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a b s t r a c t

We consider information aggregation as a method for reducing the information exchanged in a Grid
network and used by the resource manager in order to make scheduling decisions. In this way,
information is summarized across nodes and sensitive or detailed information can be kept private,
while resources are still publicly available for use. We present a general framework for information
aggregation, trying to identify issues that relate to aggregation in Grids. In this context, we describe
a number of techniques, including single point and intra-domain aggregation, define appropriate grid-
specific domination relations and operators for aggregating static and dynamic resource information,
and discuss resource selection optimization functions. The quality of an aggregation scheme is measured
both by its effects on the efficiency of the scheduler’s decisions and also by the reduction it brings on the
amount of resource information recorded, a tradeoff that we examine in detail. Simulation experiments
demonstrate that the proposed schemes achieve significant information reduction, either in the amount
of information exchanged, or in the frequency of the updates, while at the same time maintaining most
of the value of the original information as expressed by a stretch factor metric we introduce.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Grids consist of geographically distributed and heterogeneous
computational and storage resources that may belong to different
administrative domains, but are shared among users. The Grid
resource manager (scheduler) receives user requests and assigns
tasks to resources so as to optimize some objective function.
Scheduling decisions are made based on static and dynamic
resource information, including the computation and storage
capacities, their availability, the number of tasks queued and other
parameters of interest, which are usually collected by information
services.

In this work, we study the operation of resource information
aggregation in Grids. Through information aggregation, the
resource characteristics are summarized before being sent to
scheduling or other mechanisms (e.g., data managers), while
Grid resources are still distributedly controlled. Resource-related
information size and dynamicity grows rapidly with the size of
the Grid, making the aggregation and use of this massive amount
of information a challenge for the resource management system.
In addition, as computation and storage tasks are conducted
increasingly non-locally and with finer degrees of granularity, the
flow of information among different systems and across multiple
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domains will increase. Information aggregation techniques are
important in reducing the amount of information exchanged
and the frequency of these exchanges, while at the same time
maximizing its value to the Grid resource manager or to any other
desired consumer of the information. An additional motivation
for performing information aggregation is confidentiality and
interoperability, since as more resources or domains of resources
participate in the Grid, it is often desirable to keep sensitive
and detailed resource information private, while resources are
still being publicly available for use. For example, it will soon
become necessary for the interoperability of the various cloud
computing services (e.g., Amazon EC2 and S3,Microsoft Azure) that
the large quantity of resource-related information is efficiently
abstracted, before it is provided to the task scheduler. In this way,
the task scheduler will be able to use efficiently and transparently
the resources, without requiring services to publish in detail
their resource characteristics. In any case, the key to information
aggregation is the degree to which the summarized information
helps the scheduler make efficient use of the resources, while
copingwith the dynamics of theGrid and the varying requirements
of the users.

We propose several information aggregation techniques, which
are presented in a general way, so as to permit their adaptation
to specific situations, or their combination for the creation of
new aggregation schemes. We are mainly interested in resource
information that influences the decisions made by the Grid
scheduler, while we do not consider parameters that cannot
be directly aggregated (e.g., operating system version). Even
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though the proposed information aggregation techniques are in
line with the current hierarchical structure of Grid Networks
and the related monitoring systems [1,2], our work follows
a more theoretical approach, trying to identify generic issues
that relate to aggregation, instead of studying how aggregation
affects Grid Networks with specific characteristics. Specifically,
we assume that resource sites are grouped into domains and
the characteristics of the sites in each domain are aggregated
before being sent to the resource scheduler. For aggregating the
information,we use concepts and ideas derived frommulti-criteria
optimization [3]. In particular, each site is characterized by a
vector of cost parameters that record its computation and storage
capacity, their availability with time, and other parameters of
interest, handling in this way themulti-dimensionality of the sites’
characteristics. The cost vectors of the sites in a given domain are
aggregated into a single (single point) or multiple (intra-domain
aggregation) cost vectors for the entire domain, by performing
appropriate associative operations to the site cost parameters. The
domain cost vectors are collected from themonitoring system.We
also introduce so-called domination relations that aim at reducing
the number of vectors aggregated and stored. A resource site is
said to be dominated by another one, when it is inferior to that
with respect to all the resource parameters of interest. When a
task request arrives, the scheduler applies an optimization function
to the domain cost vectors in order to select the domain where
the task will be executed. The task is then transferred to the
selected domain and is assigned to a site in it, using exact resource
information.

