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Abstract 

Varvarigos, E.A. and D.P. Bertsekas, Communication algorithms for isotropic tasks in hypercubes and 
wraparound meshes, Parallel Computing 18 (1992) 1233-1257. 

We consider a broad class of communication tasks, which we call isotropic, in a hypercube and in a 
wraparound mesh of processors. These tasks are characterized by a type of symmetry with respect to origin 
node. We show that executing such tasks in a minimum number of steps is equivalent to a matrix 
decomposition problem. We use this property to obtain minimum completion time algorithms. For a special 
communication task, the total exchange problem, we find algorithms that are simultaneously optimal with 
respect to completion time, and average packet delay. We also prove that a particularly simple type of shortest 
path algorithm executes isotropic tasks in time which is optimal within a small bound. 

Keywords. Communication algorithm; hypercube; symmetric routing algorithms; optimal completion time 
algorithms; total exchange problem. 

1. Introduction 

The processors of a muitiprocessor system, when doing computations, often have to 
communicate intermediate results. The interprocessor communication time may be substan- 
tial relative to the time needed exclusively for computations, so it is important to carry out the 
information exchange as efficiently as possible. 

Algorithms for routing messages between different processors have been studied by several 
authors under a variety of assumptions on the communication network connecting the 
processors. Saad and Shultz [18,19] have introduced a number of generic communication 
problems that arise frequently in numerical and other methods. For example t~hey consider 
the problem where each processor is required to send a separate packet to every other node; 
following [3], we call this the total exchange problem. Saad and Schultz have assumed that all 
packets take unit time to traverse any communication link. Processors can either transmit 
along all their incident links simultaneously or they can transmit along a single incident link at 
any one time. Johnson and Ho [11] have developed minimum and nearly minimum completion 

* Research supported by NSF under Grant NSF-ECS-8519058 and by the ARO under Grant DAAL03-b6-K-0171. 
Correspondence to: Dimitri P. Bertsekas, Laboratory for Information and Decision Systems, M.I.T, Cambridge, MA 
02139, USA. 

Elsevier Science Publishers B.V. 



1234 E.A. Varvarigos, D.P. Bertsekas 

time algorithms for similar routing problems as those of Saad and Schultz but using a 
different communication model and a hypercube network. Their model quantifies the effects 
of setup time (or overhead) per packet, while it allows packets to have variable length, and to 
be split and be recombined prior to transmission on any link in order to save on setup time. In 
the model of [11], each packet may consist of data originating at different nodes and/or  
destined for different nodes. The extra overhead for splitting and combining packets is 
considered negligible in the model of [11]. Bertsekas et al. [4], and Bertsekas and Tsitsiklis [3] 
have used the communication model of Saad and Shultz to derive minimum completion time 
algorithms for several communication problems in a hypercube. In particular, they have given 
an algorithm for the total exchange problem that executes in a minimum number of steps 
(n/2 for an n-processor hypercube). Several other works deal with various communication 
problems and network architectures related to those discussed in the present paper; see 
[5,8,9,10,13,15,16,20,22,23 ]. 

In this paper, we introduce a new class of communication tasks, called isotropic, which are 
characterized by transmission requirements that are symmetric with respect to origin node (a 
precise definition will be given later). For example, the total exchange problem is an isotropic 
task; the communication problem 'looks identical' to every node. The structure of isotropic 
tasks can be exploited particularly well in networks that have themselves a symmetric 
structure, such as a hypercube and a wraparound mesh. Consequently, we restrict attention to 
these two networks. We use the Saad and Schultz communication model, but as we will show 
in Section 4, our minimum completion time results are essentially independent of the 
communication model used. The idea is that 'to achieve minimal completion time, some 
critical network resource must be used 100% Of the time, and this constraint is limiting for 
any communication model. 

A central result of this paper is that executing isotropic tasks on a hypercube or a 
wraparound mesh is equivalent to solving a matrix decomposition problem. We use' this result 
to characterize the class of algorithms that execute isotropic tasks in minimum time. Within 
this class and for the total exchange problem, we identify simple and easily implementable 
algorithms with further optimality properties, such as minimum or nearly minimum average 
packet delay. No algorithms of this type have been previously discussed in the literature. 
Minimizing average packet delay, in addition to maximum packet delay, is important for a 
number of reasons. If we assume that packets require one memory space from the time they 
are generated to the time they are delivered at their destination, then by minimizing the 
average packet delay we simultaneously minimize the memory requirements. Furthermore, a 
small average delay is important if processors can start processing each packet as soon as it is 
delivered, without having to wait for the delivery of all of them. Finally, minimum average 
delay algorithms tend to maintain a small number of transient packets in the network at all 
times. Indeed our minimum average delay algorithms have optimal or near-optimal transient 
storage requirements. 

We also consider a class of particularly simple-minded algorithms, called greedy, that are 
required to satisfy just a very weak and natural restriction; they must never leave a 
communication link idle as long as there is a waiting packet that can reduce its distance to its 
destination by using this link. An interesting new result is that any algorithm with this 
property executes in nearly minimum time for the total exchange problem; the deviation from 
optimality is bounded by ~ small number. Similar results can be shown for greedy algorithms 
applied to other isotropic communication tasks. 

There are two main contributions in this paper. The first is to relate the routing problem, 
which is a scheduling problem with a matrix decomposition problem, which is a problem in 
linear algebra. Such a connection is new and quite unexpected. It provides a simpler and 
more powerful characterization of optimal routing algorithms for the total exchange and other 
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related problems than in earlier works (e.g. [4]). It also allows simple and elegant analyses of 
minimum average delay algorithms and the suboptimal greedy algorithms, which despite their 
practical significance, have not been discussed so far in the literature. We note that earlier 
works in data communications ([1] and [24]) have also shown the equivalence of certain 
optimal time slot allocation problems and matrix decomposition problems. However, these 
works involve a very different context where there is one transmitter, and several receivers 
connected with a direct link to the transmitter; network situations are not addressed and 
symmetry plays no role. 

The second main contribution of this paper is to introduce isotropic tasks as a practically 
important and analytically interesting class of communication problems. It is clear that there 
is an incentive to formulate new routing problems in terms of isotropic tasks, whenever this is 
reasonable, in order to take advantage of the corresponding simple and elegant analysis. For 
example, it may be fruitful to analyze a 'nearly isotropic' communication problem as an 
isotropic problem with appropriate modifications. Examples of such analyses will be given in 
future publications. 

The paper is organized as follows. Sections 2 through 7 deal with the hypercube, while 
Section 8 deals with the wraparound mesh. Section 2 defines the class of the isotropic tasks 
and introduces the key notion of the task matrix. A lower bound for the completion time of 
both isotropic and non-isotropic tasks is also given. Section 3 deals with the evolution of the 
task matrix when symmetric routings are used. It also transforms the problem of minimizing 
the task's execution time into the problem of writing the task matrix as the sum of a minimum 
number of permutation matrices. The solution to the matrix decomposition problem is given 
in Section 4. Section 5 describes greedy algorithms and proves their near-optimal perfor- 
mance. Algorithms with both optimal completion time and optimal or near optimal average 
delay for the total exchange problem are found in Section 6. Section 7 treats the case where 
each node can use simultaneously at most k ratller than all its incident links. Finally, Section 
8 extends the hypercube algorithms and analysis to the case of a d-dimensional wraparound 
mesh. 

2. The task matrix 

We first introduce some terminology. The d-dimensional hypercube network has n - - 2  d 
nodes and d2 d- ! links. Each node can be represented by a d-bit binary string called identity 
number. There are links between nodes which differ in precisely one bit. As a consequence, 
each node has d-- log  n incident links. When confusion cannot arise, we refer to a d-cube 
node interchangeably in terms of its binary representation and in terms of the decimal 
representation of its identity number. Thus, for example, the nodes (00.-"  00), (00 . - .  01), 
and (11 --- 11) will also be referred to as nodes 0, 1, and 2 d -  1, respectively. The j-type link 
(or j-link) of nodes s = ( s l . . .  s j . . .  s d) is the link connecting node (s l . . .  st . . .  sk) with node 
(S l . . .~ j . . . Sd) .  (We denote by ~ the complement of the binary number x, that is, ~ = 1 - x . )  

Given two nodes v and w, the node v • w is the node with binary representation obtained 
by a bitwise exclusive OR operation of the binary representations of nodes v and w. 

The Hamming distance between two nodes is the number of bits in which their identities 
differ. The number of links on any path connecting two nodes cannot be less than the 
Hamming distance of the nodes. Furthermore, there is a path with a number of links which is 
equal to the Hamming distance, obtained, for example, by switching in sequence the bits in 
which the bit representations of the nodes differ (equivalently, by traversing the correspond- 
ing links of the hypercube). Such a path is referred to as a shortest path in this paper. 
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Information is transmitted along the hypercube links in groups of bits called packets. In 
our algorithms we assume that the time required to cross any link is the same for all packets, 
and is taken to be one unit. We assume that packets can be simultaneously transmitted along 
a link in both directions, and that their transmission is error free. Only one packet can travel 
along a link in each direction at any one time; thus, if more than one packet are available at a 
node and are scheduled to be transmitted on the same incident link of the node, then only 
one of these packets can be transmitted at the next time period, while the remaining packets 
must be stored at the node while waiting in queue. With the exception of Section 7 we assume 
that all incident links of a node can be used simultaneously for packet transmission and 
reception. Finally, we assume that each of the algorithms proposed in this paper is simultane- 
ously initiated at all processors. 

