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We present a network planning and operation tool, called Mantis, for designing the next
generation optical networks, supporting both flexible and mixed line rate (MLR) WDM net-
works. Through Mantis, the user is able to define the network topology, current and fore-
casted traffic matrices, CAPEX/OPEX parameters, set up basic configuration parameters,
and use a library of algorithms to plan, operate, or run what-if scenarios for an optical net-
work of interest. Mantis is designed to be deployed either as a cloud service or as a desktop
application. Using the cloud infrastructures features Mantis can scale according to the user
demands, executing fast and efficiently the scenarios requested. Mantis supports different
cloud platforms either public such as Amazon Elastic Compute Cloud (Amazon EC2) and
�okeanos or private based on OpenStack, while its modular architecture allows other cloud
infrastructures to be adopted in the future with minimum effort. The included planning
and operation algorithms range from routing and wavelength or spectrum allocation, to
equipment (e.g. transponders and regenerators) placement, and CAPEX/OPEX/energy
analysis.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction in optical networking technology, as fixed-grid WDM net-
The continuous growth of IP traffic [1], fed by the gen-
eralization of broadband access (through DSL and FTTH)
and the emerging rich-content high-rate and bursty appli-
cations, such as video-on-demand, HDTV and cloud com-
puting, lead to our dependence on optical transport
networks. For the future, it is expected that the traffic will
not only increase in volume (34% increase on average per
year [1]) but will also exhibit high burstiness, resulting in
large variations over time and direction [2,3].

The most promising technology to meet the require-
ments of the next generation transport networks [3]
appears to be elastic/flex-grid optical network. In particu-
lar, the following years will be a period of rapid changes
works are evolving into mixed line rate (MLR) networks,
and will soon give way to flexible (‘‘elastic’’, ‘‘adaptive’’,
or ‘‘tunable’’) networks. Flexible optical networks assume
the use of tunable transponders and a flexible spectrum
grid or flex-grid. Flex-grid’s granularity is much finer than
that of standard WDM systems: the spectrum is divided
into spectrum slots (12.5 GHz, as standardized by ITU
G.694.1) that can be combined to create channels that
are as wide as needed. Flexible optical networks rely also
on tunable optical transponders, also called bandwidth
variable transponders (BVT), which are able to adapt sev-
eral transmission parameters, such as the modulation for-
mat, the spectrum utilized, and the transmission rate,
according to the needs. So connections use as many spec-
trum slots as actually needed and thus the huge but still
limited optical bandwidth is allocated in a more efficient
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manner, but also flexible networks enable the dynamic
sharing of the network resources. In particular, spectrum-
flexible networks (even without considering network
adaptability) promise 30% improvement in spectrum utili-
zation over fixed-grid WDM systems [4]. Actually, this fig-
ure does not take into account all the possible optimization
dimensions of tunable transponders, e.g. reach vs rate
adaptivity, and thus it can be even higher. Using spec-
trum-flexible technology optical core networks, which cur-
rently rely on the slowly changing circuit switching
paradigm, become more dynamic and move towards the
software defined networking paradigm. Moreover, the
boundaries between core and metro networks will disap-
pear and the technologies used in these two segments will
be unified and merged. The flexible optical networks will
span across both the core and the metro segments,
enabling a fine-granular, cost- and power-efficient net-
work able to carry a wide range of signal bandwidths that
will vary in real time, in direction and magnitude. Network
equipment vendors and operators are already looking into
this technology.

A large number of algorithms have appeared in the lit-
erature for the planning and operation of fixed-grid or
flex-grid optical networks, including algorithms for the
Routing and Wavelength Assignment (RWA) or the Rout-
ing and Spectrum Allocation (RSA) problem, that take (or
not) into account various parameters such as Physical
Layer Impairments (that affect optical transmission
reach), energy consumption, CAPEX and OPEX [5–7].
Other algorithmic issues include equipment placement
and fault detection and handling. The number of pro-
posed algorithms is so large that one applauds the effort,
but questions the ability of researchers and/or network
operators to identify the best ones and make use of them.
Generally, it is often difficult to compare these algorithms
against each other, under a common set of assumptions
and parameters, reducing the importance and relevance
of the related research.

We believe that a key enabler for the introduction of
flexible technology will be the creation of network plan-
ning and operation tools that will help plan and manage
these networks. Apart from the need to accommodate con-
nections using spectrum slots in flexible networks, instead
of wavelengths in WDM networks, and to choose the con-
figuration of the transponders, an additional difference
between these two networking solutions relates to the
time scale at which the operation algorithms are called.
This is expected to be reduced from handling a few
requests per couple of months, as currently done in
WDM networks, to handling requests at much shorter
timescales that could go down to hour or even minute.

It is clear that the emergence of flexible networks, the
use of optical technology across all network segments,
the different operation timescales, and new application
methodologies (clouds, SaaS, social by design) require not
simply the extension of existing network planning tools,
currently available from several major players, but the
implementation of new ones. In this work, we present
Mantis a network planning and operation tool for design-
ing the next generation optical networks, in an effort to
address the aforementioned shortcomings.
Mantis can be used as a researchers’ tool for developing
and evaluating, under common conditions, existing
(included in Mantis) and new (added by users/researchers)
algorithms for optical networks. Mantis can also be used by
equipment vendors when evaluating their devices and by
network operators when designing or extending their net-
work, as a means to increase clients’ satisfaction and
decrease CAPEX (Capital expenditure) and OPEX (Opera-
tional expenditure) related costs. Moreover, another inter-
esting direction is to interface Mantis to existing optical
networkmanagement system (NMS) tools (Fig. 1), to provide
path computation element (PCE) functionalities [19], that is,
to make Mantis the logic of a functioning NMS/network.

Mantis is the first tool of its kind, academic or commer-
cial, targeting flexible and mixed line rate WDM optical
networks. Additionally, Mantis was designed and imple-
mented so as to accommodate both desktop and cloud exe-
cution. In cloud mode, Mantis performance scales well
with the demand, as opposed to past design tools available
only as desktop applications. Mantis can concurrently uti-
lize different cloud platforms either public such as Amazon
Elastic Compute Cloud (Amazon EC2) and �okeanos (the
GRNET’s – Greek National Research and Education Net-
work – cloud service) or private based on OpenStack. We
perform extensive evaluation of Mantis performance and
scalability, using actual cloud resources, which highlight
the tool’s benefits.

