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In this paper we consider the partial multinode broadcast and
the partial exchange communication tasks in d-dimensional
meshes. The partial multinode broadcast in an N-processor net-
work is the task in which each of M = N arbitrary nodes broad-
casts a packet to all the remaining N — 1 nodes. Correspondingly,
in the partial exchange there are M <= N nodes that wish to send a
separate, personalized packet to each of the other nodes. We
propose algorithms for the d-dimensional mesh network that exe-
cute the partial multinode broadcast and the partial exchange
communication tasks in near-optimal time. No assumption is
made concerning the locations of the M source nodes. The com-
munication algorithms proposed are ‘“‘on line” and distributed.
We further look at a dynamic version of the broadcasting prob-
lem, where broadcast requests are generated at random times. In
particular, we assume that the broadcast requests are generated at
each node of the mesh according to a Poisson distribution with
rate A. Based on the partial multinode broadcast algorithm, we
propose a dynamic decentralized scheme to execute the broadcasts
in this dynamic environment. We find an upper bound on the
average delay required to serve each broadcast. We prove that the
algorithm is stable for network utilization p close to 1, and the
average delay is of the order of the diameter for any load in the
stability region. © 1994 Academic Press, Inc.

1. INTRODUCTION

The processors of a multiprocessor system, when do-
ing computations, often have to communicate intermedi-
ate results. The interprocessor communication time may
be substantial relative to the time needed exclusively for
computations, so it is important to carry out the informa-
tion exchange as efficiently as possible.

Two of the most frequent communication tasks are the
multinode broadcast (MNB) and the total exchange
(TE). The first task involves broadcasting a packet (the
same packet) from every node to all the other nodes. It
arises, for example, in iterations of the form

x = f(x), (D

where each processor computes an entry (or some en-
tries) of the vector x. At the end of each iteration it is
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necessary that each processor broadcast the updated
value of the component that it computes to all other pro-
cessors in order for it to be used at the next iteration.

The total exchange is the communication task where
each node has to send a personalized (different) packet to
each one of the other nodes. An example where the total
exchange arises is the transposition of a matrix, when
each processor stores, say, a column of the matrix. Then
every processor i has to send the (i, k)th entry of the
matrix to processor &, for all &, which is a total exchange.

Algorithms to perform a MNB or TE have been studied
by several authors under a variety of assumptions on the
communication network connecting the processors. Saad
and Schultz [18, 19} were the first to consider these prob-
lems and to propose corresponding routing algorithms.
Johnsson and Ho [8] have developed minimum and
nearly minimum completion time algorithms for routing
problems similar to those of Saad and Schultz but using a
different communication model and a hypercube net-
work. Bertsekas ef al. [2], and Bertsekas and Tsitsiklis
[1] have used the communication model of Saad and
Schultz to derive minimum completion time algorithms
for a MNB or TE in a hypercube. Varvarigos and Bertse-
kas [24] considered a class of communication tasks,
called isotropic tasks, in hypercubes and d-dimensional
wraparound meshes, and devised algorithms which are
optimal jointly with respect to completion time, average
packet delay, and storage requirements. This class of
tasks includes the TE as a special case. The same authors
in [26] proved that the multinode broadcast task when
packets have random lengths can be executed in near-
optimal time with high probability. Several other works
deal with various communication problems and network
architectures related to those discussed in the present
paper; see [4-7, 10, 12, 13, 17, 22].

In iterations of the kind given in (1) it is very probable
that only some of the components of the vector x change
appreciably during an iteration. As these iterations ap-
proach their convergence point, fewer and fewer of the
processors need to broadcast the updated values of the
components of x that they compute. This gives rise to a
task in which a strict (but unpredictable) subset of the
processors have to broadcast a packet. We call this task a
partial multinode broadcast (or PMNB for brevity). The
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PMNB task, aside from being important on its own merit,
is also a critical subroutine of the dynamic broadcast
schemes that we propose in Section 5. The PMNB task
arises also in clustering algorithms (see [16, Chap. 5],
where the M nodes that store the coordinates of the cen-
ters of the clusters broadcast them after each iteration)
and other problems. Because of its many applications we
believe that the PMNB deserves a position among the
prototype tasks of a communication library.

Similarly, during the transposition of a matrix that has
both sparse and dense columns, it is more efficient if the
nodes storing sparse columns do not participate in the
TE, but send instead their packets as ordinary traffic
through the 1-1 routing algorithm used by the machine.
Since most large problems involve sparse matrices one
can see that this situation arises frequently, giving rise to
the partial exchange tasks (PE), where only M nodes
send a (separate) packet to every other node. A task
which is related to the PE is the partial gather (PG) task.
In this task, M arbitrary nodes have to receive a (differ-
ent) packet from every other node of the network (com-
bining packets originated at different nodes is not al-
lowed). Note that the PG task is dual to the PE task; if we
find an algorithm to execute the PE we immediately get
an algorithm of the same time complexity that executes
the PG. In the transposition of a matrix stored by
columns in a multiprocessor network, a PG arises when
the matrix has only M dense rows. By combining a PE
and a PG algorithm we get an algorithm that transposes a
matrix which has M, dense columns and M, dense rows.
The dense rows and columns can be arbitrary. This
sparseness pattern arises very frequently in applications.
The smaller M is, the less efficient a full MNB or TE
algorithm would be and the more necessary it becomes to
employ algorithms that are specially designed for partial
tasks.

The main focus of this paper is to propose optimal and
near-optimal communication algorithms for the partial
multinode broadcast and the partial exchange tasks in d-
dimensional meshes, with or without wraparound. These
problems are considered here for the first time. PMNB
algorithms have previously been studied for hypercubes
in [20, 25]). The partial exchange problem was also con-
sidered for hypercube networks in [27]. In what follows,
to avoid confusion, we call a (d-dimensional) mesh with
wraparound a torus and a mesh without wraparound an
array.