We now defined the communication tasks that are the subject of this paper. 

Definition 1. A communication task ~ is defined as a set of triplets (v, w, k), where v is a 
node (source), w is a node (destination), and k is an ivteger (the number of packets whose 
source is v and whose destination is w). 

Definition 2. A communication task ~' is called isotropic if for each packet that node v has to 
send to node w, there is a corresponding packet that node v • x has to send to node w ~ x, 
where v, w, and x are arbitrary nodes. Mathematically: 

(v, w, k) ~ ~' ~ for all nodes x we have ( v • x, w • x, k)  ~ ~'. 

An example of an isotropic task is the total exchange, where ~ consists of all the triplets 
(v, w, 1) as v and w range over all the pairs of distinct nodes [one packe t fo r  every 
origin-destination pair (v, w)]. 

In the algorithms that we propose, the packets carry with them a d-bit string called routing 
tag. The routing tag of a packet is initially set at v • w, where v is the source and w is the 
destination of the packet. As the packet is transmitted from node to node, its routing tag 
changes. If at time t a packet resides at a node s and has w as destination, then its routing tag 
is s • w. For example, a packet which is currently at :lode 001010 and is destined for node 
101000, has routing tag 100010. 

An important data structure that will be used by our routing algorithms is that of the task 
matrix of node s at time t, which will be denoted by Tt(s). The task matrix Tt(s) is defined for 
both isotropic and non-isotropic tasks and is a binary matrix whose rows are the routing tags 
of all the packets that are queued at node s at time t. The routing tags appear as rows of the 
initial task matrices T0(~s) in some arbitrarily chosen order. When no packets are queued at 
node s at time t, the task matrix Tt(s) is by convention defined to be a special matrix denoted 
Z. A task is said to be completed at time t if Tt(s)= Z for all s. The smallest t for which the 
task is completed under a given routing algorithm is called the completion time of the 
algorithm. 

A communication task can equivalently be derived in terms of its initial task matrices 
T0(s), s - 0 , . . . ,  n - 1. The task is isotropic if and only if the task matrices T0(s) are the same 
for all nodes s. In what follows, whenever there is no reason to distinguish among the nodes, 
we simply denote the task matrix at time t with T t. When such a notation is used, we 
implicitly mean that T t ( s ) -  Tt, for all s. The initial task matrix for the total exchange problem 
is illustrated in Fig. 1. 

We will now derive a lower bound for the completion time of any communication task 
(isotropic or non-isotropic). 
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Fig. 1. The  task matrix for the total exchange problem has n - 1 rows and d columns. T h e  f igure illustrates the case 
where  d = 3. 

Theorem 1. Let 3 be the completion time of  any algorithm that executes a task with initial task 
matrices To(s), s = O, 1 , . . . ,  n - 1. Let also ri(s) (or ci(s)) denote the sum o f  the elements o f  the 
ith row (or column, respectively) o f  the task matrix To(s). Then the following inequality holds 

#" > max max - ~_, cj( s ) ,  ri( s , 
i,j n s=O 

where the outer maximization is carried out over all rows i and columns j. 

Proof. The column sum cj(s) of the j th column of To(s) is equal to the number of packets 
that reside at node s at time t = 0 and have the j th bit of their routing tag equal to 1. To 
arrive to their destination, these packets have to use a j-link at some future time. Thus, 
Esc~(s) packets are going to use j-type links during the execution of the task. Since each 
node has only one j-link, there are only n links of j-type in the hypercube. Taking into 
account that no two packets can be transmitted on the same link in the same time slot, we 
conclude that 

EsCAS) 
n 

for all columns j. Therefore, 

1 n-I ) 
J > -  max E c j (s )  . (1) 

n j =  1 . . . . .  d s---0 

On the other hand, the packet corresponding to the ith row of To(s) is at a Hamming distance 
ri(s) from its destination. Thus the time 3 required to complete the task is at least ri(s) for 
all rows i and nodes s. This gives 

. 7 >  max ri(s ). (2) 
i , s  

By combining (1) and (2), we finally obtain 

1 , , - 1  )} 
.q" > max max - E c~( s)~ msax ri(s , 

i , j  n sffiO 

where the outer maximization is carried out over all rows i and columns j. [] 
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The preceding lower bound cannot always be attained by some algorithm. The following 
Corollary 1 specializes this lower bound for the case of isotropic tasks. As we will show later 
there is always an algorithm that achieves the lower bound of Corollary 1. 

Definition 3. The critical sum h of a matrix is equal to max~j{r~, cj}, where r~ is the sum of the 
entries of row i, cj is the sum of the entries of column j, and the maximization is performed 
over all rows i and columns j. A row or column with sum of entries equal to h is called a 
critical line. 

Corollary 1. Let an isotropic communication task have initial task matrix T o and h be the 
critical sum of T o. Then a lower bound for the time 3 required to complete the task is h. 

Proof. Using Theorem 1 and the fact that for isotropic tasks we have To(s)= T o, cj(s)= cj, 
rj(s) -- r~ for all nodes s - 0, 1 , . . . ,  n - 1, we obtafn .9  > maxij{c p ri} - h, for any algorithm 
that executes the task. [] 

3. Symmetric routing algorithms 

In this section we will be interested in isotropic tasks and a class of routing algorithms that 
satisfy a certain symmetry condition. 

Definition 4. Given a task matrix Tt(s) for each node s at time t, a switching scheme with 
respect to Tt(s) is a collection of matrices {St(s)[ s = 0 , . . . , n -  1} with entries 0 or 1. The 
matrix St(s) has the same dimensions as Tt(s), satisfies St(s) <_ Tt(s) (i.e. if an entry of Tt(s) is 
a zero, the corresponding entry of St(s) must also be zero), and has at most one nonzero entry 
in each row or column. The switching scheme is called symmetric if for every t the matrices 
St(s) are independent of s, that is, if for some matrix St we have S t ( s ) -  St for all s. 

Given a time t ~ 0 and a ta ~1. matrix Tt(s) for each node s, a switching scheme {St(s)[ s - 
0 , . . . , n -  1} with respect to It(s) defines the packet (if any) that will be transmitted on each 
link at the time slot beginning at time t. In particular, if the (i, j)th element of St(s) is a one, 
the packet corresponding to the ith row of Tt(s) will be tra:~smitted on the jth link of node s. 
The requirement that each column of St(s) contains at most one nonzero entry guarantees 
that at most one packet is scheduled for transmission on each link. 

The task matrices at a given time slot together with a corresponding switching scheme, 
define the task matrices for the next time slot. Given a communication task defined by the 
task matrices To(s), s = O , . . . , n - 1 ,  a routing algorithm can be defined as a sequence 
{S0(s), S~(s),... }, such that So(s) is a switching scheme with respect to the task matrix To(s), 
Sl(s) is a switching scheme with respect to the task matrix Tt(s) (which is defined by To(s) and 
So(s)), and, recursively, St+t(s)is a switching scheme with respect to the task matrix Tt+~(s) 
(which is defined by Tt(s) and St(s)). 

The key fact, proved in the following theorem, is that if at some time t, the task matrices 
are the same for all nodes s, and a symmetric switching scheme with respect to Tt(s) is used, 
then the next task matrices T t + ~(s)will be the same for all nodes. As a result, for an isotropic 
task, one may use a routing algorithm defined by a sequence of symmetric switching schemes. 
Such a routing algorithm will be called symmetric. Its action is specified at a single node and 
is essentially replicated at all the other nodes; this is a very desirable property for implemen- 
tation purposes. 
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packe t5  1 0 1 1 packe t5  1 0 1 1 

packet 4 0 1 1 1 packet 4 0 1 1 1 

packe t3  1 0 0 == ~ pack,,L3 1 0 0 0 

packe t2  1 0 1 I packet2  1 0 1 1 

packet 1 0 ~ 0 1 packet 1 0 0 0 1 

Link-> 

Packet 1 is t ransmi t ted on link 2 and packet 
3 is t ransmi t ted  on link 4. 

Fig. 2. The change in the task matrix due to packet transmissions (packets 1 and 3 are transmitted on links 2 and 4, 
respectively). 

Theorem 2. A s s u m e  that for  a given routing algorithm, at some time t we have  a set o f  nonzero 
task matrices Tt(s), which are the same for  all nodes s. Then i f  S t, a symmetric  switching scheme 
with respect to T t(s) is used by the algorithm at time t, the task matrices T t + l(s) will be the same 
fo r  all s. In particular, we have 

T,(s)  = T,, S , ( s )  = s , ,  Vs = T,+, (s)  = Vs, 

where T t + 1 is a task matrix consisting o f  the nonzero rows o f  the matrix T t - S t, except i f  T t = S t 
in which case T t + 1 is equal to the special matrix Z and  the algorithm terminates. 