Mantis has been briefly presented in [8,9]. Ref. [8] is an
initial, short study of the Mantis tool, presenting a draft of
the tool’s design. Ref. [9] is a high level description of Man-
tis, discussing mainly the basic algorithmic issues in plan-
ning and operating flexible optical networks, highlighting
the challenges and differences from fixed-grid WDM net-
works. In the present paper, we substantially extend our
previous works. In particular, we provide a more detailed
analysis of existing planning and operation tools. We
describe the overall architecture of Mantis and explain
the particular role of each component of the architecture.
We also provide a better understanding of how Mantis
can be used through the user interface and introduce the
exposed programming interfaces. Mantis implementation
characteristics are discussed for the first time, such as
the software related technologies used and the modularity
of the implementation that makes possible to add new
capabilities (e.g., new algorithms). Moreover, we present
in detail the cloud capabilities of the tool and provide for
the first time information for the related components
(information provider, dispatcher, etc.). We also perform
extensive tests in order to evaluate Mantis performance.

The rest of the paper is organized as follows. In Section 2
we comment on existing network planning and operation
tools and discuss the importance of such tools for spec-
trum-flexible networks. Section 3 presents Mantis’ archi-
tecture and components. In Section 4 we describe Mantis
operation as a service in the cloud. Section 5 describes
the main algorithmic requirements of such a tool along
with the particular algorithms currently included in Man-
tis. Section 6 presents Mantis user interface and elaborates
on its usage. In Section 7, we evaluate Mantis desktop and
cloud operation. Future work and our conclusions are
given in Sections 8 and 9 respectively.
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Fig. 1. Mantis – optical network planning and operation tool.
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2. Network planning and operation tools

Planning and decision tools for optical networks have
been a central research theme in the optical networking
literature for the last decade and are also available in the
commercial world. Fig. 2 gives a short list of such commer-
cial tools, which are being used by network operators and
equipment vendors to meet service level agreements,
achieve capital expenditure savings, maximize network
lifetime, and gain insight into the capabilities of their
network.

Some of the most important functionalities these prod-
ucts provide are the following:

� Optimize routing and equipment placement to effi-
ciently meet traffic demands.
� Produce equipment configuration and equipment

requirements.
Fig. 2. Major IP and WDM planning
� Perform capacity planning, determining how to expand
the network (e.g., purchase links) to handle traffic
growth.
� Analyze the impact of failures and plan protection strat-

egies to maximize resiliency.
� Analyse and minimize equipment costs.
� Evaluate various what-if networking scenarios, validat-

ing network changes or situations before deploying the
production network.
� Perform traffic analysis and engineering.
� Visualize the above information.

These tools offer functionality for the IP and/or optical
layers. Also, some tools support networking equipment
from multiple vendors, while others only their proprietary
products. In particular, Cariden MATE portfolio consists of
a tightly integrated set of products (Design, Live, Collector)
that support planning, engineering, and operational tasks
and operating tools overview.
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for IP/MPLS networks [10]. OPNET’s SP Guru Network Plan-
ner enables planning and design of multi-technology,
multi-vendor IP/MPLS networks [11]. Opnet’s SP Guru�

Transport Planner [12] is a network planning solution that
enables service providers and network equipment manu-
facturers to design resilient, cost-effective WDM, OTN,
and SONET/SDH optical networks, using algorithms that
minimize investment costs and optimize operational effi-
ciencies. IP/MPLSView [13] is WANDL’s multi-vendor,
multi-protocol, and multi-layer solution for IP and/or MPLS
networks, for design & planning, management & monitor-
ing, and service creation & provisioning. NPAT (Network
Planning & Analysis Tools) [14] is WANDL’s solution for
ATM, Frame Relay, TDM, Voice, and Optical Transport
networks providing cross-vendor support for all stages of
network planning, design, and analysis. Aria Networks
IP/MPLS-TE Operational Planning solution [15] provides
planning operation that analyze even the largest IP/MPLS
networks. VPIsystems Multi-layer Transport Optimization
solution [16] allows to visualize, understand and optimize
transport networks, providing capacity analysis and plan-
ning, re-optimization, survivability analysis and greenfield
planning. The Infinera Network Planning System (NPS) [20]
provides users with offline graphical modeling, planning,
and configuration capabilities for designing optical net-
works. Other companies (e.g., like Huawei, BTI, Alcatel-
Lucent Bell, Nokia Siemens, Cisco) also offer similar
solutions that are however more integrated with their
products. Nokia Siemens Networks provides network pro-
viders with SURPASS TransNet and SURPASS TransConnect
[17], in order to build efficient transport systems. The Cisco
Transport Planner is a comprehensive WDM network
design and design management tool. Cisco Transport
Planner [18] uses optical transport technologies from the
Cisco Optical portfolio.

Most existing commercial tools take the viewpoint that
the network is rather static after its initial planning phase
(except for handling failures, where again the protection/
restoration actions to be taken are planned a priori, when
the state of the network was probably different). Estab-
lished connections (lightpaths) are almost never torn
down, and new connections are added rather infrequently
(e.g., a couple every few months). Planning is performed
based on static traffic matrices (that estimate the traffic
to be served for a given period between each pair of nodes)
and even when impairment-aware RWA algorithms are
used, that is algorithms that take into account the physical
layer impairments, the effect of the impairments is evalu-
ated based on analytic formulas and worst-case interfer-
ence assumptions. Re-optimization very infrequently
takes place, if ever, and the values of the hardware optical
monitors play no role in these tools (were mainly used to
notify failures/faults). All of these limitations were natural
in a world where the WDM optical core network was obliv-
ious to short/medium traffic changes.

