �� ibn�2c�1k� ibn�2c�

j � ibn�2c�1kbn�2c�1� ibn�2c�2kbn�2c�2� � � �� i1k� i0�

Then all links connect nodes belonging to the same row or
column. It can be seen that each row is now connected as a
k-ary dn�2e-cube, and each column is connected as a k-ary
bn�2c-cube, so the 2-D layout problem is reduced to fi nding
collinear layout of k-ary n-cubes, where a collinear layout is
a layout derived by fi rst placing all nodes along a line.

To describe the 2-layer collinear layout for a k-ary n-
cube, we use a bottom-up approach, starting with a k-node
ring (i.e., a k-ary 1-cube), and inductively moving to k-ary
n-cubes of higher dimensions n. A collinear layout of a ring
can be obtained by placing the k nodes along a row, connect-
ing neighboring nodes through wires in the fi rst track, and
then connecting node 0 with node k� 1, through a wire in
the second track. Clearly, this layout requires 2 tracks. As-
sume that we have a collinear layout for a k-ary n-cube that
requires fk�n� tracks. To obtain the collinear layout of a k-
ary �n�1�-cube, we start with k copies of the layout of a k-
ary n-cube. By increasing the horizontal space by a factor of
k, we can place the ith node of the j th copy adjacent (from the
right) to the ith node of the � j�1�th copy, i� j � 0�1� ����k�1.
We also increase the number of tracks (i.e., vertical space)
to accommodate the k fk�n� tracks of the k collinear layout
copies. Moreover, to connect the k copies of the k-ary n-
cube into a k-ary �n�1�-cube, we need two extra tracks, one
containing links between adjacent nodes (i.e., the i th nodes
of the k copies) and the other containing a wire connecting
the ending nodes of the ring (i.e., the i th nodes of the 0th and
�k� 1�th copies). Figure 2 illustrates a resultant collinear
layout for a 3-ary 2-cube. Therefore, the number of tracks
required for the collinear layout of the k-ary �n�1�-cube is
fk�n�1� � k fk�n��2. Since fk�1� � 2, we have

fk�n� � k fk�n�1��2k0 � k2 fk�n�2��2k1�2k0 � � � �

� 2�kn�1�kn�2� � � ��k1�k0� �
2�kn�1�

k�1
�

2�N�1�
k�1

�

If we connect nodes belonging to the same row (or column)
as a 2-layer collinear layout of a k-ary n1-cube (or k-ary n2-
cube, respectively), we obtain a 2-layer 2-D layout of a k-ary
�n1�n2�-cube.

�� �� �� �� �� �� �� �� ��

Figure 2. C ollinear layout for a 3-ary 2-cube.

We then use the approach described for the orthogonal
multilayer layout scheme to transform the 2-layer orthog-
onal layout to obtain an L-layer layout. When L is even,

the number of tracks per layer above a row is d 4�kbn�2c�1�
L�k�1� e

and there are kdn�2e rows; the number of tracks per layer

to the right of a column is d 4�kdn�2e�1�
L�k�1� e and there are kbn�2c

columns. Therefore, the area of the L-layer k-ary n-cube lay-
out becomes

16N2

L2k2 �o

�
N2

L2k2

�
�

and the volume becomes

16N2

Lk2 �o

�
N2

Lk2

�
�

assuming that k is not a constant. To reduce the maximum
wire length, we fold each row and column and the resultant
maximum wire length becomes