Proof. Suppose that at time slot t, node s sends a packet with routing tag x= - . .  xj . - .  x d 
over its j-link to node s • ej. Then by the symmetry assumption, node s • ey also sends a 
packet with routing tag x~ . - .  xj - . .  x d over its j-link to node (s • e )  • ej = s. This packet 
arrives at node s with routing tag x~ - - .  ~j . . -  x d. Thus each row of the task matrix T t, which 
corresponds to a packet transmitted at slot t, is replaced by a row x ~ . . ' ~ y . " x  d if 
X m ' ' ' ~ j ' ' ' X d  is nonzero and is discarded otherwise; see Fig. 2. Since the transmitted 
packets (if any) on the j-link correspond to the nonzero entry of the j th  column of the matrix 
S t, we conclude that x~ = 1 and, therefore, ~j = 0. Thus the routing tag x~ • ." ~j " "  x d is 
either zero or else it is a row of the matrix T t - S t .  By symmet.,% at the beginning of slot t 
there is a packet with routing tag x t " ' ' X j ' ' ' X d  at each node, and this packet will be 
replaced (if transmitted) by a packet with routing tag xt . . .  ~j - . .  x d at the end of the slot t 
if x~ . . -  ~j . . .  x d is nonzero and will exit the network otherwise. Thus the task matrix will 
change in the same way for each node. ra 

From Theorem 2 we see that if the communication task is isotropic with initial task matrix 
T 0, we can specify a symmetric routing algorithm by a sequence of symmetric switching 

schemes S o , S t , . . .  as follows: 

Symmetric  Rout ing Algori thm specification 
The initial task matrix T O of the isotropic task is given. For t = 0, 1 , . . . ,  given the task 

matrix T t, S t must be a symmetric switching scheme with respect to Tt; the task matrix Tt + ~ is 
then specified by the nonzero rows of T t - S  t, unless T t - S  t in which case the algorithm 

terminates. 

We see therefore that a symmetric routing algorithm that terminates after k + 1 time slots 
amounts to a decomposition of the initial task matrix To into a sum 

m m m 

To = So + St + " '"  +Sk,  

where each Si, i = 0 , . . . ,  k, is a binary nonzero matrix with the same dimension as To, and 



1240 E,4. Varvarigos, D.P. Bertsekas 

with at most one nonzero element in each column or row. The corresponding switching 
m 

schemes S~, - 0 , . . . ,  k, consist of the nonzero rows of the matrices S i, i -  0 , . . . ,  k, respec- 
tively. 

Thus, by restricting attention to symmetric routings, our original problem of finding 
optimal routings for isotropic communication tasks has been reduced to the simpler problem 
of 'clearing' the To matrix (i.e. making all its entries equal to 0) in a minimum number of 
steps. At each step we are allowed to make 0 up to d entries, provided that these entries do 
not belong to the same row or column. The entries should not belong to the same row 
because at each step a packet cannot be transmitted on more than one link. The entries 
should not belong to the same column so that no two packets will use the same outgoing link. 
We will derive optimal algorithms within this class. These algorithms will be shown to attain 
the lower bound of Theorem 1, so they are guaranteed to be optimal within the class of all 
routing algorithms. 

4. Optimal completion time algorithms 

We consider the problem of clearing the task matrix in the minimum number of steps. At 
each step we are allowed to clear at most 1 entry from each row or column. Our analysis will 
use some theorems and tools that were also used in [1] and [24] in a different context. We first 
introduce some more definitions. For any matrix, we use the term line to refer to a row or 
column of the matrix. 

Definition $. A perfect matrix is a square matrix with nonnegative integer entries and with the 
property that the sum of the entries of each line is the same for all lines. 

Definition 6. A permutation matrix is any matrix with entries equal to 0 or 1 with the property 
that each line of the matrix has at most one nonzero entry. 

It can be noted that the nonzero entries of a permutation matrix form an independent set 
of entries in the sense that no two of them belong to the same line. A~ a result, a set of entries 
of the task matrix which form a permutation submatrix can be cleared during the same step. 
In particular a permutation matrix S can be used as a switching scheme for any node at any 
time as long as the task matrix at that node and time satisfies S _< T (see Definition 4). An 
important result for our purposes is Hall's Theorem (see [17] or [2], p. 120), which states that 
a perfect matrix can be written as a sum of h permutation matrices, where h is the sum of the 
entries of its lines. The following two theorems extend slightly Hall's Theorem. 

Theorem 3. Given any nonnegative integer square matrix M with critical sum h, there exists a 
nonnegative integer matrix E such that M + E is a perfect matrix with critical sum h. 

Proof. We give a constructive proof. Let r i (cj) be the sum of the entries of row i (column j). 
We augment each element Mij of the matrix such that r~ < h and cj < h by min(h - r~, h - cj) 
one at a time and update M after each change, thus obtaining a matrix with at least one more 
critical line and critical sum equal to h. At the end of this process we will have added to M a 
nonnegative integer matrix E, thereby obtaining a matrix M + E with critical sum h and such 
that for each pair (i, j )  either row i is critical or column j is critical. For this to be true, either 
all rows of M + E must be critical or else all columns must be critical. Assume without loss of 
generality that all rows are critical. Then, the sum of the elements of M + E is mh, where m 
is the number of rows and columns, while each column sum is at most h. It follows that each 
column sum of M + E is exactly equal to h, so each column is critical, and M + E is perfect. 
ra 
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Theorem 4. A nonnegative integer matrix with critical sum h can be written as the sum of h 
permutation matrices. 

Proof. Let T be a nonnegative integer matrix with dimensions m × d. We assume, without 
loss of generality that m > d. We can extend T to a square matrix M = [Ti0] by adding m - d 
zero columns. Then, by Theorem 3, M can be augmented to a perfect matrix M + E with line 
sums equal to h. By Hall's theorem we conclude that M + E can be written as a sum y-h= ~Pk 
of h permutation matrices P~,, 1"2,... Ph. Since E has nonnegative integer entries, M can also 
be written as a sum Y-h+IP k of square permutation matrices /;l, l~2,.-.eh; each /;k is 
obtained by setting to zero some of the entries of Pk. Since M = [TI0], T can be written as a 
sum of h permutation matrices of dimension m × d. [] 

The following is the main result of this section. 

Theorem $. The optimal completion time for an isotropic communication task is equal to the 
critical sum h of its task matrix. 

Proof. From Theorem 4 we know that the initial task matrix T o can be written as the sum 
h ~ m y-k=~Sk ,of permutation matrices St, ,~2,...,Sh. Consider the symmetric switching scheme 

{Sk}, where for k = 1 , . . . , h ,  S k is obtained from Sk by removing the zero rows._ Then the task 
- - Y k =  l Sk, and at time matrix a!t times t with 1 < 1 < h consists of the nonzero rows of T o ' 

t -  h is equal to Z. Hence the communication task is completed after h steps. Since, by 
Theorem 1, h is also an upper bound, the corresponding symmetric routing must be optimal. 
O 

It is easy to see that if at any step we clear one entry from each critical line of the matrix T t 
matrix, we can clear the task matrix within the optimal number of steps. On the other hand 
we cannot clear the matrix in h steps if we are not clearing an entry from each critical line at 
each step. In order to see this, let h t be the critical sum of the task matrix T t. We observe that 
the critical sum of the task matrix can decrease by at most 1 at each step (h, > h,_ ! -  1). 
Thus, if during slot t there is a critical line which is not served, then h t = h t _  t and it is not 
possible to clear the matrix in h 0 -  h steps. Thus, we conclude that a symmetric switching 
scheme achieves optimal completion time if and only if it adheres to the following rule: 

Optimal Completion Time Rule (abbreviated OCTR): 
At each step an entry is cleared from each critical line of the task matrix. 

We finally note that if the initial task matrix contains a column, say the jth, which is 
critical, then the j-type links constitute a critical resource in the sense that they must all be 
used 100% of the time during the execution of any optimal completion time algorithm. Under 
these circumstances it is impossible to reduce the optimal completion time by using an 
algorithm that allows packets to be split and be recombined during its course. In the unusual 
case where the only critical lines are rows, the optimal completion time could be reduced 
under a different communication model, e.g. wormhole routing [12,7]. 

We will now use the preceding results to find optimal algorithms for the total exchange 

task. 

4.1. Total exchange 

In the total exchange task, we have initially n -  1 packets with different routing tags 
queued at each node. The tags are different because each node has to send n - 1 distinct 
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packets, one to each node of the hypercube. The critical sum of the initial task matrix T 0, and 
therefore also the optimal completion time, is n/2.  (To see this, note that if we add to 
00. . .  00 string as an nth row of T 0, half of the entries of each column will be equal to 0 and 
half of them will be equal to 1.) Any algorithm that works according to the OCTR is optimal 
as far as completion time is concerned. Since there is a decomposition of T 0 into n / 2  distinct 
permutation matrices and these n / 2  matrices can be cleared in any desired order, it follows 
that the number of optimal total exchange algorithms is at least (n/2)!.  In fact, there are 
additional optimal algorithms because there are more than one decompositions of the task 
matrix into permutation matrices. This provides a lot of flexibility to select an algorithm that 
is optimal not only with respect to completion time but also with respect to some other 
optimality criteria. Section 6 describes an algorithm that achieves optimal completion time 
and optimal average delay for the case when the dimension d of the hypercube is a prime 
number. When d is not prime, the same algorithm achieves near-optimal average delay, as 
well as optimal completion time. (We say that the average delay of an algorithm is "near-opti- 
mal" if it agrees with the optimal average delay in the term of highest order of magnitude.) 