Also, these tools offer functionality for the IP and optical
WDM layers, most of the times separately. This is because
changes in the two network layers occur at different time
scales, as the WDM layer is considered to be rather static
and to not really need operation at real time. The introduc-
tion of flex-grid technologies will force tools to reconsider
these specifications, as the adaptability of this new archi-
tectural paradigm brings the optical layer closer to the IP
layer. So, we can envision a scenario where the IP layer
requests and controls the bandwidth that the flexible tran-
sponders use, meaning that operators no longer need to
massively over-provision the optical core network to
accommodate possible fluctuations in the IP layer. This
implies that future tools will have to integrate more closely
the IP and the optical core layers in order to achieve effi-
cient resource utilization, including resources used for pro-
tection/restoration purposes, and save in capital and
operational expenditures.

Finally, note that the tools in Fig. 2 are standalone appli-
cations and have very limited scalability when considering
that most problems are computationally difficult (NP-
hard), and also the problems will increase in size (conver-
gence of metro and core), will become more complex
(cross-layer design of IP and optical layers), and the time-
scales will decrease (more dynamic optical network to fol-
low the IP layer).
3. Mantis implementation

Mantis network planning and operation tool targets
flexible and mixed line rate WDM optical networks. Mantis
was designed and implemented so as to accommodate
both desktop and cloud execution.
3.1. Architecture

Mantis’ components are organized in three layers: the
access layer, the application layer and the execution layer.
In addition, there are two common interfaces whose pri-
mary purpose is to provide loose coupling between the
application layer and the other two layers. By using these
interfaces we can have the same access and execution lay-
ers for both versions of the tool (desktop and cloud) while
we can extend their functionality without breaking the
implementation of the other components. Fig. 3 shows
Mantis’ architecture and its main components.

The access layer handles the interaction with the users
through a web-based user interface and its exposed REST-
ful API. Through the Mantis’ web-based interface users can
have access to all tool functionalities, perform easily all the
supported operations and collaborate with other users.
Furthermore, a Python library that utilizes the RESTful
API for communicating with the tool is available and pro-
vides almost the same functionality with the web-based
interface. More interfaces to the Mantis functionalities
can be added by extending the access layer to include a
command-line interface (CLI) and to interface Mantis’s
algorithms to existing optical network management tools,
providing path computation element (PCE) functionalities
[19]. In other words, this will make Mantis the logic of a
network management tool for a functioning network.

The execution layer consists of the execution engine and
the library of available network planning and operation
algorithms. Execution engine receives requests, for starting
or terminating algorithm executions, through the common
interface from the application layer and is responsible for
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performing all the required actions, including the prepara-
tion of the execution environment, the monitoring of the
jobs’ progress and the handling of the final results or pos-
sible failures. There is one execution engine when Mantis is
deployed as desktop application, while at the cloud service
deployment there is one execution engine at every com-
puting node in the cloud infrastructure. When Mantis is
deployed as desktop application, there is a server that con-
tains the desktop application engine and the execution
layer implementations (Fig. 4). The desktop application
engine receives requests from the access layer and stores
them in a local queue. Then the users’ requests are for-
warded to the local execution node. The desktop applica-
tion engine is designed to limit the number of concurrent
jobs based on the capabilities of the hosting machine in
order to avoid resource overload. In particular, we have
defined a default policy that limits the number of concur-
rently executed jobs to the number of cores of the hosting
machine. Other policies can be defined, but the default pol-
icy is quite intuitive and straightforward.

The application layer implements the application logic
and orchestrates the execution of user requests. It is the
only layer that differs between cloud service and desktop
application deployment as there are different require-
ments and operations that should be performed.

3.2. Plug-in mechanism

Mantis’ algorithms are accessed from the execution
engine through a custom plug-in mechanism. This mecha-
nism enables new algorithms to be added in the tool with-
out any modification in the application layer and the
execution engine. Furthermore, through this mechanism
the users will upload and plug their own algorithms into
the Mantis core platform, to evaluate their performance
and compare them with existing ones. This feature is not
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yet available but will be included in the next version of the
tool.

The execution engine’s plug-in mechanism exposes a
common interface, independent of the implementation
technology, which determines explicitly the syntax of the
input parameters and the results for all algorithms. In
addition, the common interface uses the JavaScript Object
Notation (JSON) as data-interchange format for providing
the input and output parameters for all Mantis algorithms.
In particular, every algorithm in Mantis returns the output
results as JSON object and takes as input the following four
parameters, using predefined JSON schemas, in the order
they are presented: network topology description, traffic
demands description, algorithm specific parameters, CAPEX/
OPEX parameters. Fig. 5 shows an example for a network
topology with four nodes and five unidirectional links
along with its description in Mantis JSON schema.
3.3. Implementation technologies

For Mantis implementation we used software technolo-
gies and toolkits that are open source, mature, widely sup-
ported, have good performance and are able to scale in
order to have a robust software system that fulfils all the
design goals.

The access layer implementation is based on Rails [31]
web application development framework, which is written
in Ruby language. The web-based user interface is a client-
side rich internet application based on the Dojo [32] Java-
Script toolkit. Regarding the system database we have
selected the PostgreSQL [33], an open source and robust
object-relational database system that features all the nec-
essary characteristics and is compatible with all the other
implementation technologies. The cloud application
engine is written in Python, with each of its components
implemented as a Python module. The cloud application
engine utilizes for its communication and interaction with
the required Amazon Web Services (AWS) [34–36] the
boto framework [37], an open source Python interface to
AWS. In addition, for �okeanos, the GRNET’s public cloud
service, Mantis’ cloud application engine uses the available
Synnefo API [38] for the compute, storage and network ser-
vices. In execution layer the execution engine is written in
C++ programming language using the cross-platform Qt
[39] framework that is widely used for developing applica-
1

{
“number_of_nodes”:4,
“links”: [
{“nodes”:[0,1],”length”:280},
{“nodes”:[1,0],”length”:280},    
{“nodes”:[0,2],”length”:280},
{“nodes”:[2,0],”length”:280},    
{“nodes”:[1,2],”length”:250},
{“nodes”:[2,1],”length”:250},    
{“nodes”:[1,3],”length”:340},
{“nodes”:[3,1],”length”:340},    
{“nodes”:[2,3],”length”:340},
{“nodes”:[3,2],”length”:340} ] 

}

Fig. 5. Network topology d
tion software The Mantis algorithms are written in C++, or
Java, or in Python/Cython [40] and are accessed from the
tool through the execution engine’s plug-in mechanism.
4. Mantis as a service

When Mantis is deployed as cloud service, the applica-
tion layer implements the cloud application engine that
handles the interaction with the cloud infrastructures. This
engine harvests the power of the cloud so as to absolve the
user from the burden of resource management, and pro-
vide scalability with respect to the number of users
employing the tool and the number of scenarios evaluated
simultaneously. To this end, it distributes the available
jobs and executes them on multiple nodes in parallel in
order to obtain the results of the executed algorithms in
a reasonable amount of time.