O�
N

Lk2 ��

The area for an L-layer k-ary n-cube layout with odd L is

16N2

�L2 �1�k2 �o

�
N2

L2k2

�

and the volume is

16N2L
�L2 �1�k2 �o

�
N2

Lk2

�
�

3.2. Multilayer layout for product networks, PN
clusters, and k-ary n-cube cluster-c

The preceding multilayer layout method can be easily ex-
tended to general meshes and tori, and can also be further
generalized to all product networks [11]. More precisely, for
a product network G� A�B, we can use the collinear lay-
outs for the factor graphs A and B to lay out G. To do so,
we simply arrange network nodes as a 2-D grid, and con-
nect nodes belonging to the same row as a collinear layout
of the factor graph A and nodes belonging to the same col-
umn as a collinear layout of the factor graph B. We then ob-
tain a 2-layer orthogonal layout of the product network G,
which can then be transformed to an L-layer layout using



the techniques described for the orthogonal multilayer lay-
out scheme. Clearly, this layout method is applicable to bi-
nary hypercubes and generalized hypercubes, special cases
of product networks, as will be demonstrated in the follow-
ing sections.

A network obtained by replacing each node of a product
network with a cluster is referred to as a product network
cluster (PN cluster). In other words, the quotient graph ob-
tained by shrinking each cluster of a PN cluster into a su-
pernode will become a product network. In what follows
we further extend the layout method to PN clusters. We can
lay out such networks by fi rst deriving an L-layer layout for
the quotient graph, and then using the recursive grid layout
method (Subsection 2.3) to lay out the clusters. More pre-
cisely, we expand each node (which corresponds to a supern-
ode of the PN cluster) in the layout of the quotient graph
into a rectangular block and arrange these blocks as a 2-D
grid, where neighboring rows (or columns) are separated by
a suffi cient number of horizontal (or vertical, resp.) tracks
(see Fig. 1). We then lay out the cluster within each of the
blocks, and connect incident inter-cluster links from outside
a block to network nodes within the block in the way spec-
ifi ed by the topology. If the area increase due to the expan-
sion of nodes in the quotient graph into rectangles (to lay
out the clusters) does not dominate the area of the resultant
layout, then the area of the PN cluster remains asymptoti-
cally the same as that of the quotient PN layout. Since the
clusters and the nodes within the clusters are arranged as 2-

D grids, a network node can occupy o�Layout Area
N � area

without increasing the leading constants of the layout area,
volume, and maximum wire length. For example, a hyper-
cube node can occupy an area as large as o�N� and a k-ary n-
cube node can occupy an area o�N�k2�when L is a constant,
instead of areas log2

2 N and 4n2 � 4log2
k N, respectively, as

assumed in most previous papers. Such layouts (including
all the layouts proposed in this paper) are optimally scalable
in terms of node size since the leading constant of the lay-
out area must become larger when network nodes are larger

(i.e., with area Ω�Layout Area
N �).

Let us now consider a k-ary n-cube cluster-c [4] as an ex-
ample of PN clusters. Assume that the clusters in the k-ary
n-cube cluster-c are c-node hypercubes. Then a block with
area O�c2�L2� is suffi cient to accommodate the c-node clus-
ter and its inter-cluster links (see Section 5or [31]). Since
these blocks are arranged as a kn�2 �kn�2 grid, the increase
in area is negligible as long as the number c of nodes in a

cluster is not very large; that is, c� o�kn�2�1� so that kn�2c
L �

o� kn

L�k�1�� (or o� kn�1

L � when k is not a constant), which is the
case except when c is large and/or n is small. Clearly, this
conclusion applies to any k-ary n-cube cluster-c whose clus-
ter is at most as dense as hyercubes. Similarly, we can show
that even if the clusters are complete graphs, a k-ary n-cube
cluster-c still has asymptotically the same area (witin a fac-
tor of 1�o�1�) as a k-ary n-cube as long as c� o�kn�4�1�.

4. Multilayer layout for generalized hyper-
cubes, butterfl ies, and related networks

In this section we present effi cient multilayer layouts for
generalized hypercubes, butterfl y networks, HSNs, HHNs,
and ISNs.

4.1. Multilayer layout for generalized hypercubes

A generalized hypercube [5] is the Cartesian product of
two smaller generalized hypercubes. Therefore, we can use
the layout method for product networks introduced in Sub-
section 3.2 to lay out generalized hypercubes.