An algorithm that executes a task in the minimum num-
ber of steps is called optimal. We will say that an algo-
rithm is near-optimal if the potential loss of optimality
with respect to completion time is of strictly smaller or-
der of magnitude than the optimal completion time itself.
We will say that an algorithm is of optimal order if its
worst case time complexity is asymptotically within a
constant factor of the optimal value.

One of the main contributions of the paper is the devel-
opment of near-optimal algorithms for a partial multinode
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broadcast in a d-dimensional torus and in a d-dimensional
array. We propose algorithms for two different communi-
cation models. In the first model, packets can be split and
recombined at the destination without any overhead. In
the second model the splitting is not allowed, and mes-
sages are always transmitted as one packet. We also
present the first partial exchange algorithm of optimal
order for the 2-dimensional array.

The PMNB communication task is a static broadcast-
ing task, that is, it assumes that at time ¢ = 0 some nodes
have to broadcast a packet. In this paper, we also con-
sider the dynamic version of this problem. We assume
that broadcast requests are generated at each node ac-
cording to a Poisson process with rate A, independently
of the other nodes. We propose routing schemes for d-
dimensional tori and arrays that work under such a dy-
namic environment, and we evaluate their performance.
The performance criterion used is the average packet de-
lay, that is, the time that elapses on the average between
the arrival of a packet to be broadcast at a node and the
completion of the broadcast of the packet. Dynamic
broadcasting schemes are also studied in the companion
paper [25], and in [20] for hypercube networks. The
scheme to be proposed for d-dimensional meshes is simi-
lar to the one given in [25] for hypercubes. It is stable for
load asymptotically equal to the maximum possible, and
its average delay is of the order of the diameter of the
mesh for any load in the stability region.

The organization of the paper is the following. Section
2 shows how a mesh without wraparound can simulate a
mesh with wraparound, and presents the first (strictly)
optimal multinode broadcast algorithm for 2-dimensional
meshes without wraparound. We also present a theorem
concerning arbitrary broadcasts in rings and linear ar-
rays, and two useful results by Nassimi and Sahnhi [14].
In Section 3 we present near-optimal algorithms to exe-
cute a partial multinode broadcast in a d-dimensional
mesh. In particular, in Subsection 3.1 we give an algo-
rithm where packets can be split, while in Subsection 3.2
we give an algorithm that does not require packet split-
ting. In Section 4 we present an algorithm for a partial
exchange in a 2-dimensional array. In Section 5 we give
the dynamic broadcasting scheme and evaluate its perfor-
mance.

2. SOME PRELIMINARY RESULTS

The d-dimensional mesh, denoted by My, consists of
N = pd processors arranged along the points of a d-di-
mensional space that have integer coordinates numbered
from 0 to p — 1. Along the ith dimension, obtained by

fixing coordinates x4-y, ..., Xi+1, Xi—1, ..., Xo, there are p
processors with identities (x,_q, ..., x;, ..., X0), x; = 0, 1,
..., p — 1. Two processors (xy_1, ..., Xi, ..., Xp) and (yq4—,
..oy Vi, .-+, Yo) are connected by a (two-directional) link if

and only if for some i we have |x; — y;| = 1 and x; = y, for
all j # i. In addition to these links in the d-dimensional
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mesh with wraparound (also called a rorus), all links of
the type

o Xier, 0, X2, oo, Xo),
(xd—l5 vees Xig1s P — 1’ Xi-ts o

((ea-1, -

.y Xo))

are present. The latter links do not exist in the d-dimen-
stonal mesh without wraparound (also called an array).
The set of nodes of an array (or torus) whose identities
differ from the identity of node x = (x -y, ..
..., Xo) only in the ith digit is called the i-level linear array
(or ring, respectively) of node x, and is denoted by (x4,
wevs Xix1s ®, Xi—1, --., Xo). The node with identity (x|, x4-2,
..., Xo) is also represented by the base p number of the
form x = x4_1x4_2 -+ xo. The Oth digit is considered the
least significant digit of the above representation. For
two nodes x and y, we will write x < y when the identity
of x (viewed as a base p number) is smaller than the
identity of y. A link connecting two nodes which differ
only in the ith digit is called a link of dimension i.
Packets can be simultaneously transmitted along a link
in both directions. Only one packet can travel along a link
in each direction at any one time; thus, if more than one
packet are available at a node and are scheduled to be
transmitted on the same incident link of the node, then
only one of these packets can be transmitted at the next
time period, while the remaining packets must be stored
at the node while waiting in queue. Each node is assumed
to have infinite storage space. All incident links of a node

o Xit1s Xi-1,
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can be used simultaneously for packet transmission and
reception. Each packet requires one unit of time for
transmission over a link. We consider both a model
where packets can be split at the origin, and be recom-
bined at the destination, and a model where packets can-
not be split; in the first model if a packet is split into d
parts, each of them requires 1/d units of time to be trans-
mitted over a link.

We start by describing how a torus can be simulated by
an array. A linear (i.e., one-dimensional) array can simu-
late a ring of the same size with a slowdown factor of 2.
This can be done as indicated in Fig. 1. By using this fact,
a torus of any dimension can be simulated by an array of
the same size and dimension with a slowdown factor of 2,
as shown again in Fig. 1.

The optimal time Ting to execute a (full) multinode
broadcast in a p X p torus was found in {15] (see also [1,
pp. 81-82]) to be equal to

PN
Tmne 7 -3
if p is even and
. _pt—1_N-1
Tyvng ) 2

if p is odd.
The following theorem gives a corresponding result for
the MNB task in a 2-dimensional array.
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FIG. 1.