Fig. 6 presents Mantis when deployed as cloud service.
In this case, there is one cloud engine but multiple execu-
tion engines, one at every computing node in the available
cloud resources. The cloud application engine has been
designed to be modular in order to support multiple cloud
platforms with minimum effort and changes. In the current
version Mantis supports the public platforms Amazon Web
Services [27], �okeanos [28] GRNET’s cloud service for the
Greek Academic Community and private clouds based on
OpenStack [29]. What is particularly interesting is that it
is possible to use hybrid cloud infrastructures, a private
cloud to serve the algorithms executions using the avail-
able local resources and additionally public cloud
resources to cope with increased demands. Furthermore,
the selected modular design of the cloud application
engine enables the enhancement or upgrade of its building
blocks without affecting the overall functionality of the
tool.

The cloud application engine supports a number of con-
figuration parameters that can be used to define the cloud
computing services and their detailed characteristics that
will be utilized for the algorithms executions. Cloud appli-
cation engine can be configured to use either one or a com-
bination of the supported cloud platforms. Moreover, for
each cloud computing service it is possible to define the
default machine types to be used, the shut-down behavior
and the total available monthly budget (for paid services as
is the case of the AWS).
3
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The cloud application engine consists of the following
components: the request and response queues, the informa-
tion provider and the dispatcher (Fig. 7). The cloud applica-
tion engine receives requests from the access layer and
stores them in the request queue and locally in a disk file.
This provides a simple fault tolerance mechanism, elimi-
nating the possibility of requests getting lost or not served
due to network or cloud application engine problems. The
response queue provides a central point where the avail-
able execution nodes send messages to the cloud applica-
tion engine regarding the usage of their resources and
the status of the executed jobs. These messages are then
forwarded either to the dispatcher, if they contain informa-
tion on the executed jobs, or to the information provider, if
they describe the current status of an execution engine.

The information provider collects all the necessary
details on the available cloud resources, their capabilities,
their current load and the tasks assigned to each one for
Access Layer Requests

Execution

Cloud Applica�on Engine

Request Queue

In

Dispatc

Fig. 7. Cloud application e
execution. The dispatcher is the main component of the
cloud application engine, leveraging the available informa-
tion from the information provider to perform a number of
important operations regarding request/job and cloud
resources handling. In particular, when the dispatcher
receives a request for a new execution, initially it looks
for some available execution node among the existing
computation resources. If an execution node is available
then the dispatcher will forward to it the new job, other-
wise the dispatcher considers to request new computation
resources from the cloud platforms.

One of the most useful features of cloud infrastructures
is the ability to automatically scale an infrastructure verti-
cally by changing the capacity of the used resources and
horizontally by changing the number of the available
resources to match changes in demand with little or no
impact to the applications running in the infrastructure.
The obvious benefit of cloud scaling is that we pay only
 Engine
Execution Engine

Response Queue

forma�on Provider

her
policy

ngine components.
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for the resources we use. However, if someone does not
take into consideration the capacity planning of his appli-
cation then the cloud scaling can become a major issue.
In this case, the over-reliance on scaling capabilities of
the cloud infrastructures can lead a system to respond to
demand by adding new cloud instances, without actually
having a real performance benefit.

The dispatcher has a default allocation/de-allocation
policy that determines how to scale the cloud platform
by adding new resources or removing unused ones. Based
on this policy, there are always available a minimum num-
ber of computational resources. The decision for allocating
new resources is based on the number of queued requests,
the current cost for the used resources and the total
available budget, while these additional resources are
de-allocated (removed) either immediately or after a
period of time when the number of requests can be served
from the default resources. The implementation of the
cloud application engine enables more policies to be easily
applied. In the future, we plan to apply more sophisticated
policies based on the information available (from Mantis
database) regarding the execution times of the different
requests, leading to better allocation decisions.

Fig. 8 sketches a complete execution process in the
cloud deployment. The arrows show the direction of the
communication between the involved components and
services.
5. Network issues and Mantis algorithms

5.1. Planning and operation

Today, several design and operation issues of optical
networks are under investigation and re-evaluation from
network operators, equipment vendors and researchers.
Network design/planning, which typically occurs before a
network is deployed, is focused on how to better accom-
modate the future network traffic, assuming that any
equipment (transponders, regenerators) required can be
Data 
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Access Layer

2. Job Preparation

3. Se
Clo

7. 

9. Load
 Results

Fig. 8. Mantis exec
purchased and deployed. In network operation phase, the
demands are generally processed upon their arrival, one
at a time or as a set, and it is assumed that the traffic must
be accommodated using whatever equipment is already
deployed in the network (or if allowed, new equipment
can be purchased and deployed). Therefore, the operation
process must take into account any constraints posed by
the current state of the deployed equipment, which,
for instance, may force a demand to be routed over a
sub-optimal path.
5.2. Network resource assignment