To describe the 2-layer collinear layout for an n-
dimensional radix-�rn�1� rn�2� ���� r1� r0� generalized hyper-
cube, we use a bottom-up approach similar to that for laying
out k-ary n-cubes. We start with an r0-node complete graph
(i.e., a 1-dimensional radix-r0 generalized hypercube), and
inductively moving to generalized hypercubes of higher di-
mensions n. We have proposed a strictly optimal collinear
layout for N-node complete graphs that requires bN2�4c
tracks (see Fig. 3 for an example) [30, 35]. Assume that we
have a collinear layout for an n-dimensional generalized hy-
percube that requires fr�n� tracks. To obtain the collinear
layout of an �n�1�-dimensional generalized hypercube, we
start with rn copies of the layout for an n-dimensional gen-
eralized hypercube. By increasing the horizontal space by
a factor of rn, we can place the ith node of the j th copy
adjacent (from the right) to the i th node of the � j � 1�th
copy, i� j � 0�1� ���� rn � 1. We also increase the number
of tracks (i.e., vertical space) to accommodate the rn fk�n�
tracks of the rn collinear layout copies. Moreover, to con-
nect the rn copies of the n-dimensional generalized hyper-
cube into an �n�1�-dimensional generalized hypercube, we
need br2

n�4c extra tracks to connect rn adjacent nodes (i.e.,
the ith nodes of the rn copies) as a complete graph. There-
fore, the number of tracks required for the collinear layout
of the �n�1�-dimensional generalized hypercube is fr�n�
1� � rn fr�n� � br2

n�4c, where fr�1� � br2
0�4c. It is easy

to solve the recursive function fr�n� once the mixed-radix
�rn�1� rn�2� ���� r1� r0� is knowdni. For a radix-r generalized
hypercube (i.e., rn�1 � rn�2 � � � �� r0 � r), we have

fr�n�� r fr�n�1��r0br2�4c� r2 fr�n�2���r1�r0�br2�4c

� � � �� �rn�1� rn�2� � � �� r1� r0�br2�4c

�
�rn�1�br2�4c

r�1
�
�N�1�br2�4c

r�1

By connecting each row as an m-dimensional radix-
�rm�1� rm�2� ���� r0� generalized hypercube and each column
as an �n�m�-dimensional radix-�rn�1� rn�2� ���� rm� general-
ized hypercube using the preceding collinear layouts, we ob-
tain a 2-layer orthogonal layout for an n-dimensional radix-
�rn�1� rn�2� ���� r0� generalized hypercube. We then use the
approach described for the orthogonal multilayer layout
scheme to transform the 2-layer orthogonal layout to obtain
an L-layer layout. For an n-dimensional radix-r generalized
hypercube with an even number L of wiring layers, the num-

ber of tracks per layer above a row is d 2br2�4c�rbn�2c�1�
L�r�1� e and
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Figure 3. C ollinear layout for a 9-node com -
plete graph.

there are rdn�2e rows; the number of tracks per layer to the

right of a column is d
2br2�4c�rdn�2e�1�

L�r�1� e and there are rbn�2c

columns. Therefore, the area of the L-layer generalized-
hypercube layout becomes

r2N2

4L2 �o

�
r2N2

L2

�
�

The volume of the layout is

r2N2

4L
�o

�
r2N2

L2

�
�

The maximum wire length is

rN
2L

�o

�
rN
L

�
and

the maximum total length of wires along a shortest routing
path is

rN
L
�o

�
rN
L

�
�

When L is odd, the area of the resultant generalized-
hypercube layout is

r2N2

4�L2�1�
�o

�
r2N2

L2

�
�

assuming that r is not a constant.