The upper part of the figure shows how a ring can be simulated by a linear array with a factor of 2 slowdown. The nodes of the linear

array are renamed as shown in the figure. Any communication between neighbors in the ring can be performed in two steps between the
corresponding nodes in the linear array. This idea is easily extended to the simulation of a d-dimensional torus by a d-dimensional array, as can be
seen from the lower part of the figure. The nodes along dimension i of the d-dimensional array form a linear array. The ith digit of the
representations of these nodes is defined as in the simulation of a ring by a linear array (top of the figure).
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THEOREM 1. The minimum time Tiynp required to ex-
ecute a (full) multinode broadcast in a 2-dimensional
array is exactly twice the minimum time T\ing required to
execute a multinode broadcast in a 2-dimensional torus
of the same size, that is,

N
Ting = 2Tung = [?J )

Proof. As we indicated earlier, a mesh without wrap-
around can simulate with a slowdown factor of 2 a mesh
with wraparound of the same size. Each step of a torus
can be simulated in two steps by an array even if all the
links of the torus are simultaneously used. This gives the
inequality Tynp = 2T uns. Since node (0, 0) has only two
neighbors and receives N — 1 packets we have Tyng =
(N — 1)/2. This together with the fact that Tinp has to be
integer proves that

. N
Tyune = 2T‘MNB = l—Z—J

Q.ED.

The next theorem deals with arbitrary broadcasts in
rings and arrays.

THEOREM 2. Consider a linear (one-dimensional) ar-
ray of p nhodes, where each node has a certain (not neces-
sarily the same) number of packets to broadcast to all
other nodes. Let K be the total number of packets in the
array. Then the broadcasts can be completed in time less
than or equal to

K+p-—1.

In a ring of the same size, the task requires half this time,
provided that packets can be split into two parts without
additional overhead.

Proof. Consider the following algorithm. Each node
immediately transmits over its left (right) neighbor every
packet that it receives from its right (left) neighbor.
Whenever a node does not receive anything from its left
(right) neighbor, it sends one of its own packets to the
right (left). In other words, each node passes in the same
direction the packets that come to it, and inserts a packet
of its own whenever it sees an empty slot. Note that a
packet is never delayed after it starts getting transmitted.
In order to evaluate the time complexity we can focus on
one direction, say the one going from left to right. Since
there are K packets in the linear array, the packet can be
delayed at most K times before starting transmission in
this direction, and after at most p — 1 slots it will have
arrived to all the nodes in that direction. To prove the
result about the ring, we can split each packet in two
parts, each requiring 0.5 units of time. The ring can be
viewed as two edge-disjoint unidirectional linear arrays,
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and by similar arguments, applied to each direction, the
result follows. Q.E.D.

Remark. In the case where each node of the linear
array has at most one packet, all the nodes can broadcast
their packet in time p — 1 (see [1]). In the case of a ring
the same task requires time | p/21, if the packets cannot
be split, and (p — 1)/2, if the packets can be split into two
parts without overhead.

The following two theorems are proved in [14]. The
first deals with a problem called the packing routing prob-
lem.

THEOREM 3 [14] (Mesh Packing Routing). Lets®,i=
0,1,...., K — 1, be nodes of a d-dimensional array such
that s© < sV < ... < s&=D_Consider the communication
task where each node s sends a packet to processor i.
This can be done without conflicts through a greedy
scheme in time d(p — 1). This greedy scheme uses only
links of dimension j during steps jp,jp + 1, ....jp +p — 1,
j=0,..,d-1

The next theorem, also proved in [14], treats a more
general routing problem, which is called the mesh mono-
fone routing problem.

THEOREM 4 [14] (Mesh Monotone Routing). Ler s'9
and v, i=0,1, ..., K — 1, be nodes of a d-dimensional
array such that s® < s < ... < KD gpd p©@ < pM < ot
< v&D Consider the communication task where
each node s has to send a packet to processor v, This
can be performed through a greedy scheme, without con-
flicts, in time 2d(p — 1). The greedy scheme uses only
links of dimension j during stepsjp,jp + 1, ....jp + p — 1,
with 0 = j = d — 1, and only links of dimension 2d —
Jjduring steps jp,jp + 1, ..., jp + p — 1, withd = j =
2d — 1.

Theorems 3 and 4 assume that packets s know their
rank i. The rank can be computed in time 2(p — 1)dt,,
where ¢, is the time required for a single parallel prefix
step, through a parallel prefix operation as explained in
various references (see, e.g., [11, pp. 37-44]), and de-
scribed briefly in Phase 1 of the PMNB algorithm given in
the next section,

3. PARTIAL MULTINODE BROADCAST IN
D-DIMENSIONAL TORI AND ARRAYS

In this section we consider the problem where M arbi-
trary nodes of a d-dimensional mesh with N = p? nodes
want to broadcast a packet to all the other nodes. We call
these M nodes active nodes. Let Thyng be the optimal
time required for the partial multinode broadcast in a d-
dimensional torus, and let THyng be the corresponding
time for a d-dimensional array. Tpuyng and Tiynp may
actually depend on the identities of the M nodes that
want to broadcast. A lower bound, however, is always
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M -1
Thung = >d

(3a)

and

. M- 1
Thung = 7

(3b)

where d is the dimension of the mesh. To see that, note
that in a d-dimensional array (or torus) node 00 --- 0 has
only d input ports (or 24 input ports, respectively), and
has to receive at least M — 1 packets.

Nassimi and Sahni [14] considered the more general
broadcasting problem where some nodes of the network
broadcast a packet to a set of nodes of the network, and
each node receives at most M packets. If we use the
algorithm of [14] to execute the PMNB task, its time
complexity is (using our notation) O(d?p + Mdp), which
is not of optimal order.