A generalization Of the total exchange task is the (K, L) neighborhood exchange task~ In 
this task, every node s has to send a packet to all the nodes r whose Hamming distance from 
s satisfies K _< Ham(s, r)_< L. For K = 1 and L = d we get the total exchange problem but 
for K ,  1 and/or  L ~ d, this task apparently has not been discussed elsewhere. The initial 
task matrix T o has as rows all the d-long binary strings with i ones, where K < i _< L. The 
critical sum of this matrix is 

h = m a x  L, Y'. 
i=K 

To see this, note that the task matrix has (d) rows, each having i ones. Since by symmetry the 
d columns have equal columns sums, each column sum will be equal to EL=r(di)i/d. By 
Theorem 5, the critical sum h is the time required to execute the task. 

$. Using greedy algorithms 

In this section we will show that any 'reasonable' switching scheme (it does not have to be 
deterministic) will give a completion time for an isotropic task which is larger than the optimal 
by at most d - 1 time units. By the term 'reasonable' switching scheme, we mean a symmetric 
switching scheme {So, SI, . . .  } with the property that a communication link is never idle while 
there is a waiting packet that can reduce its distance to its destination by using this link. 
Mathematically, we require that for all t and j - 1, . . . ,  d, if the (i, j)th entry of T t is nonzero, 
then either the ith row of St is nonzero or the jth column of S t is nonzero (or both). We call 
this the non-wasting property and we call the corresponding switching scheme greedy. 

Since the task is isotropic and we are using a symmetric switching, the task matrices T t are 
the same at all nodes at each time t. Let h c and h r be the maximal column and row sum of 
T 0, respectively. We will prove that the (i, j)th entry (T0)ij of To will become zero after at 
most h, + h c -  1 steps. Indeed, assume that (T0)ij is initially not 0 and that (To)~i is not 
cleared during the steps 1, 2,. . . ,  h~ + h c - 2. Then the non-wasting property implies that one 
entry of row i or one entry of column j (or both) were cleared at each of these steps. Thus by 
time r /+  cj - 2, all the entries of the ith row and the jth column, except for (T0)ij, have been 
cleared. Then by the non-wasting property, we conclude that at time r~ + c j -  1 the entry 
(T0)ij is cleared. Since r~ + cj <_ h, + h c the result follows. 
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Since h, < d and hc is at most equal to the optimal completion time, we see that a greedy 
algorithm executes an isotropic task within time that is within d - 1 time steps of the optimal. 
For tasks with hr < d this estimate can be improved. For example a greedy algorithm executes 
the (K, L) neighborhood exchange task within L - 1 steps of the optimal time. 

6. Algorithms achieving simultaneously optimal completion time and optimal average delay 

In the previous sections we have only been concerned with completion time optimality. A 
second important aim, which has not been considered so far in the literature, is the 
simultaneous minimization of the average delay suffered by a packet. In particular if W~ is the 
time between the start of the execution of the task and the time that packet i reaches its 
destination, we want to minimize the average delay, given by EN= IWi/N, where N is the 
number of packets involved in the task. In this section we find algorithms for the total 
exchange and neighborhood exchange problems that achieve both optimal (or near-optimal 
when d is not prime) average delay and optimal completion time. 

In order to achieve optimal completion time, the OCTR is followed at every step. With this 
rule, packets follow shortest paths to their destination and for both the total exchange and the 
neighborhood exchange tasks, links are utilized 100% of the time. For algorithms where these 
properties hold, we will see that a sufficient condition to achieve optimal average delay is to 
transmit at each time slot the packets that are nearest to their destination (equivalently, 
whose routing tags have the least number of l's). The intuition behind this comes from 
queueing theory situations where to achieve minimum average customer delay, the customers 
requiring less service should be served first. This priority rule is made precise in the following 
directive. 

Optimal Average Delay Directive (abbreviated OADD): 
No packet is, at any slot, transmitted over a link of the network if some packet which is 

nearer to its destination is not transmitted during the same slot. 

In the appendix we prove the following theorem, which holds for any network of directed 
links - not just a hypercube. 

Theorem 6. Consider a network and an arbitrary communication task. An algorithm that 
t~ecutes the task and in which 
(a) packets are sent to their destinations over shortest paths, 
(b) all links are used at all time slots prior to the algorithm's termination (100% utilization) and 

at every slot packets are transmitted according to the OADD, 
is optimal with respect to the average delay criterion. 

The question that arises now is whether we can follow the OADD at each step simultane- 
ously with the optimal completion time rule of the previous section. In general, insisting on 
optimal completion time can prevent us from minimizing the average delay. Fortunately, at 
least for the total exchange and the neighborhood exchange problems it is possible to achieve 
either optimality or near-optimality within a small bound. 

6.1. Case where d is prime 

Consider the total exchange problem. We will show that when d is prime we can 
simultaneously achieve strictly optimal average delay and completion time. In the algorithm 
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that we will propose the packets with initial routing tags (111...111), (011...111), 
(101... 111), . . . , (111.. .  101), (111...  110)will not be transmitted along any link prior to the 
last d steps. This implies that during the first 2 - d  slots the maximum column sum of the 
task matrix T t is greater than d. As a result, the critical lines of the matrices T t, t = 
1 , . . . , ( n / 2 ) - d  will be columns. Therefore, during the first n / 2 - d  steps we are allowed to 
clear any d entries of the task matrix that we want, provided that at each step we clear exactly 
one entry from each column (equivalently from each critical line), with no two of them 
belonging to the same row. 

In thr. following discussion we will show how the previous rules (OCTR and OADD), which 
are sufficient in order to achieve the two kinds of optimality, can be implemented for the total 
exchange task for the case where d is a prime number. (The neighborhood exchange problem 
is simpler and will be discussed briefly later.) The proposed algorithm will incorporate the 
idea of equivalence classes that was introduced in [3] (Section 1.3) for the purpose of 
constructing a multinode broadcast algorithm for the d-cube. The reader should refer to [3] 
for a more complete description of these concepts. 

The set of all possible routing tags is partitioned into d sets N k, k - 1 , . . . ,  d. The set N k 
has (~) elements each of which is a routing tag having k unity bits and d - k zero bits. Each 
set N k is in turn partitioned in disjoint subsets R k , , . . . ,  Rk ,  ,, which are equivalence classes 
under a single bit rotation to the left. 

We define a layered graph with n nodes. Each node is identified by a d-long binary 
number and corresponds to a row (or routing tag) of T 0. Each layer of the graph contains d 
routing tags belonging to the same equivalence class. The links of the graph start from an 
element of Rij and end at an element of R,_~) k for some k. The links have the following 
useful property: if s and t are distinct routing tags belonging to the same layer and (s, s • ej), 
(t, t e e I) are the arcs starting at nodes s and t, then j ~ I. Note that because d is prime, each 
class Rij has d elements, as illustrated in Fig. 3. 

We can describe now an algorithm that clears the entries of the task matrix and follows 
both OCTR and OADD, assuming d is prime. The algorithm consists of [ ( n -  1 ) / d ] -  1 
phases (from Fig. 3. it is easy to see that for d prime [(n - 1 ) / d | -  1 ffi (n - 2)/d). Each of 
the [ ( n  - 1)/d] - 2 first phases corresponds to the clearance of the routing tags (rows of the 
task matrix) of a specific equivalence class Rij. Because the routing tags that belong to 
different equivalence classes do not always have the same number of ones, each class requires 

N N N N 
I 2 3 4 

RI, R21 R2~ 

00000 

. . . . . . . . . . .  I I I I  

Fig. 3. The graph of equivalence classes R o for d = 5. Because d is prime, each class Rij has d elements. 
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a different number of slots to be cleared. The equivalence classes are cleared in the order 

RI ,R2n . . .  g2n2... Rtd_2,na_2{Rtd_,),( 11.. .  I)}. (3) 

The clearance of both Rid_l) I and (11 .. .  11) takes place during the last phase and will be 
described later. 

At phase 1, the rows of T o corresponding to the d routing tags of class R m~ are selected. 
Since each routing tag of this class has only one unity bit and since this bit is at a different 
position for each tag, the routing tags of class R~n can be cleared in one time slot. Therefore, 
the first phase requires one time slot. At phase 2, the routing tags of the next class R2] are 
selected to get cleared. In order to clear the corresponding rows of the task matrix we first 
find the routing tags of this class on the graph. At each slot we clear the bits of the routing tag 
in the order that the arcs of the graph indicate. Thus if an arc on the graph is pointing from 
sn... Sk . . .  S d (S, = 1) to sn. . .  S k ' ' '  Sd and a row of the task matrix is equal to sn.. .  Sk . . .  S d, 
then when this row is cleared the first entry to be cleared is the row's k th entry. The next 
entry of that row that will be cleared depends on the successor of node s n. . .  ~k. . .  Sd on the 
graph. If the successor of S l . . .  ~k . . .  Sd is, say, s l . . .  ~ k ' "  ~ j . "  Sd then the j th bit is the next 
entry of the row to be cleared. Thus, for d = 5 we see from Fig. 3 that at the second phase the 
packets with routing tags 10001, 00011, 00110, 01100, 11000 are cleared. At the first slot of 
this stage these packets are transmitted on links 1, 5, 4, 3, 2, respectively, and the task matrix 
changes to one having routing tags 00001, 00010, 00100, 01000, 10000 instead of those of class 
R2n. At the second slot of the second phase these routing tags are cleared in the obvious way. 