4.2. Multilayer layout for butterfly networks

In [35], we have shown that by appropriately partitioning
a butterfl y network into clusters, these clusters can be con-
nected as a generalized hypercube with multiple links. It is
interesting, therefore, that butterfl y network can be viewed
as a PN cluster (i.e., a generalized hypercube cluster) and
laid out using the approach introduced in Subsection 3.2.
More precisely, we can partition an R�Rbutterfl y network
into r�log2 R� 1�-node clusters so that these clusters are
connected as an R

r log2 R-node generalized hypercube where
each pair of neighboring clusters are connected by 4 links,
where N � Rlog2 R. Since a cluster only contains several

copies of small butterfl y networks, the layout area is dom-
inated by inter-cluster links and is 16 times that of the area
of an R

r log2 R-node generalized hypercube. Therefore, when
L is even, the area of the resultant L-layer butterfl y layout is

16�
r2� N

r log2 N�
2

4L2 �o

�
r2� N

r logN�
2

L2

�

�
4N2

L2 log2
2 N

�o

�
N2

L2 log2 N

�
�

the volume of the L-layer layout is

4N2

L log2
2 N

�o

�
N2

L log2 N

�
�

and the maximum wire length is

2N
L log2 N

�o

�
N

L logN

�
�

When the number L of wiring layers is odd, an N-node but-
terfl y network can be laid out using area

4N2

�L2 �1� log2
2 N

�o

�
N2

L2 log2 N

�
�

More details can be found in [35].

4.3. Multilayer layout for hierarchical swap net-
works and related networks

An l -level hierarchical swap network (HSN) based on r-
node nucleus graphs [33, 34] can be derived by replacing
each node of an �l �1�-dimensional radix-r generalized hy-
percube with an r-node nucleus graph. Therefore, we can
derive multilayer layout for HSNs using our layout for gen-
eralized hypercubes. When L is even, the area of the resul-
tant L-layer layout for an N-node HSN is

r2�N�r�2

4L2 �o

�
r2�N�r�2

L2

�
�

N2

4L2 �o

�
N2

L2

�
�

the volume is
N2

4L
�o

�
N2

L

�
�

the maximum wire length is

N
2L

�o

�
N
L

�
�

and the maximum total length of wires along a shortest rout-
ing path is

N
L
�o

�
N
L

�
�

assuming that r is not a constant. When L is odd, the area of
the resultant HSN layout is

N2

4�L2 �1�
�o

�
N2

L2

�
�
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Figure 4. C ollinear layout for a 4-cube.

The HSN layout can be easily generalized to general swap
networks. Since hierarchical hypercube networks (HHNs)
[36] are a special case of HSNs where the basic modules are
hypercubes, they can be laid out in asymptotically the same
area, volume, and maximum wire length (within a factor of
1�o�1�).

Similar to butterfl y networks, we can partition an R�R
indirect swap network (ISN) [35] into r�log2 R�o�logR��-
node clusters so that these clusters are connected as an
� N

r log2 N � o� N
r logn��-node generalized hypercube with two

links connecting each pair of neighboring clusters. There-
fore, we can show that the multilayer layout for an ISN has
area and volume smaller than those of a similar-size butterfl y
network by a factor of approximately 4, and the maximum
wire length and the maximum total length of wires along a
shortest routing path are smaller than those of a similar-size
butterfl y network by a factor of approximately 2.

We can use similar strategies to obtain effi cient multi-
layer layouts for star graphs and other Cayley graphs [2],
such as transposition networks [16, 18], pancake graphs [2],
bubble-sort graphs [2], macro stars [29], and star-connected
cycles (SCC) [15]. The details will be reported in the near
future.

5. Multilayer layout for hypercubes, CCCs,
and related networks

In this section, we present multilayer layouts for hyper-
cubes, folded hypercubes, CCC, and reduced hypercubes.