One of the most important problems, both for planning
and operation, is allocating network resources to traffic
requests. The problem of establishing connections in
fixed-grid WDM networks is typically referred to as the
Routing and Wavelength Assignment (RWA) problem.
The network consists of optical fibers and optical switches
that add/drop local traffic and also forward traffic
all-optically from an input to an output fiber (optical
bypass). The spectrum is divided into wavelengths (50 or
100 GHz) and establishing a connection, called a lightpath,
requires finding the route (path) and also assigning the
wavelength to use. Different connections cannot use the
same wavelength over a fiber and also a lightpath has to
use the same wavelength over all fiber of its path, or it
can change at the points where wavelength conversion or
regeneration is performed. The basic RWA problem
described above is NP-hard and there are many exten-
sions/additional parameters that have to be accounted for
in real optical networks, such as deciding the placement
of transponders, accounting for physical layer impairments
(signal quality deterioration) and regeneration placement,
traffic grooming, etc., that make the problem quite compli-
cated. Connection establishment in flexible networks is
more complicated for several reasons. First, in contrast to
WDM networks where each connection is assigned a single
wavelength, in flexible networks spectrum slots can be
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combined to form variable width channels, leading to the
so-called Routing and Spectrum Allocation (RSA) problem.
Apart from the difference in allocating spectrum resources,
the choice of the transmission parameters of the tunable
transponders present in flexible networks affect, directly
or indirectly, the resource allocation decision and make
the problem even more complicated [1], resulting in the
Routing, Modulation Level and Spectrum Allocation
(RMLSA) algorithms.

5.3. Physical layer impairments

Optical transport networks have evolved over recent
years from opaque (point-to-point) to transparent net-
works, as a way to reduce CAPEX and OPEX costs. In the
latter case, optical switches are configured to transparently
handle transit traffic; the signal remains in the optical
domain, bypassing the switch, saving on the cost of
transponders used in the past to terminate and retransmit
traffic at intermediate hops. Since optical connections may
span over many and long links, physical layer impairments
(PLIs), such as noise, dispersion, interference, and nonlin-
ear effects accumulate and affect the quality of transmis-
sion (QoT). Accounting for PLIs is a challenge for
algorithm designers, especially with respect to their exact
modeling and the interdependencies introduced.

PLIs affect both fixed-grid WDM and flexible networks,
but there are distinct differences between the two cases.
With the introduction of coherent detection and DSP,
impairments, particularly those related to dispersion, will
be substantially reduced or fully compensated. However,
the additional degrees of flexibility available in flexible
networks make the minimization of these effects more
complicated from an algorithmic perspective. On the other
hand, physical layer impairments, even though more sig-
nificant, can be accounted for quite accurately in WDM
networks, where fewer parameters are involved (non-tun-
able transponders and constant guardband) and analytical
models successfully capture these effects.

5.4. Energy issues

Even though ICT is already bringing massive environ-
mental benefits (e.g., through the use of telecommuting,
video conferencing, electronic news, etc.), the need to keep
the related power consumption growth under control is
also becoming evident. The continuing deployment and
upgrade of optical telecommunication networks drive up
power consumption, in a way that makes operators worry
that future power consumption levels may pose con-
straints on the growth of telecommunications infrastruc-
tures. So it seems that an energy-aware approach is
increasingly needed during the design, implementation,
and operation of optical networks [22], which carry more
than 80 percent of the world’s long-distance traffic. Two
different approaches can be explored to reduce power con-
sumption in optical networks: the improvement of the
energy efficiency of the equipment and the energy aware-
ness of the algorithms used. In Mantis we focus on the sec-
ond approach. Components in Mantis are characterized
apart from their monetary cost, but also with their energy
consumption, and detailed energy consumption models
are included, so that each calculation performed by Mantis
(establishing connections when planning or operating the
network, etc.) reports also the energy-related cost.
Energy-aware optimization algorithms have that target
the minimization of such cost [25,26] are also included in
the library of available algorithms, as will also be discussed
in the next section.

5.5. Mantis algorithms

The current Mantis version includes a rather complete
library of efficient network planning and operation algo-
rithms for fixed-grid and flex-grid optical networks that
can be used for both transparent (without regenerators)
and translucent (with regenerators) networks.

The IA-RSA (IA stands for Impairment Aware) algorithm
[21] considers the planning problem of a flexible optical
network under physical layer impairments. It serves the
demands for their requested rates by choosing the route,
breaking the transmission in multiple parallel connections,
placing regenerators if needed, and allocating spectrum to
them. The IA-RWA-MLR and IA-RWA-SLR algorithms con-
sider the planning problem of mixed line rate and single
line rate fixed-grid optical networks under physical layer
impairments, respectively. Physical layer effects are incor-
porated in the definition of the feasible transmission
options of the transponders that can be used in each case.
Online versions of these algorithms are also available that
take as input the output of the offline case and serve new
additional demands defined by the users.

Algorithms that consider in more details the physical
layer in standard single line rate WDM networks, for which
physical impairments analytical models are available, are
the online IA-RWA [23] and the offline IA-RWA [24] algo-
rithms. The online IA-RWA considers the routing and
wavelength assignment problem of transparent optical
networks and adopts a multi-cost approach that assigns a
vector of cost parameters to each link, from which the cost
vectors of candidate lightpaths are calculated. The light-
paths calculated by the aforementioned multi-parametric
scheme are evaluated in terms of physical layer blocking
using a function that combines these cost parameters.
The offline IA-RWA algorithm [24] takes into account the
physical impairments and the interference among light-
paths in its formulation and performs a cross-layer optimi-
zation between the physical (select lightpaths that have
acceptable QoT) and the network (serve the connection
requests using a small number of wavelengths) layers.

Furthermore, the EA-RWA (EA stands for Energy Aware)
algorithms [25] aim at minimizing the energy consumed
by the optical layer components when planning translu-
cent WDM optical networks. The Joint-ILP algorithm solves
the energy aware routing and wavelength assignment
problem based on an integer linear programming (ILP)
formulation that incorporates energy consumption and
physical impairments. It jointly chooses the placement of
the regenerators and the lightpaths to be used. On the
contrary, the decomposition algorithm decomposes the
problem into a regeneration placement problem and an
EA-RWA problem for transparent networks, where each
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sub-problem is addressed separately and sequentially. The
decomposition technique uses a linear programming (LP)
relaxation to address the problem in large scale networks.
Details and performance evaluation of the algorithms
included in the Mantis library can be found at the
corresponding references.