This procedure continues up to the point where only class R(d_ I)l and the single member 
class 11. . .  11 remain. At this point, we cannot clear the class R(d_ ])l because we will.violate 
the optimal completion time rule. This happens because now the row corresponding to the 
routing tag 11. . .  11 has also become critical. In order to follow the OCTR, one entry from 
each critical line of the task matrix must be cleared at each step. In the last phase both the 
rows and the columns are critical lines. One of the ways to clear the last two equivalence 
classes is indicated in Fig. 4. All it does is follow the OCTR rule. 

l'l' "'m 'll ' ' o ' i 
m , o , , i ,  ' , o , , , ,  o ® o, 

? o , ~,~ 'I o o I ' ~,~ 

Io,.' ~ 1oo,, o I 

° I < ~I 1 1 0  I 0 I 1 0 1  0 a_ 

I - I ,  , i , o  , I , I ,  o lq n 
LINK" 1 2  3 4 5  

I i iRI~  

,,  mmm 
i n l m l m  

I I  ° , 1 (  0 0 0 E ,  0 0 0 0 0 
o i l  - - ~  o l o R o  ( o o o o o 0 
,o oic mo o o , o o o o o 

o o o l l  - ~  i o ! o  o o , ~ o o o o o 

o o - - , o  ' , o ! o  o o | I  o o o o o 
o ,  mm~ o m o o ,  o o o o o  

Fig. 4. The clearance of the class R(d_ l)n together with (11 --" 11) for d = 5. 
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Both the OCTR and the OADD are followed up to the last phase of the total exchange 
algorithm. At this point a slight deviation from OADD takes place, because the row 11...  11 
begins getting cleared before the class Red_ 1)~ has been cleared. The question is whether by 
violating the OADD during the last d slots of the algorithm, the average delay optimality is 
lost. (The completion time optimality is not lost because we still follow the OCTR.) 

The answer to this question is that strict average delay optimality is still maintained. In 
order to see that, consider a modification of the original algorithm. In particular the modified 
algorithm is the same with the original one during the first [(n - 1)/d] - 2 phases and differs 
from it in that the OADD is followed at the last phase too. In other words, in the modified 
algorithm the class R¢d_ n)n is completely cleared before starting to transmit the packets with 
routing tags 1 1 . . .  11. Although the modified algorithm is suboptimal with respect to 
completion time, it is guaranteed to achieve optimal average delay. This is because the 
corresponding schedule in the auxiliary problem (see the appendix) satisfies the properties of 
Prop. 1. Therefore, in order to prove that the original algorithm has optimal average delay, it 
is enough to show that it has the same average delay with the modified algorithm. In order to 
see that, we can forget about the first [(n - 1 ) / d ] -  2 phases and consider only the additional 
delay that the last phase [(n - 1)/d] - 1 introduces for the last d + 1 packets. If OADD were 
followed at the last phase also, this average additional delay would be ((d - 1)d + 2 d -  l ) / ( d  
+ 1) = d - 1 / (d  + 1) for each of the last d + 1 packets. If the scheduling indicated in Fig. 4 is 
followed, the average delay for the last phase of the d + 1 packets will be equal to 
(de+d  - 1)/(d + 1 ) - d - 1 / ( d  + 1), again. Since OADD is followed up to the last phase 
and the deviation from it during the last phase does not cause any additional delay, we 
conclude that the original algorithm achieves optimal average delay as well as optimal 
completion time. 

.n' 

6.2. Evaluation of the optimal average delay for total exchange when d is prime 

We now calculate the optimal average delay for the total exchange problem, for the case 
where the dimension d of the hypercube is prime. Since the average delay of the proposed 
algorithm is equal to the average delay of the modified algorithm (both described in the 
previous subsection) it is enough to calculate the average delay of the modified algorithm. The 
average delay of a packet given that its initial routing tag belongs to the set N~ is 

M i  -I- m i 
Oi= 2 ' 

where m i and Mi are the minimum and maximum delay, respectively, suffered by packets 
with initial routing tags belonging to N~. For the sets N n, N a_ n, Nd we have that m I -- M ! - 1, 
md-n = Md-n, Ma = rod. However, in general, m i and Mi need not be equal. 

It is not difficult to see that for i > 1: 

mi =i + j, 
j=l  

and 

n 
M i f m i + n - ( i + l ) ,  f o r i = l ,  2 , . . . , d - 1 ,  a n d M d f m d f ~ + d - 1 .  

Since there are (d) packets with initial tags belonging to class N~, it is concluded that the 
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average delay DrE for the total exchange algorithm is 

d M i + m i ( d )  
Dre= ~ 2 ( n - 1 )  i 

i = 1  

1 

- i . J -  
" =  j= l  (n) 

2 d - l +  ~ - 1  d 
+ . 

1) 

1 ( 2 d -  1)! 
2 d ( n -  1) [ ( d -  1)!] 2 

This formula gives the optimal average delay for the total exchange task when d is prime, 
but does say tell anything about its order of magnitude. In the following lemma (which is true 
even if d is not prime)we prove that Dre is actually O(n). 

Lemma 1. For all d the optimal average delay DrE of the total exchange task in O(n). 

Proof. It is easy to see that DTE is O(n) since the optimal completion time Tre is equal to 
n/2 and DrE <_ Tre. It remains to show that DrE = fl(n). 

Let S~ be the set of n/4 routing tags with the larger number of ones that are cleared last 
in the optimal average delay algorithm. For each routing tag t in S~ with k ones (except for 
t = 11 .--  11) there is a corresponding routing tag i (the bitwise complement of t) with d .... k 
ones. Let these corresponding routing tags be a set S 2 with cardinality n/4 - 1. Consider now 
the submatrix of the initial task matrix T o that correspond to routing tags in S I t.J $2. The 

n ! n critical sum of this submatrix is equal to ~ d  = ~. This is so because there are n/4 pairs of 
tags t and i (we include the all 0 tag for completeness) and each pair has a total of 
k + d - k = d bits equal to one. Let now S 3 be the set of routing tags of To that do not belong 
to S t U S 2. The critical sum of the submatrix of To that corresponds to $3 is equal to 
n / 2 -  n/4 = n/4. This means that the routing tags of S 3 require at least n/4 steps to get 
cleared. Since in the optimal average delay algorithm the routing tags of S t are cleared after 
those of S 3, their delay will be at least n/4 steps. By taking into account that there are n/4 
routing tags in S t and each of them has a delay greater than n/4, we conclude that the 
average delay DrL- will be at least n/16 = O(n). [] 

6.3. Case where d is not prime 

When d is not a prime number, strict optimality with respect to the average delay criterion 
is not guaranteed. The reason is that when d is not prime, some of the classes Rij have less 
than d elements; we call such classes degenerate. However, in this case we can still find 
algorithms that complete the total exchange task in an optimum number of steps and achieve 
near-optimal average delay. In order to do so, we can first clear t:'~e nondegenerate classes by 
applying both the OCTR and the OADD and then clear the degenerate classes by just 
following the OCWR (relaxing the OADD). It can be shown (see e.g. [14], p. 14) that there are 
at most O(n 1/2) routing tags belonging to degeuerate classes while there is a total of n 
different routing tags. Thus, the los~ ,, of average delay optimality introduced by the degeneracy 
is negligible. In particular, since the delay of the packets that belong to degenerate classes is 
at most n/2 (because OCTR is followed), the loss in optimality can be upper-bounded by 
O(nl/2~n 1 , . .  , ~ - =  O(nl/2) .  Since the optimal average delay is O(n) (Lemma 1), we conclude that 
the algorithm for d not prime is near-optimal with respect to average delay. In addition, it is 
guaranteed to be optimal with respect to completion time since the OCTR is never violated. 
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An interesting question is whether by following only the OCTR rule, near-optimal average 
delay is guaranteed. The answer to this question is negative, and will be illustrated by two 
examples. In these examples we will assume for convenience that d is prime. First, consider 
the following algorithm 7/', which consists of two phas,~.~. In the first phase, the entries of the 
d × d submatrix that corresponds to each class Rij, i ~ d, are cleared up to the point where 
there is only one non-zero entry per row and one non-zero entry per column in each such 
submatrix. The all-ones row is not cleared at all during the first phase. For d prime, the first 
phase requires n / 2  - (n - 2 ) /d  - 1 steps. Up to that time no packets have been delivered to 
their destination. In the second phase, the remaining entries are cleared in any way by using 
the OCTR rule. Then the OCTR rul!e is followed in both phases. The average delay of 
algorithm T" satisfies D~>_ n / 2  - (n - 2)/d. Thus we have found an algorithm which follows 
the OCTR rule, and which has average delay greater than n / 2 -  o(n). Consider now a second 
algorithm ~ ,  where every tag t is grouped together with its bitwise complement ~ (the all 
ones tag is grouped together with the all zero tag). There are n / 2  such pairs. Algorithm ~¢ 
consists of k -- [n/(2d)] phases. Each of the first k - 1 phases has duration d, while the last 
phase has duration n / 2  - kd + d. In each of the first k - 1 phases, we pick any d distinct 
pairs (t, ~) at a time (i.e. 2d tags at a time), and clear them completely (in d steps) before 
picking a new set of d pairs. In the last phase we just follow the OCTR rule to clear the 
remaining entries. Algorithm ~ follows the OCTR at each step, and has average delay 

2d(d  + 2d + . . .  +kd)  + (n - 2kd + 2 d ) n / 2  
D ~  < 

n 

dek( k + 1) 
= + O ( d )  = n / 4  + O ( d ) .  

n 

This shows that the optimal average delay DrE is less than n / 4  + o(n). At the same time, the 
previous algorithm T" followed the OCTR and had D~>_ n / 2 -  o(n). Therefore, the OCTR 
does not guarantee near-optimal average delay, since the potential loss of optimality is of the 
same order of magnitude with the optimal average delay itself. 