5.1. Multilayer layout for hypercubes

An n-dimensional hypercube is the Cartesian product of
two smaller hypercubes of dimensions dn�2e and bn�2c.
Therefore, we can use the layout method for product net-
works introduced in Subsection 3.2 to lay out hypercubes.
We have proposed an effi cient collinear layout that requires
b2N�3c tracks, derived by a bottom-up approach as that for
k-ary n-cubes (Subsection 3.1) and generalized hypercubes
(Subsection 4.1). The layout is based on a 2-track collinear
layout for 2-cubes (rather than the 1-track collinear layout
for 1-cubes) as the basic building block (see Fig. 4) [28, 31].
Therefore, we can show that the area of the resultant L-layer
hypercube layout is

16N2

9L2 �o

�
N2

L2

�
;

the volume is
16N2

9L2 �o

�
N2

L2

�
;

and the maximum wire length is

2N
3L

�o

�
N
L

�
�

More details can be found in [31].

5.2. Multilayer layout for CCC and reduced hyper-
cubes

An n-dimensional cube-connected cycles (CCC) graph is
obtained by replacing each node in an n-cube with an n-node
cycle [22]. A reduced hypercube, RH�log2 n� log2 n� [37],
can be obtained by replacing each n-node cycle in a CCC
with a log2 n-dimensional hypercube. Clearly, both of them
can be viewed as PN clusters (i.e., hypercube clusters) and
laid out using the method presented in Subsection 3.2.

To lay out a CCC, we fi rst lay out an n-cube using the
2-D layout introduced in Subsection 5.1, and then lay out
the n-node cycles within each of the hypercube nodes us-
ing the recursive grid layout scheme. Since the size of an
n-dimensional CCC is N� n2n and its area is dominated by
its hypercube links, which require 2n�4

9L2 �o�2n�L2� area, an
N-node CCC can be laid out in

16N2

9L2 log2
2 N

�o

�
N2

L2 log2 N

�

area when L is even. The layout area is better than that of
a recently proposed CCC layout [8]. Using the same layout
method, the reduced hypercube can be laid out in asymptot-
ically the same area.

5.3. Multilayer layout for folded hypercubes and
related networks

An enhanced-cube is a hypercube with one additional
outgoing link per node leading to a random node [26]. A
folded hypercube [1] is a hypercube with one additional link
per node, where each node Shas a link connecting it to the
node whose label is the bitwise complement of S.

By adding additional links to our hypercube layout we
can lay out folded hypercubes effi ciently. More precisely,
we fi rst lay out an N-node hypercube in a square of side
2N
3L �o�N�L�. To lay out an additional link, we need at most
one additional vertical track and one additional horizontal
track, besides the two ending segments connecting the link
to two nodes. Since there are N�2 additional links in a folded
hypercube, we need at most N�2 extra vertical and horizon-
tal tracks to accommodate all the diameter links. These links
can be partitioned into L�2 groups easily and laid out using
L layers. Therefore, the area for the layout of a folded hy-
percube is�

7N
3L

�o�
N
L
�

�
�

�
7N
3L

�o�
N
L
�

�
�

49N2

9L2 �o�N2�L2��

when L is even. Since there are N additional links in an
enhanced-cube, we need at most N vertical and horizon-
tal tracks to accommodate all the additional links. There-
fore, the area for the layout of an enhanced-cube is 100N2

9L2 �

o�N2�L2�. Some of these additional links may be placed in
the same tracks so that the layout areas may be reduced.



6. Conclusion

In this paper, we introduced the multilayer grid model
and showed that, for a variety of networks, the area can be
reduced by a factor of L2�4, and the volume and the maxi-
mum wire length can be reduced by a factor of L�2, relative
to layouts using two layers of wires. The proposed layouts
are the best layouts reported for these networks thus far and
are optimal within a small constant factor under the multi-
layer grid model. The techniques introduced in this paper
can also be applied to a variety of other networks.

References
[1] Adams, G.B. and H.G. Siegel, “ The extra stage cube: a fault-

tolerant interconnection network for supersystems,” IEEE
Trans. Comput.,vol. 31, no. 5, May. 1982, pp. 443-454.

[2] Akers, S.B. and B. Krishnamurthy, “ A group-theoretic model
for symmetric interconnection networks,” IEEE Trans. Com-
put.,Vol. 38, Apr. 1989, pp. 555-565.