6. Mantis user interface and usage

6.1. Mantis UI

A primary purpose of Mantis is to create a common
benchmarking environment with social characteristics
where researchers share topologies, traffic matrices and
CAPEX/OPEX parameters, and also share and evaluate their
algorithms under common conditions. In this way, Mantis
could also evolve into an online collaboration platform for
optical network researches, improving the comparability,
quality and reliability of the results presented in various
research articles and projects. Mantis current version can
be found in [30].

Mantis comes with a clean and simple web-based user
interface though which the users get access to all tool func-
tionalities. In the user interface there is a separation of the
different steps: network topology and traffic demands cre-
ation, algorithms selection and configuration definition,
execution and results presentation. Fig. 9a and b shows
the available interface for network topologies and traffic
demands, respectively.

A new configuration, which defines a particular experi-
ment–evaluation, can be created for each algorithm by
selecting a network topology, the traffic demands and
specifying all the other required parameters (Fig. 10a).
Also, users can define the energy and monetary cost of var-
ious devices used in optical transport networks, such as
transponders/muxponders, regenerators, amplifiers,
switches. Algorithms use these values to calculate the
monetary and energy cost for their solutions. Mantis auto-
matically checks all provided parameters and informs the
users of possible mistakes before permanently saving any
configuration. Users can always check the status of their
running or finished instances, a configuration under execu-
tion, and have access to useful details for all the instances
including the instance name, configuration name, execu-
tion status, creation date and execution date (Fig. 10b). In
Fig. 9. (a) Creation of network topology a
addition, users can terminate running instances, view the
results from successfully executed instances, or filter the
displayed instances either by their execution status or
their configuration name.

For every successfully executed instance the user can
view analytic results and export the proposed solution
for further analysis. Mantis is designed to report a detailed
solution that, depending on the executed algorithm, may
include: required bandwidth to serve the demands, estab-
lished lightpaths, number and configurations for the
required transponders and regenerators, placement of
transponders and regenerators, total monetary cost and
total power consumption, connections that could not be
established due to physical layer impairments or band-
width unavailability. Finally, users can create charts to
visualize the results from various executions in order to
have a better evaluation of the different scenarios.
6.2. Mantis Python library

The access layer exposes all Mantis functionality
through a RESTful API that enables using Mantis directly
over HTTP. The RESTful API can be useful for users who
want to utilize Mantis services without using its web-
based interface or who want to integrate their own tools
and environments. All requests to the RESTful API are
authenticated with HTTP Basic Authentication, which is
based on the users’ username and password in Mantis,
while the responses are formatted in JSON (the default
option) or in XML.

Also, we have developed a Python library that utilizes
this RESTful API so that users can easily install it and inter-
act programmatically with the tool, while the only require-
ment is to have a valid account in the online tool. Mantis
Python library is composed of four main modules traffic,
topology, configuration and instance and appropriate meth-
ods that handle the interaction with the corresponding
entities in the tool. A user through the Mantis Python
library can create, edit, delete, clone and make public or
private network topologies, traffic demands and configura-
tions. In addition, the library contains methods for filtering
the returned information based on various parameters,
monitoring the execution of all running instances, execut-
ing configurations and querying their current status.
nd (b) definition of traffic requests.



Fig. 10. (a) Creation of configuration and (b) information for all instances.
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6.3. Social characteristics

Since one of Mantis’ primary purposes is to create a
common benchmarking environment, the tool provides a
private and a public workspace. The private workspace
includes the user’s network topologies, traffic matrices or
demands, configurations, results and charts. Network
topologies, traffic demands, configurations and charts can
be shared with other users. The shared items are available
in the public workspace; the other users have only read
access to them, but they can create their own copies.
7. Evaluation–performance

Most of the interesting network planning problems in
optical networks are unfortunately NP-complete, that is,
the number of operations required to solve them is non-
polynomial to the size of the input problem. Since solving
realistic problem instances requires a large number of vari-
ables and constraints, solving such problem becomes com-
putationally intractable. Heuristic algorithms are thus
typically employed that have suboptimal performance
but acceptable running time. Even with heuristics there
are certain scalability issues, that are not present in current
planning tools but are slowly emerging: the networks will
increase in size (convergence of metro and core optical
networks), resource allocation will become more complex
(cross-layer design of IP and optical layers), and the time-
scales of executing the algorithm will decrease (more
dynamic optical network so as to follow the IP layer). Thus,
running many what-if scenarios with big inputs, as typi-
cally required by such tool when planning networks, or
responding quickly to more stringent time requirements
as will be required in operating a dynamic optical network,
would require a more scalable tool than current desktop
solutions. Mantis utilizes the power of the cloud to provide
scalability with respect to the number of concurrent sce-
narios evaluated by distributing the execution of the vari-
ous experiments on multiple cloud resources in parallel in
order to get reasonable solution times.

Mantis design and implementation was thoroughly val-
idated by using it in our own algorithmic research as a tool
for developing new innovative algorithms both for fixed-
grid and flex-grid optical networks. In what follows, we
present a number of tests we performed for evaluating
Mantis robustness and performance but also the benefits
of its dual, cloud and desktop, operation:

� A basic test to evaluate the parallelization benefits by
adding new resources to cope with the current demand.
� A test to evaluate the fair access to the available

resources in competition.
� A scalability test to evaluate the ability of the tool to

scale based on the user demands executing fast and effi-
ciently the requested scenarios.
� A stress test to evaluate the operation of the tool under

heavy load with limited resources available to serve the
user requests.

In the tests performed Mantis utilizes public cloud
resources from Amazon Elastic Compute Cloud (Amazon
EC2) and �okeanos, the GRNET’s (Greek National Research
and Education Network) cloud service. Amazon’s cloud
resources are practically unlimited with various capacity
offerings but come with a cost, while �okeanos resources
are free for the Greek academic and research community,
but are limited in number and in capacity.