One way to execute the partial multinode broadcast is
to perform a full multinode broadcast (with dummy pack-
ets for the nodes that have nothing to broadcast). A full
MNB in a d-dimensional torus with N = p¥ nodes, when
each packet requires one time unit (or slot) to be trans-
mitted over a link, will require at least

N-1
2d

Thng = (4a)

time slots (every node has 2d links and has to receive
N — 1 packets), while a MNB in a d-dimensional array
will require at least

. N -1
MNB = d

(4b)

time slots. The gap between the right hand sides of Eqgs.
(3a) and (4a), and between the right hand sides of Egs.
(3b) and (4b), suggests that the use of a MNB algorithm to
execute the PMNB task will be inefficient when M < N,

In this section we present communication algorithms
that execute the PMNB task in d-dimensional meshes
with or without wraparound in near-optimal time. In Sub-
section 3.1 we present an algorithm which assumes that
packets can be split at the origin, and be recombined at
the destination without any overhead. This algorithm ex-
ecutes the PMNB task in time at most

MN_1, 2d(p - Dty + 1.5(p — 1)

2d" N (5a)

for a d-dimensional torus with N = p9 nodes, and in time
at most

N-1
N

+2dp— D, + 2(p— 1) (6a)

SIS
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for a d-dimensional array of the same size, where 1, is the
time required for a single parallel prefix step. For the case
where the splitting of packets is undesirable (because of
the overhead introduced and the cost of packet reassem-
bling), we will present in Subsection 3.2 an algorithm that
avoids the splitting of packets, and executes the PMNB
task in time less than

i

+(p—1)d+d[p;

1
] + 4(p — 1)dt, (5b)
for a d-dimensional torus and in time less than

[M] +2(p-Dd—-1+4p - 1)dr, (6b)

d

for a d-dimensional array. Comparing Egs. (5a)—(5b) and
Egs. (6a)-(6b) with the lower bounds (3a) and (3b), re-
spectively, we see that the leading terms of the corre-
sponding right hand sides have the same coefficient. So,
the algorithms to be proposed are near-optimal.

3.1. A Near-Optimal PMNB Algorithm
with Splitting of Packets

The algorithm in this section assumes that packets can
be split at the origin, and recombined at the destination
without any overhead. Each packet requires one time
slot for transmission over a link. If a packet is split in d
parts, each of these parts requires 1/d time units to be
transmitted over a link.

Let sy, 52, ..., s, M = N, be the active nodes. The
rank of a packet located at node s is defined as

rs:Z-xl_ls

<<s

where x, is equal to one if processor ¢ has a packet to
broadcast and zero otherwise.

We will first present a suboptimal partial multinode
broadcast algorithm for the d-dimensional mesh, with or
without wraparound. This algorithm will not make full
use of the links of a mesh. We will then modify the algo-
rithm to achieve efficient link utilization and near-optimal
completion time. The suboptimal algorithm consists of
three phases:

Phase 1 (Rank Computation Phase). The rank r, (0 <
rs = M — 1) of each active node s is computed. This can
be done in 2(p — 1)d steps for a d-dimensional array or a
torus by performing a parallel prefix operation (see [11,
pp. 37-44]) on a tree P, called a parallel prefix tree, em-
bedded in the mesh. The ith leaf of the tree from the leaf
is the ith node of the mesh. The operation is described in
Fig. 2 for a linear array and a mesh withp = 3and d = 2.
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Forward Phase
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FIG. 2. (a) illustrates the operation of each node during a (forward) parallel prefix operation in a linear array. The partial sums S X, are

obtained at each node i in time p — 1. (b)—(f) illustrate the parallel pr:

efix operation in a mesh with d = 2 and p = 3. It consists of two phases

(forward and reverse), each of which consists of d subphases. Each subphase is a parallel prefix operation in a linear array and requires p — 1 steps.

The total duration of the operation is 2d(p — 1) steps. More precisely,

(b) illustrates what we call tree representation of a mesh. An intermediate

node is a root of a subtree whose leaves form a submesh of the original mesh. At the end of subphase I of the forward phase a node of level / from the

bottom forms the partial sum of the values of the leaves under it. During

the forward phase information moves from the bottom to the top, and from

the left to the right. The notation S’ stands for Sf = ELi x,. In the reverse phase, information moves from the top to the bottom and from the right to

the left.

Note that during each step only links of a particular di-
mension are used. The packets involved in a parallel pre-
fix operation are small (one byte of information), and
require only ¢, time units to be transmitted over a link.
Thus it is reasonable to assume that #, = 1, where one
time unit is the time required to transmit a whole packet
over a link; in fact it is reasonable to expect that in many
parallel machines we have ¢, < 1. Thus Phase 1 takes
2(p — 1) dt, time units to be completed.

Phase 2 (Packing Phase). The packet of node s and
rank r, is sent to processor r,, where r, is interpreted as a
p-ary number. This is a mesh packing problem, and can

be performed in (p — 1)d time units according to Theo-
rem 4.

Phase 3 (Broadcast Phase). The broadcast phase
consists of d subphases [ = 1, 2, ..., d. During each sub-
phase [, every node r = ry_ ry_5 -** rp broadcasts (in any
order) to all the nodes in the ring or linear array (depend-
ing on whether we are considering a mesh with or without
wraparound) (rg_( **- ry—j41 * rq—i—1 *** ro), the packets that
were located at the node at the beginning of Phase 3 plus
the packets that the node has received during all the pre-
vious subphases. The broadcast algorithms used are
those described in Theorem 2.
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During subphase 0 the nodes have (at most) one packet
and this is the only one they broadcast. The current sub-
phase [ is easily known to each processor.