[3] Avior, A., T. Calamoneri, S. Even, A. Litman, and A. Rosen-
berg, “ A tight layout of the butterfl y network,” Theory Com-
put. Sys.,vol. 31, no. 4, 1998, pp. 475-488.

[4] Basak, D. and D.K. Panda, “ Designing clustered multipro-
cessor systems under packaging and technological advance-
ments,” IEEE Trans. Parallel Distrib. Sys.,vol. 7, no. 9, Sep.
1996, pp. 962-978.

[5] Bhuyan, L.N. and D.P. Agrawal, “ Generalized hypercube and
hyperbus structures for a computer network,” IEEE Trans.
Comput.,vol. 33, no. 4, Apr. 1984, pp. 323-333.

[6] Brady, M.L. and M. Sarrafzadeh, “ Stretching a knock-knee
layout for multilayer wiring,” IEEE Trans. Computers,vol.
39, no. 1, Jan. 1990, pp. 148-151.

[7] Brebner, G., “ Relating routing graphs and two-dimensional
grids,” VLSI: Algorithms and Architectures,1985, pp. 221-
231.

[8] Chen, G. and F.C.M. Lau, “ Tighter layouts of cube-connected
cycles,” IEEE Trans. Parallel Distrib. Sys, IEEE Trans. Par-
allel Distrib. Sys.,vol. 11, no. 2, Feb. 2000, pp. 182-191.

[9] Dally, W.J. and S. Lacy, “ VLSI architecture: past, present,
and future,” Proc. Advanced Research in VLSI Conf.,1999,
pp. 232-241.

[10] Dinitz, Y., S. Even, R. Kupershtok, and M. Zapolotsky,
“ Some compact layouts of the butterfl y,” Proc. ACM Symp.
Parallel Algorithms and Architectures,Jun. 1999, pp. 54-63.

[11] Efe, K. and A. Fernandez, “ Products of networks with log-
arithmic diameter and fi xed degree,” IEEE Trans. Parallel
Distrib. Sys.,vol. 6, no. 9, Sep. 1995, pp. 963-975.

[12] Even, S., S. Muthukrishnan, M.S. Paterson, and S. Cenk
Sahinalp, “ Layout of the Batcher bitonic sorter,” Proc. ACM
Symp. Parallel Algorithms and Architectures,1998, pp. 172-
181.

[13] Fern´andez, A. and K. Efe, “ Effi cient VLSI layouts for homo-
geneous product networks,” IEEE Trans. Computer,vol. 46,
no. 10, Oct. 1997, pp. 1070-1082.

[14] Lakshmivarahan, S. and S.K. Dhall, “ A new hierarchy of hy-
percube interconnection schemes for parallel computers,” J.
Supercomputing,vol. 2, 1988, pp. 81-108.

[15] Latifi , S., M.M. de Azevedo, and N. Bagherzadeh, “ The star
connected cycles: a fi xed-degree network for parallel pro-
cessing,” Proc. Int’l Conf. Parallel Processing,Vol. I, 1993,
pp. 91-95.

[16] Latifi , S. and P.K. Srimani, “ Transposition networks as a class
of fault-tolerant robust networks,” IEEE Trans. Parallel Dis-
trib. Sys.,Vol. 45, no. 2, Feb. 1996, pp. 230-238.

[17] Leighton, F.T., Complexity Issues in VLSI : Optimal Layouts
for the Shuffl e-exchange Graph and Other NetworksCam-
bridge, Mass., MIT Press, 1983.

[18] Leighton, F.T., Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, Hypercubes,Morgan-Kaufman,
San Mateo, CA, 1992.

[19] Leiserson, C.E., Area-Effi cient VLSI Computation,Cam-
bridge, MA, MIT Press, 1983.

[20] Leiserson, C.E., “ Fat-trees: universal networks for hardware-
effi cient supercomputing,” IEEE Trans. Computers, vol. C-
34, no. 10, Oct. 1985, pp. 892-901.