The undesirable side of information aggregation is that the effi-
ciency of a scheduler using such information can be negatively af-
fected. Even though there are obvious benefits in reducing through
aggregation the amount of information exchanged and stored in
a Grid, the job scheduler has less detailed and accurate informa-
tion for decisionmaking. This introduces an interesting tradeoff be-
tween the amount and frequency of information exchanges and the
value this information has for making efficient scheduling decisions.
We propose information aggregation schemes that produce aggre-
gated (summarized) information of different quantity, granular-
ity and therefore quality, improving or deteriorating scheduling
decisions.

As a metric of the quality of the aggregated information we
introduce the Stretch Factor (SF), defined as the ratio of the task
delay when the task is scheduled using complete resource infor-
mation over the task delay when an aggregation scheme is used.
We perform a large number of experiments to evaluate the pro-
posed aggregation techniques, using a relatively simple simulation
environment. Towards this end, we designed the simulations sce-
narios so that they are generic, evaluating various different sce-
narios: grids with many or few sites and domains, tasks with small
or large workloads, resources with small or high computation ca-
pacities, etc. We also measure the number of resource information
updates triggered by each aggregation scheme and the amount of
information transferred. The simulation results show that the pro-
posed schemes achieve significant information reduction, both in
terms of size and of frequency of updates, while maintaining good
scheduling quality. The uniformity or lack of uniformity of the sites’
and tasks’ characteristics is found to significantly affect the quality
of the aggregation. In addition, we observe that that the type of pa-
rameters aggregated and the operators used for their aggregation
play a significant role.

The present work handles information aggregation in Grids as
a separate and important issue, attempting to identify the main
issues, parameters, dependencies and side-effects related to the
aggregation operation. Even though there are other works in Grids
that consider aggregation as an available mechanism, they usually
consider specific policies and scenarios, and they do not address
through appropriate metrics the effect information aggregation
has on the quality of the scheduling decisions made. In addition,
other previous works focus on Data Networks where information
aggregation is an old and well knownmechanism used for making
routing scalable and efficient. We use the same idea, making
possible for a task scheduler to use transparently the globally
available resources without knowing their full details, in the same
way a router forwards a packet to the next gateway, without
knowing all the intermediate nodes the packet will pass through,
towards its destination.

The remainder of the paper is organized as follows. In Section 2
we report on previous work. The information aggregation problem
is formulated in Section 3. Section 4 introduces the proposed
aggregation techniques. In Section 5 we present an example of
applying the techniques introduced in a hierarchical Grid Network.
In Section 6 we experimentally evaluate the proposed techniques.
Finally, conclusions are presented in Section 7.

2. Previous work

Information aggregation has been previously studied mainly
in the context of hierarchical Data Networks [4], where it is
performed on network-related parameters in order to facilitate
routing. Resource information aggregation in Grids has not been
studied in detail, despite its practical importance and its impact
on the efficiency of the scheduling decisions. Actually, most
scheduling algorithms proposed [5,6] make their decisions using
exact resource information. In the following,wepresent priorwork
on the relevant topics.

Task scheduling is usually performed at two levels [7,8]; at the
higher level, a central scheduler decides the site or domain a task
will be executed on, while at the lower level a local scheduler
selects the exact machine where the task will be executed.
Most scheduling algorithms try to minimize the total average task
delay [9] or maximize resource utilization, even though other
performance metrics can also be used. The authors in [10]
incorporate Grid economic models and propose scheduling
algorithms that support deadline and budget constraints. Another
criterion used in comparing scheduling schemes is the degree of
fairness achieved among users in the use of the resources [11,12].
Finally, scheduling with advance reservations of computational
and network resources has also received a great deal of attention
in Grid and Data Networks [13,14]. A taxonomy of Grid resource
schedulers is presented in [5,6]. In Grid Networks, resource
information collection is performed by the monitoring systems.
In [15] a number of monitoring systems are presented and
categorized based on their architecture, as defined in the Global
Grid Forum’s Grid Monitoring Architecture (GMA) [16].