We should note here the preceding analysis of the joint optimization of the completion 
time and the average delay (and the average storage requirements at the nodes) can be 
extended to other isotropic tasks as well. As an example, in the (K, L) neighborhood 
exchange problem simultaneously optimal completion time and near-optimal packet delay are 
achieved if the equivalence classes are cleared in the order Rrt  .. .  RKnK... RLI ... RLnt. For 
general isotropic tasks, it is not difficult to find algorithms that achieve optimal completion 
time and near-optimal average delay by insisting on the OCTR and ignoring the OADD when 
both cannot be satisfied. A bias in the opposite direction will result in the opposite results. 

7. Case where only k links of each node are used 

In this section we consider the case where due to hardware limitations the hypercube 
nodes can use only k g d incident links during a slot. The analysis of this case follows the 
same lines with the case where a node can use all its incident links. For igotropic tasks the 
critical sum h of the initial task matrix T o is again a lower bound of the completion time of a 
task (since k < d). We define the total sum or of a matrix T O to be equal to the sum of all the 
entries of 7o, i.e. o-ffi ~o(T0)ij. Tb.en it" ~ is the completion time of an algorithm that 
executes the task it can be seen that 

o" 
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We defined a k-permutation matrix to be a permutation matrix with at most k nonzero 
entries. By restricting attention to symmetric routings that use k-permutation matrices as 
switching assignments and transforming the scheduling problem to a matrix decomposition 
problem, we can prove the following theorem. 

Theorem 7. Let T o be the p × d initial task matrix o f  an isotropic task. The optimal completion 
time o f  the task when each node can use up to k < d links during a slot, is equal to 

h}, 
where h and or are the critical and the total sum o f  T o, respectively. 

Proof (abbreviated). We will show that a matrix T o with critical sum h and total sum or can be 
written as the sum of S :-max{[~|,  h} k-permutation matrices. We assume that p > k, 
otherwise the proof is trivial. We add to any entry (i, j )  of T o the quantity 

min(S - r i, S - cj, kS  - or), 

updating in the meantime or, ri, and cj. This process terminates when the new matrix T~ has 
total sum or' - kS, and its critical sum is less than or equal to S. We add p - k extra columns, 
and d - k extra rows to T~ to form a (p  + d - k) x (p  + d - k) matrix T~', so that the 
(d - k) x (p  - k) added submatrix (call it C), contains only zeros, and every line sum of T~ is 
equal to S (it can be proved as in Theorem 3 that this is always possible). During this 
procedure we do not add any numbers to entries of T~, but only to the new rows and columns. 
Then T~' can be written as the sum of S k (p  + d - k) x (p  + d - k) permutation matrices. 
Each permutation matrix must contain an entry from each extra column and an entry from 
each extra row, and these entries must be different (because C has only zeros). Therefore, the 
remaining (p  + d - k) - (d - k) - (p  - k) = k entries must be from T~. This proves that T~, 
and, therefore, To can be written as the sum of S k-permutation matrices. [] 

For 1 < k < d, the above estimate has not been derived elsewhere. It is worth noting that if 
[~1 < h, then using only k _< d links of a node at each slot rather than d, does not increase the 
time required to complete the task. For the total exchange task it can be seen that or = n d / 2  
and the optimal completion time when up to k links per node are used is equal to 

8. Optimal algorithms for isotropic tasks in wraparound meshes 

In this section we focus o n  a class of communication tasks (which we will call isotropic 
again) in the d-dimensional wraparound mesh of processors. The performance criteria for 
various algorithms "~'ili be the completion time and the average packet delay. All the 
algorithms to be given for the wraparound mesh are optimal with respect to completion time. 
For the total exchange problem, we find algorithms that simultaneously achieve optimal 
completion time and near-optimal average delay. For the two-dimensional and one-dimen- 
sional wraparound meshes, we present algorithms which achieve strict optimality for both 
performance criteria. Finally, we prove that a greedy switching scheme in a d-dimensional 
wraparound mesh executes isotropic tasks in near-optimal time. 
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wraparound mesh with n -- 9 processors. 

8.1. d-dimensional wraparound mesh and task matrices 

The d-dimensional wraparound mesh consists of n processors arranged along the points of 
a d-dimensional space that have integer coordinates. We assume that there is an equal 
number 

p = n i l  d 

along each dimension (although this is not essential)• The processors along the ith dimension 
are obtained by fixing coordinates X l , . . . , x ~ _ ~ , X ~ + l , . . . x  d, and have identities 
( x j , . . . , x i _  l, x i, Xi+l , . . . ,Xd) ,  X i f f iO , . . . , p  - 1. Two processors ( x l , . . . , x i , . . . , x  d) and 
(Yl, . . . ,  Yi,..., Yd) are connected by a two-directional link, if and only if for some i we have 
Ix i - y i l  ffi I and xjffiyj for all j :~ i. In addition to these links, in the wraparound mesh, 
there are also the two-directional links of the form 

( ( x l , . . . , x i _  I, O, X i+ l , . . . ,Xd ) ,  ( X l , . . . , X i _ l ,  p - -  1, Xi+l , . . . ,  Yd))" 

A two-dimensional wraparound mesh is illustrated in Fig. 5. For an integer vector x = 
(X~,. . . ,Xd),  we use the notation 

x rood(p)  - (x I mod( p ) , . . . ,  x d mod(p)  ). 

We will be interested in isotropic tasks which are defined as follows. 

Definition 7. A communication task in a d-dimensional wraparound mesh is isotropic if: 
(a) When processor x has to send m packets to processor y, processor x also has to send m 

packets to processor [2x - y ]mod(p) and 
(b) For each packet that processor x has to send to processor y, every other processor z has 

to send a packet (called corresponding packet) to processor [ z + y -  x]mod(p). 

Part (a) in the above definition specifies that the transmission requirements of a node are 
the same in both directions along each dimension. Part (b) specifies that the transmission 
requirements are the same for all nodes. An example of an isotropic task is the total 
exchange. The following definitions will be necessary for our analysis. 

D e f i n i t i o n  8. The i + link of a node x = (x~,. . . ,  x i , . . .  , Xd) is the link connecting x with node 
(x + e i) rood(p), where ei is the unit vector whose ith entry is equal to one. Similarly, the i -  
link of a node x is the link connecting x with node ( x -  e i) mod(p). 
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Definition 9. The distance along the i + dimension between processors x = (x~,. . . ,  x i , . . . ,  x d) 
and y = ( y l , . . . ,  Y i , . - . ,  Yd) is defined as 

{yi -x~, if yi>__xi; 
Pi( x, y) = Yi - xi + P, otherwise. 

Similarly the distance along the i -  dimension is defined as 

= [ x i - y  i, if yi<_xi; 
N,( x y) 

' [ x~ - y~ + p, otherwise. 

Let us also introduce some new notation. For p even consider the set of packets a 
originating at node 0 with destinations f(a) satisfying Pi(0, f (a ) )=p/2 ,  

A , =  {al P~(0, f ( a ) )  =p /2} .  

For p odd let Ai be the empty set. We arbitrarily partition A~ into two disjoint subsets A + 
a n d A 7  such that A i = A  + U A 7  a n d 0 < l A  + I - I A T I _ < I .  

The initial task matrix in the context of the wraparound mesh is a n  np x (2d) matrix, 
w h e r e  np is the number of packets that each node has to send and d is the dimension of the 
mesh (so that 2d is the number of outgoing links from each node). Each column of the task 
matrix corresponds to an outgoing link in the order 1 +, 1 -, 2 +, 2 - , . . . ,  i +, i - , . . . ,  d +, d-.  Let 
a be the packet that originates at node 0 and corresponds to row R, and let f(a) be the 
packet's destination. Then the i+th and the i - th  entry of R are given by 

[Pi(O, f ( a ) ) ,  if Pi(0, f ( a ) )  <Ni(O, f ( a ) )  or a ~ A  +, 
Ri÷= 

0 o t h e r w i s e ,  

and 

~N/(0, f ( a ) ) ,  if N/(0, f ( a ) )  <P/(0, f ( a ) )  or a ~ A  7, 
Ri-= 

0 otherwise, 

I 

0 

0 

0 

I 

LINK: I+ 

Fig. 6. The task matrix for the total exchange 

0 2 0 2 

0 1 0 2 

1 0 2 0 

0 2 0 1 

2 0 I 0 

0 0 2 0 

2 0 0 0 

0 1 0 I 

0 I I 0 

1 0 0 1 

0 1 0 

0 0 1 

0 1 0 
, 

1 0 0 

0 0 0 

1- 2+ 2-  
problem in a two-dimensional wraparound mesh with n -- 16. 
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respectively. The row R is also the initial routing tag of packet a. Routing tags carried by 
packets in the course of algorithms are defined analogously, with node 0 in the preceding 
equation replaced by the node where the packet resides. The task matrix for the total 
exchange task in a two-dimensional wraparound mesh with n - 16 is shown in Fig. 6. 