[21] Muthukrishnan, S., M.S. Paterson, S. Cenk Sahinalp, and T.
Suel, “ Compact grid layouts of some multi-level networks,”
Proc. ACM Symp. Theory of Computing,1999, to appear.

[22] Preparata, F.P. and J.E. Vuillemin, “ The cube-connected cy-
cles: a versatile network for parallel computation,” Commun.
ACM,vol. 24, No. 5, pp. 300-309, May 1981.

[23] Thompson, C.D., “ Area-time complexity for VLSI,” Proc.
ACM Symp. Theory of Computing, 1979, pp. 81-88.

[24] Thompson, C.D., “ A complexity theory for VLSI,” Ph.D.
dissertation, Dept. of Computer Science, Carnegie-Mellon
Univ., Pittsburgh, PA, 1980.

[25] Ullman, J.D., Computational Aspects of VLSI,Rockville,
MD., Computer Science Press, 1984.

[26] Varvarigos, E.A., “ Static and dynamic communication in par-
allel computing,” Ph.D. dissertation, Dept. Electrical Engi-
neering and Computer Science, Massachusetts Institute of
Technology, 1992.

[27] Wise, D.S., “ Compact layouts of banyan/FFT networks,”
VLSI Systems and Computations,Computer Science Press,
1981, pp. 186-195.

[28] Yeh, C.-H., “ Effi cient low-degree interconnection networks
for parallel processing: topologies, algorithms, VLSI lay-
outs, and fault tolerance,” Ph.D. dissertation, Dept. Electrical
& Computer Engineering, Univ. of California, Santa Barbara,
Mar. 1998.

[29] Yeh, C.-H. and E.A. Varvarigos, “ Macro-star networks: ef-
fi cient low-degree alternatives to star graphs,” IEEE Trans.
Parallel Distrib. Sys.,Vol. 9, no. 10, Oct. 1998, pp. 987-1003.

[30] Yeh, C.-H. and B. Parhami, “ VLSI layouts of complete
graphs and star graphs,” Information Processing Letters,Vol.
68, Oct. 1998, pp. 39-45.

[31] Yeh, C.-H., E.A. Varvarigos, and B. Parhami, “ Effi cient
VLSI layouts of hypercubic networks,” Proc. Symp. Fron-
tiers of Massively Parallel Computation, Feb. 1999, pp. 98-
105.

[32] Yeh, C.-H., B. Parhami, and E.A. Varvarigos, “ The recur-
sive grid layout scheme for VLSI layout of hierarchical net-
works,” Proc. Merged Int’l Parallel Processing Symp. &
Symp. Parallel and Distributed Processing, Apr. 1999, pp.
441-445.

[33] Yeh, C.-H. and B. Parhami, “ The index-permutation graph
model for hierarchical interconnection networks,” Proc. In-
t’l Conf. Parallel Processing, Sep. 1999, pp. 48-55.

[34] Yeh, C.-H. and B. Parhami, “ A unifi ed model for hierarchi-
cal networks based on an extension of Cayley graphs,” IEEE
Trans. Parallel Distrib. Sys., to appear.

[35] Yeh, C.-H., B. Parhami, E.A. Varvarigos, and H. Lee, “ VLSI
layout and packaging of butterfl y networks,” Proc. ACM
Symp. Parallel Algorithms and Architectures,2000, to ap-
pear.

[36] Yun S.-K. and K.H. Park, “ Hierarchical hypercube networks
(HHN) for massively parallel computers,” J. Parallel Distrib.
Comput.,vol. 37, no. 2, Sep. 1996, pp. 194-199.

[37] Ziavras, S.G., “ RH: a versatile family of reduced hyper-
cube interconnection networks,” IEEE Trans. Parallel Dis-
trib. Sys.,vol. 5, no. 11, Nov. 1994, pp. 1210-1220.