To prove that the algorithm delivers the packets to all
the nodes, it is useful to introduce some new notation.
Let 8 = B4-1Bu-2 *** Bo be a p-ary number of length d. We
denote by S,(8) = (¥'84-1-184-1-2 - Bo) the submesh of
the nodes whose d — [ less significant digits are equal to
the d — [ less significant digits of 3.

The next theorem proves that the previous algorithm
actually executes the PMNB task.

THEOREM 5. For each B € {0, 1, ..., p — 1}, at the
end of subphase | of Phase 3,1 =1, 2, ...,d, each node in
submesh 8,(B) has received a copy of every packet lo-
cated at the beginning of Phase 3 at some node in S{f),
completing a PMNB within each of these submeshes.

Proof. The proof will be done by induction on /. For
! = 0 (i.e., at the beginning of Phase 3 of the algorithm) it
holds trivially since every node has its own (if any)
packet. Assume it is true for some /. Every submesh
Si(B) is composed of the p submeshes S, (B, -
Ba-1410Ba-1-1 =+ Bo)s Si-1(Bu-1 ** Ba-1+11Ba-1-1 - Bo)s ...,
Si-1(Ba-1 " Ba-1+1{p = DBy-1-1 - Bo). During subphase /
every node in one of these submeshes broadcasts to all
nodes in its (d — [)-level linear array (or ring) all the
packets it has received during the previous subphases,
together with its own packet. This together with the in-
duction hypothesis proves the theorem. Q.E.D.

Letting / = d we find that at the end of subphase d each
packet has been broadcast to all the nodes, and therefore,
the PMNB has been completed.

The next lemma calculates the time complexity of
Phase 3.

LeEmMMA 1. Phase 3 of the algorithm requires at most
N-1M (p-1d
N vy 4

time units, where y = | for the d-dimensional array, and
v = 2 for the d-dimensional torus.

Proof. We denote by T, the duration of subphase /,
and we let m = [log, M]. At the beginning of Phase 3 only
nodes 0, 1, ..., M — 1 have a packet. From Theorem 5 we
know that just before the beginning of phase /, node s =
S4-154-2 -+ So has received all the packets originally lo-
cated at nodes in the submesh (*/"!s;_;s4_;_; - so). The
number of these packets is equal to the cardinality of the
set

Wis) =

Wa-y

{w=wiwg2 - w|0=w=M-1,
Sd—1s Wd—1-| = Sd—i-1, .-, Wo = So}.

During subphase /, node s will broadcast these packets to
the nodes in its (¢ — /)-level linear array or ring. Since a
multinode broadcast in a linear array requires p — 1
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steps, while in a ring it requires (p — 1)/2 steps (see the
remark following Theorem 5), we have

T = p—1 max |W(s)

v

where v = 1 for d-dimensional arrays, y = 2 for d-dimen-
sional tori, and |-| denotes the cardinality of a set. Let
s' = Sqop?t + 54 p?V + - + 50, The cardinality of
W,(s) is equal to the cardinality of the set

Wis) —s'={v|-s=v=M-1-y,
v divisible by pd-*1},

or equivalently (since s' < p9=/*1) equal to the number of
integers between 0 and M — 1 — s’ which are divisible by

p4-1*1 Thus
M- s M
padTr = pa |

The total duration of Phase 3 satisfies

max |W(s)| = max [
¥ 5

Duration of Phase 3

d _l d M
= Z T, <P Z [pdvhl"

=1 Y =

S owg )
=2 " (g+M> =
y gp’

=(_IZ:Y_M+_1;4_(1_L>

p
Q.E.D.

Adding up the duration of Phases 1, 2, and 3, we obtain
the following lemma:

LEMMA 2. The partial multinode broadcast task can
be executed in a d-dimensional torus with N = p¥ proces-
sors in

- MN -1
PMNB—2 N

+ 2d(p — Dt, + 1.5(p — 1)d

time units, where M is the number of active nodes. Simi-
larly, the PMNB task can be executed in a d-dimensional
array with N = p4 processors in

N

1
Tomng = M +2d(p — Dt + 2(p — 1)d

time units.

The PMNB algorithm that we described so far is not of
optimal order, as the gap between the lower bounds of
Egs. (3) and (4) and the results of Lemma 2 indicates. In
fact, they are suboptimal by a factor of roughly d. This is
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due to the fact that at each step only links of a particular
dimension are used. In the next theorem we modify the
algorithms so that all dimensions are used at the same
time, and near-optimal completion time is achieved.

THEOREM 6. The partial multinode broadcast task
can be executed in a d-dimensional torus with N = p?
processors in

MN -1
Thmng = 34N + V, (7

time units, where M is the number of active nodes, and
Vi=2d(p — i, + 1.5(p — 1).

Similarly, the PMNB task can be executed in a d-dimen-
sional array with N = p4 processors in

MN -1

Thmng = 7 N

+ V. (8)

time units, where
Va=2d(p — Dt, + 2(p — 1).

Proof. We call the PMNB algorithm analyzed in
Lemmas 1 and 2 Algorithm . At each step of Phases 1,
2, and 3 of Ay, only links of a particular dimension are
used. Indeed, it can be seen from Fig. 2 that during each
step of the parallel prefix phase only links of a particular
dimension are used. Similarly, in the packing phase, only
links of a particular dimension are used at each step, as
indicated in Theorem 4. Finally, during subphase / of the
broadcast phase only links of dimension d — [ are used.