In existing Grid and Data Networks, sites/machines/nodes are
organized in hierarchical structures (e.g., the EGEE [17] and the In-
ternet). A node in a domain communicates with nodes belonging
to other domains using specific border nodes. Hierarchical rout-
ing is a major issue for Data Networks, and is important for re-
ducing the memory requirements at the routers (border nodes)
for the very large topologies encountered in the Internet’s in-
frastructure. A topology is broken down into several layers of
hierarchy, thus downsizing the routing tables required, but this
comes at the expense of an increase in the average path length.
[18] is one of the first works investigating hierarchical routing,
where clustering structures are introduced to minimize the rout-
ing tables required. Bounds are also derived on the maximum in-
crease in the path length for a given table size. A central issue
in hierarchical routing is topology information aggregation [4,19].
Aggregation techniques in hierarchical topologies try to summa-
rize and compress the topology information advertised at higher
levels. In order to perform routing and network resource alloca-
tion efficiently, the aggregated information should adequately rep-
resent the topology and the characteristics/metrics of the network.
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Delay and bandwidth are network-related metrics that are usually
aggregated along with the topology. In [4] a number of topology
aggregation techniques are presented: In the Symmetric approach
a set of nodes (a domain) is collapsed into a single virtual node. In
the Full-Mesh approach a logical link between each pair of border
nodes is used to build the aggregated topology. The Star approach
is an intermediate scheme, where a virtual node is connected over
logical links to border nodes. An important issue in topology ag-
gregation is the choice of the parameters that are aggregated along
with the topology. In [19] these parameters are distinguished into
three classes: additive, min–max and the combination of addi-
tive and min–max metrics (multi-criteria). Topology aggregation
based on such metrics is investigated in [20] using mainly the
Star approach, and considering only network-related parameters
(namely, delay and bandwidth). In the same context [20] presents
a topology aggregation scheme that is subject tomulti-criteria (de-
lay and bandwidth) constraints. Specifically, a transition matrix is
constructed containing the minimum information that describes
exactly the traversing characteristics of a domain, that is, the char-
acteristics of the paths connecting border (ingress–egress) node
pairs of the domain.

The idea of aggregation has also appeared in sensor net-
works [21,22], where it is often called data fusion, as a way to
reduce the amount of data transferred towards the sink node. Rel-
atively recently, information aggregation appeared as an interest-
ing topic in Peer-to-Peer (P2P) [23] and P2P Grid systems [24–26].
In [23] the authors present a distributed information management
system called Astrolabe, which continuously computes summaries
of the data collected from various resources (machines, sensors,
other devices), using on-the-fly aggregation. In this way the rate of
information flow at each participating node is bound, and indepen-
dent of system size. P2P Grids belong to the class of Desktop Grids,
and extend the applicability of Desktop Grid computing by adding
high parallel efficiency. In [24] the authors present an information
aggregation system for P2P Grids, focusing on the system’s archi-
tecture and the aggregation treemanagementmechanisms. In [25]
the authors are interested in trusted relations in P2P Grids and
for this purpose they propose a trust overlay network that mod-
els these relations. Through this network the peer trust scores are
collected and aggregated so as to yield a global reputation. In [26]
a scalable grid monitoring architecture is proposed that builds dis-
tributed aggregation trees on a structured P2P network. In general
the works [23–26] focus on the architecture and on the mecha-
nisms of the system performing the aggregation, while in the cur-
rent work we assume that such a mechanism/system is in place
and examine the aggregation operations performed for different
parameters, the applied aggregation policies and the effects they
have on scheduling efficiency. Also, our work applies to all kinds of
Grids and not specifically to Desktop Grids.

In addition, resource information aggregation and task schedul-
ing issues have been investigated in a few works, which focus,
however, on particular systems and under specific assumptions
[27–29]. In the Monitoring and Discovery System 2 (MDS2) [27,
28] resource management system, information from individual in-
formation providers (e.g., resources) is aggregated into collections,
where each collectionmay correspond to a different virtual organi-
zation (VO). [29] is a quite recent work where aggregated resource
information and scheduling issues are considered. It proposes two
aggregation policies (simple and categorized) and two scheduling
policies that use the aggregated information. In the current work
we are interestedmore in the parameters aggregated, in the opera-
tors used and in the policies applied to summarize them, while we
use a simple scheduling policy to evaluate the effects of the aggre-
gation on the scheduling efficiency. We also investigate the trade-
offs between the amount of information exchanged, the frequency
of updates required, and the quality of the aggregated information.
Our work is more general, and attempts to fill the gap between the
topology information aggregation works presented in [4,19] and
Grid computing.

Finally, we have presented part of this work in [30]; however,
here we extend it significantly by considering additional parame-
ters (e.g., time availability, network related parameters), by provid-
ing examples of using the aggregated information and by running
all the experiments in more realistic simulation conditions, mea-
suring additional metrics and providing new insights.