In the following paragraphs we provide the detailed
results of evaluation.
7.1. Basic evaluation

Initially, we evaluated the average execution time of a
variable number of standalone experiments (instances)
when Mantis operates in the desktop and in the cloud
mode. In particular, we considered the planning of an opti-
cal network with 14 nodes and using the IA-RWA-MLR
algorithm. Different instances had different aggregated
traffic load, ranging from 400 Gbps to 2 Tbps. Similar,
instances where also created for the other tests (presented
in the following subsections).

We parallelized the execution of instances by allocating
one instance per CPU core. The desktop application server
ran Ubuntu 12.04 and had 4 GB RAM and 4 CPU cores,
affording to run 4 instances in parallel, while the remain-
ing instances are queued when waiting for their execution.
The cloud application engine scales dynamically, adding
new resources to the pool when running out of cores; each
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virtual resource utilized had the same characteristics as
the desktop one. For the cloud deployment we considered
two scenarios; in the first (Scenario-1) the cloud applica-
tion engine could add up to two virtual resources (8 cores
in total), while in the second (Scenario-2) it could add up to
three virtual resources (12 cores in total).

Fig. 11 illustrates that the cloud deployment offers high
degree of parallelization, decreasing considerably the time
required to run a set of experiments (instances). We
observe that for multiples of 4 instances the average exe-
cution time increases linearly for both the desktop and
the cloud, with the cloud case being relatively static when
the number of instances is smaller than the number of
available virtual cores (8 and 12 instances for the Cloud
Scenario 1 and 2, respectively). The rate at which the exe-
cution time increases with the number of instances is
much smaller for the two Cloud Scenarios than it is for
desktop execution, the Cloud Scenario 2 being the best
among all tested since it employs the more cores. In any
case, we should note that the benefits of using cloud
resources come at a price, especially when we utilize
resources from public cloud infrastructures. Hence, the
tool’s capability to utilize public and private cloud plat-
forms can be very useful to maintain a good balance
between execution times and expenses for hiring the extra
computation resources needed.
7.2. Evaluation of fair access to available resources

We also evaluated the fairness of Mantis’s dispatcher, in
cloud operation mode, when serving instances of different
users and the available resources are limited. The evalua-
tion scenario is as follows: we assume that initially the
resources are filled executing other instances and there
are 5 users in total, from which the first user submits a
burst of instances while the rest start their submissions
after the first user. For simplicity, all instances have the
same workload. The cloud application engine is configured
to use only three virtual resources, with each one having 4
cores, without the capability to add extra resources. Hence,
the system is able to execute in parallel up to 12 instances.

We evaluated the instances’ average execution time and
the average queue time in two dispatcher policies:
Fig. 11. Mantis instances average execution time in desktop and cloud
deployments for various number of instances and different available
cloud resources.
� First Come First Serve (FCFS): Mantis dispatcher serves
the instances based on their arrival order. In the case
where the available resources are limited and some
user submits a burst of instances then the instances
submitted later by other users face significant queuing
times.
� Fair: Mantis dispatcher inspects the queued jobs and

handles them in a round-robin manner on a per user
basis, so as to achieve more fair allocation of the limited
resources.

Fig. 12 shows the average queue and execution time for
the instances submitted by each user. As expected, when
the fairness policy is used the queue and execution time
of different users’ instances are more balanced.

7.3. Scalability test

Next, we evaluated the ability of the tool to scale
according to the user demands. In this test, the cloud appli-
cation engine was configured to utilize only the public
cloud platforms (Amazon and �okeanos) and we did not
use our private cloud, based on OpenStack. Initially, the
cloud application engine serves the submitted instances
using �okeanos cloud service, utilizing three resources at
maximum (each with 4 CPU cores and 8 GB RAM, thus
serving up to 12 instances in parallel). When more
instances concurrently request service the cloud applica-
tion engine starts utilizing resources from Amazon EC2.

Amazon EC2 provides a number of different types of
resources [41] that combine various CPU, memory, storage
and networking characteristics, while each resource type
includes one or more sizes. Since all algorithms in Mantis
are CPU intensive for this scalability test we used two of
the compute-optimized Amazon EC2 resources, namely
c1.medium and c1.xlarge with cost $0.165 and $0.66 per
hour [42], respectively.

In the dispatcher we used the following policies for allo-
cating additional resources from Amazon EC2 cloud
service:

� Policy-1: the dispatcher adds a c1.medium Amazon EC2
resource when the total queued instances are more
than 20, while the limit of concurrent instances in each
additional resource is set to 8 jobs.
� Policy-2: the dispatcher adds a c1.medium Amazon EC2

resource when the total queued instances are more
than 10, while the limit of concurrent instances in each
additional resource is set to 8 jobs.
� Policy-3: the dispatcher adds a c1.xlarge Amazon EC2

resource when the total queued instances are more
than 10. The limit of concurrent instances that the dis-
patcher can assign to each new resource is up to 20 jobs.

In Table 1 we present the number of additional Amazon
EC2 resources that each dispatcher policy used to scale so
as to serve the submitted loads. As expected, the number of
the resources increases as the number of the submitted
instances increases. The number of resources also depends
on the selected limit for the maximum number instances
in queue after which the dispatcher adds a new resource.



Fig. 12. (a) Average queuing and (b) execution time of instances per user in the scenario where the first user submits a burst of instances, followed by the
other users.

Table 1
Number of additional Amazon EC2 instances that have been used from each
dispatcher policy.

Submitted
instances

Policy-1
(c1.medium)

Policy-2
(c1.medium)

Policy-3
(c1.xlarge)

100 1 3 2
200 2 5 3
300 3 6 5
400 5 8 7
500 7 11 10
600 9 14 13
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Thus, both the second and third policies (both afford 10
jobs in their queues) utilize more additional Amazon EC2
resources compared to the first policy (affords 20 jobs in
its queue).

Fig. 13a shows the average execution time for the sub-
mitted instances for each dispatcher policy. It is evident
that in all policies the tool scales well with the demand,
serving the submitted instances in reasonable time. As
expected, the average execution time increases with the
number of submitted instances, due to the increased queu-
ing time. Nevertheless, by adding new resources Mantis
scales efficiently, by dynamically increasing the number
of instances that are executed simultaneously and thus
keeping low the instances queuing time.