For any ¢, consider now another PMNB algorithm,
referred to as algorithm #.. According to . a packet is
transmitted over the link of dimension (/ + ¢) mod d of its
current location, whenever the same packet would be
transmitted under the s, algorithm over the /th-dimen-
sional link of its current location. Since «, is identical to
Ay after appropriately renaming the mesh dimensions
(and the nodes), and since sy performs the PMNB inde-
pendently of the location of the M active nodes, we con-
clude that «. also executes the PMNB task, and requires
the same amount of time as ;.2

2 In the algorithm . the rank of an active node is defined in the
following way. On the p-ary numbers of length d, we first define the
order with respect 1o class ¢, ¢ €{0, 1, ..., d — 1} (denoted by <), as
follows: s <, ¢ iff the right shift of s by ¢ positions is less (with the usual
order) than the right shift of ¢ by ¢ positions. The rank with respect to
class ¢ of a packet located at node s is then defined as

2 x — I,

{15}

ry =

where x, is equal to one if processor 1 has a packet to broadcast and zero
otherwise. The parallel prefix tree P used in the calculation of r; is the
same as P, but with the digits of the nodes shifted by ¢ positions.
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Using simultaneously all the algorithms oy, #,, ...,
Ay we can find a new algorithm which requires the
amount of time claimed in the theorem. In particular,
each packet is split into d parts, called mini packets.
Each mini packet is assigned a distinct integer ¢ between
0 and d — 1, called class. The mini packets of class ¢ are
routed according to algorithm .. Packets of different
classes use different mesh dimensions at any time. Ac-
cording to our communication model, a mini packet re-
quires 1/d time units for transmission over a link. There-
fore, the theorem follows from LLemma 2. Q.E.D.

The terms V, and V, in Eqs. (7) and (8), respectively,
are growing linearly with the dimension d. In practice,
however, 2d(p — 1)t, is small, since ¢, is very small.
Indeed, at each step of a parallel prefix operation only
one byte has to be transmitted between neighbors. Some
parallel computers, such as the Connection Machine
model CM-2 of Thinking Machines Corporation, the
IBM/RP-3, and the NYU Supercomputer, have very effi-
cient implementation of the parallel prefix, otherwise
called **scan’’ operation [3, 23]. Theoretically, however,
the parallel prefix operation takes time proportional to
the diameter.

No upper ceilings are needed in Eqs. (7) and (8), since
we allow fragmented slots. Note also that under the com-
munication model used in this section (which allows the
splitting of packets in d parts), a broadcast from a single
node requires @(p) time units, instead of &(dp) which is
the diameter. A near-optimal PMNB algorithm which
does not use the splitting of packets is presented in the
next subsection.

3.2. A Near-Optimal PMNB Algorithm without
Splitting of Packets

In this subsection we modify the previous algorithms in
order to avoid the potential drawbacks of packet split-
ting. This is done at the expense of a slight increase in the
complexity. Messages in this section require one time
slot in order to be transmitted over a link, and are always
transmitted as one packet.

The algorithm makes use of the algorithm . described
in the proof of Theorem 6 (recall that algorithm . con-
sists of three phases: the rank computation, the packing,
and the broadcast phases), and consists of two parts.

Class Computation Part. Therankr,, 0 <r, =M —
1, s €{sy, 52, ..., sy}, of each packet is computed through
a parallel prefix operation. This requires 2d(p — 1)1, time
units. The packet of node s is assigned a class number
¢ = r,mod d.

Main Part. The packets of class ¢ are routed accord-
ing to algorithm s{.. Only packets of class ¢ take part in
the rank computation phase, or in any other phase of ...

To estimate the complexity of the algorithm, we first
note that each class has at most [M/d] packets. Lemma 1
has been proved under the assumption that a packet can
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be split into two parts. When packets cannot be split, it
can be shown (by a proof similar to that in Lemma 1) that
algorithm «. requires time less than or equal to

N -1

e o
+d|—]|,
p—11 v N Y

where M’ is the number of packets that participate in ..,
vy = 1 for d-dimensional arrays, and y = 2 for d-dimen-
sional tori. Substituting [M/d] instead of M’, and adding
the time required for the parallel prefix operations and
the packing routing phase, we get
T"MNBS[%]pll{py I]NN ]

MI

+(p—1)d+d[ ]+4(p—1)a'tp.

p—1
Y
The algorithm just presented for the PMNB task gives

rise to an efficient algorithm for the MNB task. Indeed, a

multinode broadcast can be treated as a partial multinode

broadcast with M = N. The class computation part and
the rank computation phase are not necessary any more,
since the class number and the rank of each packet are
known in advance. The packing and the broadcast phases
alone can execute the MNB in time less than or equal to

2 5
dip-1 ¥ N
which is near-optimal for tori with p odd or arrays, and of

optimal order for tori with p even. This MNB algorithm is
apparently new.

Ly p- 1)d+d[’—’—§—'].

4. PARTIAL EXCHANGE IN 2-DIMENSIONAL ARRAYS

In this section we present an algorithm to execute the
partial exchange task in a p X p array (and, therefore also
in a p X p torus). In particular, we initially assume that
there are M nodes, called active, that want to send a
personalized packet to each of the other nodes. The algo-
rithm to be presented has time complexity which is of
optimal order.

We first present lower bounds on the minimum time
required to execute the partial exchange in 2-dimensional
array. Let us define

m = [M"7].

First, consider the case (Fig. 3a) where m? of the M ac-
tive nodes are in the m X m subarray M,,, where

Myo={i,)|0=<i=m-1,0=<j=m- 1}.
Then m*(N — m?) packets have to cross the 2m links

connecting My to the rest of the array (since there are no
wraparound links). This gives
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FIG. 3. Position (a) of the active nodes corresponds to the first
lower bound, while position (b) corresponds to the second lower bound.