3. Problem formulation

Our aim is to design efficient and flexible aggregation schemes
that can be applied to Grids without a significant penalty on the
quality of the scheduling (and probably other) decisions taken
with the aggregated information. We formulate the problem in
a generic way, without assuming Grid Networks with specific
characteristics. The scheduling policies we assume are relatively
simple, since combining the aggregation schemes with a large set
of scheduling policies would obscure the focus on the aggregation
issues.

We consider a Grid consisting of N sites, partitioned according
to a hierarchical structure in a total of L domains Dj, j = 1, 2, . . . ,
L. Each site i, i = 1, 2, . . . ,N , has computational and storage
capacity Ci and Si, respectively, and belongs to one of the Ldomains.
Site i publishes its resource information as a vector Vi that may
contain various parameters:

Vi = (Ci, Si, . . .).
These vectors are collected per domain Dj and are published to

a higher level of the hierarchy, in the form of an information matrix
whose rows are the resource site vectors:

Mj =


V1
V2
...

V|Dj|

 =


(C1, S1, . . .)
(C2, S2, . . .)

...
(C|Dj|, S|Dj|, . . .)

 ,

where | · | denotes the cardinality of a set and 1, 2, . . . , |Dj|

are the sites contained in domain Dj. By performing appropriate
operations, to be discussed later, on the information vectors
contained in the information matrix, Mj is transformed into the
aggregated information matrix M̂j.

The Grid scheduling problem is usually viewed as a two-level
hierarchical problem. At the first level, called meta-scheduling, a
meta-scheduler allocates tasks to sites, while at the second level,
called local scheduling, each site schedules the tasks assigned to
it on its local computing elements. This is the approach followed
by many grid middleware systems, including gLite [31], where the
Workload Management System (WMS) selects the site where a
task will be executed and the local scheduler chooses theWorking
Node (WN) it will be executed on after reaching that site. Similarly,
in this paper scheduling is performed at two levels. At the higher
level a central scheduler decides the domain Dj a task will be
assigned to, and at the lower level a domain scheduler DS j, decides
the exact site in the domainwhere the taskwill be executed (Fig. 1).
Information collection and aggregation is performed, similarly, by
a two level monitoring system, consisting of a central monitor CM
and the domain monitors DM j, j = 1, 2, . . . , L.

A user located at some site generates tasks Tm,m = 1, 2, . . . ,
with computational workload Wm, that have to be scheduled and
then executed at a resource site.

4. Information aggregation

In this section we present the resource information parameters
of interest, the operators applied and the proposed aggregation
techniques.
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Fig. 1. A two-level hierarchical scheduling and monitoring system. Each domain j
has a domain scheduler DS j and a domainmonitor DM j , while there is also a central
scheduler CS and a central monitor CM.

4.1. Operational framework

In Algorithm 1 we present, in pseudocode, the sequence of
operations performed by the information collection mechanism
and the proposed aggregation scheme.

Algorithm 1 Resource information collection &
aggregation
1 Each site i, i = 1, 2, . . . ,N , belonging to some domain Dj

periodically or reactively (driven by information changes)
publishes its information vector Vi to the domain monitor
DM j.

2 Each domain monitor DM j, j = 1, 2, . . . , L, puts together
these vectors to form the information matrixMj.

3 Each domain monitor DM j, j = 1, 2, . . . , L, periodically or
reactively (when information changes) computes its
aggregated information matrix M̂j and publishes it to the
central monitor CM.

4 The CM collects the aggregated information matrices.

In Algorithm 2 we present the operations performed by a task
scheduling scheme that uses the aggregated information.

Algorithm 2 Task scheduling
1 Upon the arrival of a task Tm, the central scheduler CS

looks at the domain matrices provided by the central
monitor CM.

2 The central scheduler CS applies an optimization function
to the vectors contained in the domain matrices and
selects the information vector V that produces the largest
value.

3 The CS assigns the task Tm to the domain Dj, where the
vector V originated from, and forwards the task to the
domain scheduler DS j.

4 The domain scheduler DS j receives the task request and
selects the exact site the task will be scheduled on, using
exact resource information.

Generally, as the number of sites in a domain Dj increases,
the amount of information collected by the domain monitors
DM j also increases. Therefore, it is necessary for the information
contained in each domain information matrix Mj to be aggre-
gated/summarized. This is done by performing appropriate asso-
ciative operations (addition,maximization, etc.) on the parameters
of the sites’ information vectors, in order to transform the infor-
mation matrixMj into the aggregated information matrix M̂j, which
contains a smaller number of vectors than the original matrix. The
operators used for summarizing the information depends on the
types of the parameters involved.