A difference between the task matrix in a hypercube and the task matrix in a mesh is that 
the entries of the latter are not necessarily binary, but can take any value between 0 and 
tp/2.1. 

As in the case of the hypercube, we will restrict attention to symmetric switching schemes. 
A symmetric switching scheme is characterized by the property that if processor 0 sends a 
packet with some routing tag over its i + (or i - )  link, then during the same slot every other 
processor sends over its i + (respectively i - )  link a packet with the same routing tag. For 
symmetric switching schemes, it can be shown that executing an isotropic task is equivalent to 
a matrix decomposition problem. The proofs of the following theorems follow similarly as in 
the hypercube case and are omitted. 

Theorem 8. The optimal time required to execute an isotropic task is equal to the minimum 
number of steps required to clear its task matrix, i.e. to make all its entries equal to zero. At each 
step, one is allowed to decrement by one unit independent entries of the task matrix, that is, 
entries that do not belong to the same line. 

Theorem 9. The optimal time required to execute an isotropic task is equal to the critical sum of 
its task matrix. 

A symmetric switching scheme achieves optimal completion time if and only if it follows 
the following rule. 

Optimal Completion Time Rule (OCTR): 
At every step, an entry from each critical line of the task matrix is decreased by one. 

It can be shown that it is always possible to follow the OCTR. In the following subsection 
this rule will be used to obtain optimal algorithms for the total exchange problem. 

8.2. Optimal completion time algorithms for the total exchange in wraparound meshes 

In order to calculate the optimal number of steps required for a total exchange we simply 
have to calculate the critical sum of the initial task matrix. For a wraparound mesh with odd p 
the critical sum of, say link d + ,  can be calculated to be 

( p -  D/2 ( p -  I)/2 (p -  I)/2 

rrE = E E "'" Y'. j . .  (4) 
Jl = - ( P -  1)/2 j2= - ( p -  1)/2 jd=0 

To see this, note that for any value Jd of the entry Rd+ , the entries Ri+, and Ri_ can take all 
the values between 0 and ( p -  1)/2, or, equivalently, the index j~ in equation (4) can take all 

( p -  1)/2 ( p -  1)/2 

TTE--  E "'" E 
Jl = (P-  I)/2 Jd-i = - ( P -  I)/2 

where we have used the relation n--pd. 
If p is even, we can similarly find that 

pn 
TrE= 8 '  i f d > l ,  

( p -  l ) ( p +  1) p2_  1 p n - n / p  
= ~ p d -  l __ 

8 8 8 ' 

the values between - ( p -  1)/2 and ( p -  1)/2. Equation (4) gives 
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and for the ring case 

n(n  + 2) 
TrE = , if d = 1. 

8 

Note that the case p -  2 corresponds to a hypercube having two links in each direction 
between any pair of nodes whose identities differ by one bit. In this case the TE can be 
executed in time n/4. This can be seen by splitting the task matrix in two parts, each with 
critical sum in/4,  and having one of the two sets of links clear the one matrix, and the other 
set of links simultaneously clear the second matrix. 

8.3. Near-optimality of greedy algorithms 

Let hc and hr be the maximum column and row sum of the initial task matrix. Then by 
using arguments similar to those presented in Section 5, we can show that any greedy 
algorithm executes the task in at most 

hr + hc - 1 

steps. Thus any greedy algorithm is suboptimal by at most h r steps (hr<_ ( p -  1)d/2 for p 

odd and h r -<Pal/2 for p even). In particular, for the total exchange task any greedy algorithm 
achieves a completion time of at most 

pn - n / p  ( p - 1)d 
+ 

8 2 

for p odd and 

np pd 

- 8 - +  2" 

for p even. As an example, if n - 1000 and d - 3, then an optimal algorithm will take 1250 
steps and any greedy algorithm will take at most 1265 steps. The conclusion is that any greedy 
algorithm is very close to being optimal. 

8.4. Algorithms with optimal completion time and near-optimal average delay for the total 
exchange 

If the OCTR is followed by an algorithm, this algorithm is guaranteed to have optimal 
completion time. With this rule, packets arrive to their destinations over shortest paths. In the 
algorithms that we propose for the total exchange problem, this rule is always followed. It is 
not difficult to see that for the total exchange 100% utilization of the links is achieved. If in 
addition to following the OCTR it is assured that the packets which are transmitted at each 
slot are those that are nearer to their destinations at that slot, then the average delay of a 
packet is also optimal. This priority rule is captured by the Optimal Average Delay Directive 
which was introduced in Section 6. 

We will now present an algorithm for the total exchange in a d-dimensional wraparound 
mesh in which the OCTR is alway~ follow~d and the OADD is partially followed. In the next 
subsection, algorithms that follow both rules and achieve both kinds of optimality will be given 
for the case of the two-dimensional and the one-dimensional wraparound mesh. 

Instead of describing the algorithm in terms of transmissions over the links, we will 
equivalently describe the order in which the entries of the initial task matrix are cleared. 
Before proceeding it is necessary to describe some new concepts. 
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The n - 1 routing tags of the packets sent by a node are partitioned into disjoint sets N~, 
i ffi 1, 2, . . .  The set N~ contains all the routing tags with sum of entries equal to i and 
corresponds to packets that are initially located at a distance of i hops from their destination. 
In the algorithms that we will propose, the rows of the task matrix which belong to the set N~ 
are cleared during phase i of the algorithm and the OCTR is followed. Phase i begins after 
phase i -  1 has finished. This is in accordance with the OADD. 

Consider the rows of the initial task matrix which correspond to the packets in N~. These 
rows form a submatrix of T o which we denote by M i. For the ~gorithm to work it is enough to 
prove that each Mi can be separately cleared while simultaneously attaining 100% utilization 
of the links• Consider the case where p is odd. If we denote with I N~ I the cardinalit3' of N~ 
and by c i the column sums of M i (the column sums are equal for all columns by symmetry), 
then i lN~ I ffi 2dci, from which ci = I N~ l i /2d.  Since I N~ I >- 2d [because at least the packets 
wi th  r o u t i n g  tags  ( i ,  0 , . . . , 0 ) ,  (0, i, 0 . . . ,  0), (0, 0, i, 0 , . . . , ) ,  
(0, 0, 0, i, 0 . . . ,  0) , . . . , (0,  0 , . . . , i ,  0), (0, 0 , . . . ,0 ,  i) belong to N~], we conclude that ci >- i and 
therefore the critical sum of M i is c i (obviously, the row sums of M i are equal to i). This 
proves that M i can always be cleared in ci steps by following the OCTR. Since the sum of all 
the entries of the matrix Mi is 2dc i, at each step exactly 2d entries are cleared (because no 
more than 2d entries can be decremented at the same step). As a consequence, all the 
outgoing links of a node are always used. By clearing the submatrices M~, M2, . . . ,  Mi, . . .  in 
this order, we follow the OCTR and at the same time the packets that are initially i hops 
away from their destination are received by the destination node before the packets that 
belong to sets N~+ ~, N~+2,... start being transmitted. 

This algorithm is expected to have near-optimal average delay and optimal completion 
time. However, strict optimality of the average delay is not necessarily achieved. The reason is 
that the OADD is not followed within each phase. Suppose now that the submatrices M i can 
be subdivided into square matrices Mi~, Mi2,...,  M~j,..., M~¢IN, I/2d) such that 

Miffi : . 

Mi( I N~ I /2d) 

Suppose also that every submatrix Mij can be completely cleared before starting to clear 
M~tj+1), and while clearing Mij 100% utilization of the links is achieved. In such a case, 
simultaneously optimal completion time and average delay are guaranteed. We could not 
prove that this is possible for every dimension d. However, this is possible for d equal to 1 
and 2, so in these cases algorithms that achieve simultaneously optimal completion time and 
average delay can be found. These algorithms are the subject of the following subsection. 