Thus,

for M = N/2.

mN
Tee = e

We next consider the case where M = N/2, and all the
active nodes are at the left side of the mesh (see Fig. 3b).
Consider the packets that pass from left to right through
the cut that bisects the mesh. At least N?/4 packets cross
the p links of this cut. Thus,

for M = NI/2.
The previous bounds show that
N
Toe = 7= = QM ™N).

Before describing the algorithm, we introduce some
notation. The nodes of the mesh are represented as pairs
(i, ))with0 =i, j=p — 1. The row sum (or column sum)
of node (i, j) is defined as the number of active nodes of
row i (or column j) and is denoted by #; (or c;, respec-
tively).

We now describe the algorithm. It consists of two
phases:

Phase 1 (Parallel Prefix Phase). The row sums r; and
column sums ¢; are computed. All »’s and ¢’s can be
found in p steps by concurrently performing a parallel
prefix operation within each row and column. A row or
column is a linear array, and can be viewed as a tree
rooted at a median node of that linear array of depth
lp/2). The parallel prefix operation is performed with
value equal to one for active nodes and zero for the other
nodes. Phase 1 requires pr, time units, where 1, < [ is the
time required for a single parallel prefix step.

Phase 2 (Exchange Phase). The set of active nodes is
partitioned into the two sets R and C, where
C = {(i, J) active | r; > ¢}.

R = {(i, ) active | r; = ¢;},



186

The nodes in R (or in C) send each of their packets along
the unique shortest path that first crosses horizontal (re-
spectively, vertical) links exclusively, and then crosses
vertical (respectively, horizontal) links exclusively. The
order of transmission of the packets at each link is arbi-
trary subject to two restrictions:

(a) Packets originating at nodes of R (or of C) have
priority on the horizontal (respectively, vertical) links
over packets originating at nodes in C (respectively, R).

(b) Transmission is nonwasting in the sense that no
link remains idle if there is a packet waiting at the queue
of the link.

We have the following lemma:

LEMMA 3. The number of nodes of R that belong to
the same row is at most m.

Proof. Our proof is by contradiction. Suppose that
for some i, the nodes (i, j), (i, j»), ..., (i, j,) belong to R,
and x > m. Then by the definition of the set R, ¢;, = r; =
x>mforall k=1, 2, ..., x. This implies that there are
x = m + 1 columns, each of which has at least x active
nodes. This is a contradiction since there are only M <
(m + 1)? active nodes. Q.E.D.

We claim that Phase 2 requires at most 2m(N — p) +
2(p — 1) time units. To see this, we first note that the
number of packet originating at nodes of R that must
cross at least one horizontal link of any given row i is at
most m(N — p). The reason is that by Lemma 3 there are
at most m active nodes from R in row { and each of these
nodes has a total of N — p packets to send to nodes that
belong to a different column. Since each packet increases
the delay of another packet by at most one unit along the
horizontal path, we see that the time required for all the
packets originating at nodes in R to traverse completely
the horizontal portion of their path is at most m(N — p) +
(p — 1). Similarly, the time required for all the packets
originating at nodes in C to traverse completely the verti-
cal portion of their path is also at most m(N — p) +
(p— 1)

Let us make the worst-case assumption that packets
originating at nodes of R (or C) are delayed after com-
pleting their horizontal (respectively, vertical) transmis-
sions so that their transmission starts after exactly
m(N — p) + (p — 1) time units. We will show that at most
m(N — p} + (p — 1) additional time units are needed
to complete Phase 2. Indeed, at the end of the first
m(N — p) + (p ~ 1) time units, each node has at most
m(p — 1) packets originating at nodes in R to send over
the vertical links. Therefore, at most m(p — 1)p such
packets remain to traverse the links of its column. This
requires at most an additional m(N — p) + (p — 1) time
units.

Adding up the times required for each phase, and tak-
ing into account that N = p2 and m = |M"?[, we find that
the time Tpg required for the partial exchange in a 2-
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dimensional array satisfies
Tog < 2IM'2|(N — p) + 2(p — 1) + pt,,.

Comparing this inequality with the lower bound found
earlier, we see that our algorithm is of optimal order
(within a factor of roughly 8 of being optimal).

The PE algorithm that we presented for 2-dimensional
arrays does not seem to be easily extendable to d-dimen-
sional arrays. If a similar idea were followed in the d-
dimensional case, the M active nodes would have to be
partitioned in d disjoint sets, and the packets of set i
should traverse dimensions in the order i mod d, i + 1
modd, ...,i + d — 1 mod d. The partition should be done
in a way that would guarantee that the congestion on the
links would be small. It is not clear, however, how to find
such a partition. Therefore, the problem of finding a PE
algorithm of optimal order for a d-dimensional array is
still an open problem.

5. DYNAMIC BROADCASTING SCHEMES

The PMNB task considered in Section 3 is static in the
sense that it is executed only once, starting at time ¢ = 0.
In this section we consider the dvnamic version of this
task. We assume that broadcast requests arrive at each
node of a mesh according to a Poisson process with rate
A. We propose an algorithm that works well in such a
dynamic environment, and evaluate its performance. The
performance criterion used is the average packet delay,
that is, the time between the arrival of a packet to be
broadcast at a node and the completion of the broadcast
of the packet. The same problem has been studied in [20]
and in a companion paper [25] where dynamic schemes
are proposed for the hypercube case, and their perfor-
mance is analyzed. The dynamic scheme that we propose
for meshes is simple and stable for network utilization
very close to the maximum possible. Furthermore, for
each fixed utilization in the stability region, the average
delay is of the order of the diameter of the mesh, which is
the best we could hope for.