Fig. 13b illustrates the maximum number of instances
that are executed in parallel for each dispatcher policy.
As the dispatcher utilizes more cloud resources the num-
ber of concurrently executed instances increases, leading
to improved average execution time, since the queued
instances are decreased. We observe that, even when uti-
lizing the same Amazon EC2 resource type (Policy-1 and
Policy-2), a different value for the maximum number of
queued instances affects the performance. Choosing a
smaller maximum value results in the utilization of more
resources from the dispatcher, which in turn increases
the number of concurrently executed instances and thus
improves the average total execution time.

In Fig. 13c we present the corresponding cost ($) for the
additional Amazon EC2 resources that the dispatcher used
in each case. In all policies the cost increases with the
number of submitted instances since the dispatcher uti-
lizes more resources to serve the increased load. We
observe that the total cost increases almost linearly for
all policies, but for Policy-1 it grows with the smallest rate,
while Policy-2 comes second best. Note the significant dif-
ference in the required cost between Policy-2 and Policy-3
even though in both cases the dispatcher utilized almost
the same number of resources (Table 1). This is because
the cost for the Amazon EC2 resources used in Policy-3
(c1.xlarge) is four times higher than the cost for the
resources used in Policy-2 (c1.medium).

Hence, the benefits of using public cloud resources
come with a cost that could be high if we do not take it into
consideration. For example, the daily usage cost only for an
Amazon EC2 instance c1.medium and c1.xlarge is $3.96
and $15.84, respectively. Furthermore, the total cost for
executing all cases with Policy-1, Policy-2 and Policy-3
was $4.445, $7.775 and $26.4, respectively, while the cost
for all Amazon EC2 resources that we have used during
the all evaluation tests was $105. Thus, it is crucial to
choose the right dispatcher policy and also utilize Mantis’
feature that control the budget per month (as shortly dis-
cussed in Section 4).

The scalability evaluation performed above exhibits
also Mantis ability to utilize transparently virtual resources
from more than one cloud (public) providers (Amazon EC2
and �okeanos). Apart from two public clouds, a hybrid pri-
vate-public cloud infrastructure can also be used: basic
calculations can be done in a private cloud based on Open-
Stack, utilizing the local resources, while when required to
serve load peaks and time-dependent calculations then
acquire additional resources from a public cloud such as
Amazon EC2. With the proliferation of cloud providers of
various properties and costs, this feature of Mantis is very
important.
7.4. Stress test

Finally, to evaluate the robustness of Mantis implemen-
tation we tested it beyond the limits of its normal opera-
tion. For this reason we limited to 4 the number of the
Amazon EC2 additional resources (c1.medium) that the
cloud application engine could use. The dispatcher was



Fig. 13. (a) Average execution time for submitted instances for each dispatcher policy, (b) number of concurrent executed instances and (c) corresponding
cost for the additional Amazon EC2 resources.
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configured to add a new Amazon EC2 resource when the
number of the queued instances exceeded 20. Further-
more, we created heavy load conditions by assuming mul-
tiple users who submit concurrently bursts of instances.
Each burst consisted of 100 instances and its submission
duration was 50 s (2 instances/sec). We evaluate the oper-
ation of the Mantis using 1, 3, 5, 7, 9 and 11 users that sub-
mit concurrently their bursts resulting to loads of 100, 300,
500, 700, 900, 1100 instances, respectively.

Fig. 14 shows the average queuing and execution time
as a function of the total number of submitted instances.
Although few resources were available, Mantis managed
to execute successfully all the submitted instances for all
Fig. 14. Average queueing and execution time when Mantis utilizes
limited resources while multiple users submit concurrently bursts of
instances.
loads examined. As expected, both metrics increase as
the total number of instances increases, while the queue
time dominates the total execution time, since the
instances are submitted in bursts during a short time inter-
val and there are limited resources.

8. Future work

A number of extensions are planned in all layer of Man-
tis in the near future. These include adding new function-
ality both in the web-based user interface and in the
exposed RESTful API, and developing a command-line
interface (CLI) for users to interact with the tool. Also, we
will add more optical devices with characteristics that cor-
respond to actual network devices along with enriched
energy consumption models of the components used in
optical transport networks. In addition, more sophisticated
dispatcher policies will be implemented that will use infor-
mation from the database to estimate the instances execu-
tion times and improve load balancing and fairness. New
algorithms for flexible optical networks will also be inte-
grated in the execution engine library, especially for spec-
trum allocation and defragmentation, restoration, and
energy efficiency. Also, we will further automate and sim-
plify the process of adding new algorithms developed by
users to the tool. Finally, we plan to provide appropriate
interfaces to integrate Mantis’s online algorithms with
optical network management tools so that Mantis will pro-
vide the functionality of the path computation element
(PCE).
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9. Conclusions

In this paper we presented Mantis, a network planning
and operation tool for next generation optical networks.
Mantis is, to the best of our knowledge, the first complete
tools implemented for planning flexible optical networks
and includes novel and efficient algorithms. Mantis can
be deployed either as cloud service (SaaS) or as desktop
application, with the former being the primary implemen-
tation of interest so as to be available over the internet to
the users. Users (researchers, operators, vendors) can use
Mantis to perform studies as desired but also implement
their own algorithms and compare them against the ones
already incorporated in the tool. Mantis can create a com-
mon benchmarking environment with social characteris-
tics where researchers share topologies, traffic matrices
and CAPEX/OPEX parameters, and evaluate their algo-
rithms under common conditions. In this way, Mantis
could also evolve as an online collaboration platform for
optical network researches, improving the comparability,
quality and reliability of the results presented in various
research articles and projects.

The performance evaluation tests show that by utilizing
the power of the cloud, Mantis scales well with respect to
the number of scenarios evaluated by distributing the
experiments execution on multiple cloud resources in par-
allel. Furthermore, the stress test verified the robustness of
Mantis implementation under heavy load conditions,
where even with limited resources the tool was able to
execute successfully all the submitted experiments.
Finally, the scalability evaluation manifested Mantis ability
to utilize transparently virtual resources from multiple
public and private cloud infrastructures.
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