8.5. Optimal completion time~optimal average delay algorithms for the total exchange in 
wraparound meshes with d ffi I and d = 2 

Consider first a total exchange in the two-dimensional wraparound mesh. We partition the 
n - 1 routing tags of the packets sent by a node, in sets N~ as described in the previous 
subsection. Each set N~ is in turn partitioned in classes Rob, where a + b ffi i, a > 0 and b _> 0. 
The rows of To that correspond to class Rab are (a, 0, b, 0), (0, b, a, 0), (0, a, 0, b), 
(b, 0, 0, a). Because the classes Rio and R0i would coincide, we introduced the restriction 
a 0 so that only one of them is considered. The submatrix of the initial task matrix whose 
rows correspond to class Rab has dimensions 4 x 4 and is denoted Mab. Each submatrix Mab 
can be cleared in exactly i -  a + b steps with 100% link utilization (see Fig. 7). If the 
submatrices are cleared in the order 

M1o, M20, Mll, M3o, M21, MI2,..., Mio, M{i-l)l, Ml{i-l),... 
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b O O /  / 0 0 0 

0 J 0 b 0 0 0 / 

0 b j 0 0 / 0 0 

/ o  o o lo i /o  
Fig. 7. Clearing the submatrix corresponding to class Rab. 

it can be seen that strictly optimal average delay, as well as optimal completion time are 
achieved, because both the OCTR and OADD are followed at each step. 

We next consider the total exchange in a one-dimensional wraparound mesh (ring). The 
initial task matrix for the ring has dimensions ( n -  1)× 2. Algorithms that simultaneously 
achieve strictly optimal average delay and completion time can be found using the principles 
described earlier. We omit the details and just give the results. If TrE is the optimal 
completion time of the total exchange and DrE is the optimal average delay we can show that 

n 2 -  1 
TrE = 8 

(n + 1 ) ( n + 3 )  
Dr~ = 24 

for an odd number of processors n, and 

n(n  + 2) 
TrE = 8 

(n - 2 ) (n  - 1)n + 6n 2 
DTE -- 2 4 ( n -  1) 

for an even number of processors. Note that for the ring and for a large n, the average delay 
is roughly one-third of the completion time for the total exchange. Most of the results of 
Section 8 can be extended to wraparound meshes with different number of processors in each 
dimension. 

Appendix 

In this appendix we prove Theorem 6 of Section 6. For convenience we restate the 
theorem. 

Theorem 6. Consider a network and an arbitrary communication task. An  algorithm that 
executes the task and in which 
(a) packets are sent to their destinations over shortest paths, 
(b) all links are used at all time slots prior to the algorithm's termination (100% utilization) and 

at every slot packets are transmitted according to the OADD, 
is optimal with respect to the average delay criterion. 

Proof. Let L - n d  be the number of links of the network and N be the number of packets 
involved in the communication task. Let x i be the minimum number of hops between the 
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origin and the destination of packet i. For an algorithm that performs the communication task 
we denote by W~ the time that elapses from the beginning of the algorithm to the slot when 
packet i arrives at its destination. Let Cop t be the optimal value of N 

We consider the following auxiliary problem. 

Auxiliary problem 
Assume we are given L servers and N customers that have to be served. Assume also that 

customer i requires at least xi slots of service (xi is integer) and can be served by at most one 
server during the same slot. Each customer can use different servers in different slots and 
each server can serve at most one customer per slot. Consider a schedule that assigns 
customers to server-slot pairs and let W~ be the time that elapses between the beginning of 
the schedule and the slot when customer i completes service. Find a schedule that minimizes 

Let ¢~opt be the optimal value of N Y'.i__~W~ in the auxiliary problem. It can be seen that 
Copt < Copt- The reason is that the auxiliary optimization problem has less constraints than the 
initial problem. (If we regard links as servers and packets as customers then the first problem 
has additional constraints on the servers that can be used by each customer and the order in 
which the servers are used. In particular the links used by the packets depend on the packet's 
destinations. Thus, for every algorithm ~ '  in the initial problem we can find a corresponding 
feasible schedule ~ in the auxiliary problem which has the same cost.) 

Consider an algorithm ~ for the initial problem which follows the OADD. Let u(t)  be the 
number of links that are used at slot t. It can be seen that for such an algorithm, u(t), t - 1, 
2, . . . ,  uniquely specifies the cost EN ~W~. 

Consider now a schedule ~ in the auxiliary problem with the property that at each slot the 
customers that are served are those which have the least residual time to complete service. 
Let ~(t) be the number of servers that are used at time t = 1, 2, . . .  It can be seen that if 
u(t) f f i~(t)  for all t, then both ~ and ~ have the same cost EN_~wi. Thus, if ~ is optimal 
with respect to the average delay criterion, then ~ '  is an optimal al[~orithm in the initial 
problem since it achieves the same cost and we have already seen that Copt < Copt. Therefore, 
in order to prove Theorem 6 it is enough to prove the following proposition. 

P r o p o s i t i o n  1. Let f f  be a schedule in the auxiliary problem with the following properties: 
(a) Item i is served during exactly x i slots (i.e. the minimum adequate service time). 
(b) At  each slot the customers that are served are those thai have least residual times to complete 

service. 
(c) The number of  servers used at time t, ~(t), is the largest possible, given the assignments made 

at slots I, 2 , . . . ,  t -  1. 
Then ~ minimizes EiN~ IWi. 

Proof. It can be seen that ~ is a Shortest Processing Time (SPT) schedule, which is known to 
minimize the average delay ~N iWi/N (see, e.g. [6]). [] 

References  

[1] G. Bongiovanni, D. Coppersmith and C.W. Wong, An optimum time slot assignment algorithm for an 
$S/TDMA system with variable number of transponders, IEEE Trans. Commun. COM-29 (1981) 72i-726. 

[2] Bertsekas, D,P., Linear Network Optimization: Algorithms and Codes (MIT Press, Cambridge, MA, 1991). 
[3] Bertsekas, D.P., and Tsitsiklis, J.N., Parallel and Distributed Computation: Numerical Methods, (Prentice-Hall, 

Englewood Cliffs, NJ, 1989). 



Communication algorithms in hypercubes and wraparound meshes 1257 

[41 

[51 

[61 
[71 

[sl 
[91 

[lOl 

[111 

[121 

[131 

[141 
[151 

[161 

[171 
[181 

[191 
[20I 
[21] 

[22] 

[23] 

[24] 

Bertsekas, D.P., C. Ozveren, G.D. Stamoulis, P. Tseng, and Tsitsiklis, J.N., Optimal communication algorithms 
for hypercubes, Lab. for Information and Decision Systems Report LIDS-P-1847, M.I.T., Jan. 1989; also in J. 
Parallel and Distributed Comput. 11 (1991) 263-275. 
Bhatt, S.N., and ipsen, LC.F., How to embed trees in hypercubes, Yale University, Dept. of Computer Science, 
Research Report YALEU/DCS/RR-443, 1985. 
Coffman, E.G., Computer and Job-Shop Scheduling Theory (Wiley, New York, 1976). 
Dally, WJ., and Seitz, C.L., Deadlock-free message routing in multiprocessor interconnection networks, IEEE 
Trans. Comput. C-36 (1987) 547-553. 
Dekel, E., Nassimi, D,, and Sahni, S., Parallel matrix and graph algorithms, SIAMJ. Comput. 10 (1981) 657-673. 
Hedetniemi, S.M., Hedetniemi, S.T., and Liestman, A.L., A survey of gossiping and broadcasting in communica- 
tion networks, Networks 18 (1988) 319-349. 
Johnsson, S.L., Communication efficient basic linear algebra computations on h~ercube architectures, J. 
Parallel and Distributed Comput. 4 (1987) 133-172. 
Johnsson, S.L., and Ho, C.T., Optimum broadcasting and personalized communication in hypercubes, 1EEE 
Trans. Comput. 38 (1989) 1249-1268. 
Kermani, P., and Kleinrock, L., Virtual cut-through: A new computer communicating switching technique, 
Comput. Networks 3 (1979) 267-286. 
Krumme, D.W., Venkataraman, K.N., and Cybenko, G., The token exchange problem, Tufts University, 
Technical Report 88-2, 1988. 
Leighton, F.T., Complexity Issues in VLSI (MIT Press, Cambridge MA, 1983). 
McBryan, O.A., and Van de Velde, E.F., Hypercube algorithms and their implementations, SIAM J. Sci. Stat. 
Comput. 8 (1987) 227-287. 
Ozveren, C., Communication aspects of parallel processing, Laboratory for Information and Decision Systems 
Report LIDS-P-1721, M.LT., Cambridge, MA, 1987. 
Ryser, H.J., Combinatorial Mathematics (Mathematical Association of America, Rahway, NJ, 1963). 
Saad, Y., and Schultz, M.H., Data communication in hypercubes, Yale University Research Report 
YALEU/DCS/RR-428, October 1985 (revision of August 1987). 
Saad, Y., and Schultz, M.H., Data communication in parallel architectures, Yale Un,~versity Report, March 1986. 
Saad, Y., and Schultz, M.H., Topological properties of hypercubes, IEEE Trans. Comput. 37 (1988) 867-872. 
Stamoulis, G.D., and Tsitsiklis, J., Efficient routing schemes for multiple broadcasts in hypercubes, Laboratory 
for Information and Decision Systems, Report LIDS-P-1948, February 1990. 
Stout, Q.F., and Wagar, B., Passing messages in link-bound hypercubes, in Proc. 1986 Hypercube Conf. SIAM, 
Philadelphia, PA (1987) 251-257. 
Topkis, D.M., Concurrent broadcast for information dissemination, 1EEE Trans. Software Engrg. 13 (1983) 
207-231. 
Wang, E.Y., Traffic control in a muitichannel optical fiber communication network, MS. Thesis, Lab. for 
Information and Decision Systems Report LIDS-P-1784, MIT, 1988. 