Our scheme is essentially a repetition of partial
mulitinode broadcasts, each starting when the previous
one has finished. The PMNB algorithm that we will as-
sume throughout this section is the one of Subsection 3.1
where packets are split; if the algorithm of Subsection
3.2, where packets are not split, is used we get corre-
sponding results (slightly worse, however, especially in
the case where p is even). The time axis is divided into
PMNB intervals (see Fig. 4). Within each PMNB inter-
val, a PMNB is executed, involving exactly one packet
from each of the nodes that have a packet to broadcast at
the start of the interval. Each PMNB interval is divided
into two parts. The first part is called reservation inter-
val, and consists of the parallel prefix and the packing
phases of the PMNB algorithm of Section 3. Its duration
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FIG. 4. The dynamic broadcasting scheme. Each PMNB interval
consists of two intervals: a reservation interval (marked by gray) of
duration V, and a broadcast interval of duration MX, where M is the
number of active nodes at the start of the PMNB interval.

can be upper bounded by a known constant that depends
only on the size of the network, and is independent of the
number of active nodes M. The second part of a PMNB
interval is called broadcast interval. Its duration is
known once M is known. Thus, even though the duration
of each partial multinode broadcast is random (because
packet arrivais are random), it is known to all the nodes
of the network, because each node learns during the
broadcast interval the number M of active nodes and,
from there, the duration of the following broadcast inter-
val. Therefore, if the nodes initiate the dynamic broad-
cast scheme at the same time, no further synchronization
is needed.

It is important for the performance of the dynamic
scheme that the duration of the PMNB algorithms given
in Section 4 is linear in the number of active nodes M,
with the constant of proportionality being the smallest
possible. In particular, the duration of the PMNB algo-
rithm for a d-dimensional mesh with N = p“ processors
when we use the algorithm that allows the splitting of
packets was found in Section 3 to satisfy

Tomng = XM + 1V,
where

N -1

I
X=y_d N (9a)

V=2d(p— 1), + (1 +%) (p— 1), (10a)

and y = 1 for the d-dimensional array and y = 2 for the d-
dimensional torus. If the splitting of packets is not al-
lowed, then X and V satisfy the following expressions:

1 p——l]N—l
X_dp—l[ Y N (9b)
V=(p—1)d+d[p;1]+4(p— di, + 1. (10b)

In [25] the following theorem was proved (in fact a
slightly stronger theorem was proved there, but the fol-
lowing simplified version is adequate for our purposes):
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THEOREM 7 [25]. Let the arrivals of broadcast re-
quests at a node of an N-processor network be Poisson
with rate \. Assume also that there exists a PMNB algo-
rithm for that network, which executes the PMNB task in
time at most

XM+ V,

where M is the number of nodes that have a packet to
broadcast and X, V are independent of M (they may
depend on the size of the network). Let p = ANX, and
suppose that

Il —p—AV>0.

Then if this PMNB algorithm is used in a dynamic broad-
casting scheme, in the way described earlier, the system
is stable in the sense that the average packet delay is
finite and satisfies

pX (1 - pV

2(1 — p — AV) 201 — p — AV)
P P (1)

T_<_(l+p)(

(I—AV)V)
T o) T X

For the d-dimensional mesh we have found algorithms
that satisfy the conditions of Theorem 7. Thus, the aver-
age packet delay is bounded as in Eq. (11), with X and V
given by Eqs. (9a) and (10a), when the splitting of packets
is allowed, and by Egs. {9b) and (10b), when the splitting
of packets is not allowed.

The scalar

(12)

is called the mesh utilization factor, for reasons that will
become evident soon. To find necessary conditions for
stability for any broadcasting scheme, consider a d-di-
mensional array or torus, the outgoing links of node (00
.-+ 0), and the traffic that passes through them. There are
2d such links for the torus, and d for the array. Thus, for
stability we must have

AN = 1) < yd
or

p=1, (13)
no matter what broadcasting scheme we use. For the
torus (y = 2) and a given load, p is equal to the ratio of the
average number of transmissions per unit of time neces-
sary to execute the broadcasts (each broadcast requires
N — 1 transmissions), over the total number of links of
the network. For the array (y = 1), which is not a sym-
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metric network, p equals the average fraction of time
during which the links of node (00 --- 0) have to be used
under any broadcasting scheme.

Our algorithm is guaranteed to be stable for p < 1 —
AV. Using Eq. (12) the stability condition becomes

_ydV
p <1 PN_T

If the splitting of packets is allowed, so that Eq. (9a) is
used, the preceding expression becomes

bt /(1s

The right hand side of Eq. (14) is very close to the maxi-
mum possible load, given by Eq. (13), that a d-dimen-
sional array or torus could sustain. As the number of
nodes p? tends to infinity, d%p/p? tends to zero. Thus, the
right hand side of Eq. (14) tends to one, which is the
maximum utilization that can be accommodated by the
network.
For any fixed p in the stability region, Eq. (11) gives

dyQd(p — Dty + (1 + Uy)(p - 1)))
pi -1 '
(14)

T=0(). (15)
If the splitting of packets is allowed then, using Eq. (10a),
we get

T = O(pdt, + p).

If the splitting of packets is not allowed then V is given by
Eq. (10b), and Eq. (15) becomes

T = O(pdt, + pd).

The diameter of a d-dimensional mesh is @(pd). For
any fixed p in the stability region, the average delay of the
dynamic scheme is of optimal order of magnitude when
packets are not split, in which case the diameter is a
lower bound on any broadcast. Under the model where
packets can be split in d parts, the diameter is no longer a
lower bound on 7 (in this case 7 = Q(p)), and the average
delay is suboptimal (unless ¢, is so small that it can be
neglected). Note that for very light load (A = 0, p = 0) we
get from Eq. (11) that

T<15V+X (p=0).
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