Also, in Algorithms 1 and 2, we assume that resource infor-
mation is pushed to the central system (CS and CM) by the local
systems (DS and DM). Alternatively, the central system could also
pull periodically this information. The pull method (and any simi-
lar periodicmethod) is generally less efficient, since in this way the
various resource information changes are not immediately propa-
gated to the system taking the scheduling decisions. However, the
pull method (and any similar periodic method) results in smaller
traffic, since there is not information exchange between the lo-
cal and the central systems every time the information of the
resources change. On the other hand, as we will later on exhibit
(Section 5), by aggregating information it is possible to reduce the
number of times this information is advertised—pushed to the cen-
tral system after every change, reducing in this way the generated
traffic.

In what follows, we elaborate on the resource parameters of
interest, and the associative operators and aggregation techniques
proposed. We also present optimization functions that can be
applied by the CS to select the optimal information vector.

4.2. Information parameters and aggregation operators

The resource information parameters (both static and dynamic)
of interest in this work, the operators used for their aggregation
and the benefits we get for different choices of the operators are
discussed next:

• The computational capacities Ci of the sites, measured in
Million Instructions per Second (MIPS), in a domain Dj
can be aggregated by performing a minimum representative
operation, an additive operation or by averaging them:

Ĉj = min
i∈Dj

Ci, Ĉj =

−
i∈Dj

Ci or Ĉj = avg
i∈Dj

Ci.

Using the minimum representative operator we obtain the
minimum capacity of any site in the domain Dj, which would
be useful for conservative task scheduling. Using the additive
operator we obtain the total computational capacity in the
domain, which would be useful for scheduling when a task’s
workload is divisible, and can be assigned to different resources
simultaneously. Theminimization, the additive and the average
operators (and possibly other operators, such as maximization)
could all be used so that a number of capacity-related features
of the domain are recorded.

• The available (free) computational capacities FC i, measured in
MIPS, of the sites in domain Dj can similarly be aggregated by
performing aminimumrepresentative or an additive operation:

F̂C j = min
i∈Dj

FCi or F̂C j =

−
i∈Dj

FCi.

The storage capacities Si of the sites, measured in MB, in
a domain Dj can be aggregated by using the minimum
representative or the additive operation:

Ŝj = min
i∈Dj

Si or Ŝj =

−
i∈Dj

Si.

The first definition is useful when the data have to be stored
at a single site, while the second when the data of a task
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a b

Fig. 2. The aggregation of reservation duration information (availability), where (a) we use the AND Boolean operator to calculate the time periods during which all the
sites in domain Dj are reserved, (b) we use the OR Boolean operator to calculate the time periods during which at least on site in the domain is reserved.
can be stored in a distributed way across the domain. The
averaging operation could also be used, giving an indication of
the domain’s site storage capacities.

• The available (free) storage capacities FS i of the sites, measured
in MB, in a domain Dj can similarly be aggregated using a
maximization or an additive operation:

F̂S j = max
i∈Dj

FSi or F̂S j =

−
i∈Dj

FSi.

An averaging operation could also used for the free storage
capacities.

• The number of tasks Ni already assigned to the sites can be
aggregated over a domain Dj using an additive operation:

N̂j =

−
i∈Dj

Ni.

Other operators can also be used, such as the maximum
representative or the average number of tasks in the sites of the
domain.

• Some tasks require for their execution a number of datasets
stored at specific sites. If a dataset k exists in site i, we set Iik = 1;
otherwise, we set Iik = 0. This parameter is aggregated over all
sites in a domain Dj using a Boolean OR operator:

Îjk = OR
i∈Dj

{Iik}.

Thus, Îjk = 1 means that there is at least one site in domain Dj
that holds dataset k.

• The estimated time FT i in the future when a computational site
i will be freed, can be aggregated over all sites of domain Dj by
using a minimum representative operator:

F̂T j = min
i∈Dj

FT i.

Using this aggregated value the schedulerwill know the earliest
time at which some site in domain Dj will be free to execute a
new task.

• The sites’ reservation duration information (equivalently, their
time availability) can also be aggregated; reservation periods
are defined through the start times (ST ) and end times (ET ). In
this case aggregation cannot be performed using operators like
min, max, Σ on the reservation periods, since their aggregated
result would have little meaning for the scheduling algorithms.
Instead Boolean operators can be used in order to find the time
periodswhere, e.g., all the sites in the domain are free, or at least
one of them is free, etc.
In Fig. 2we consider three sites, S1, S2 and S3, belonging to a domain
Dj, and several reservation periods RPm,m = 1, 2, . . . , 6, that are
already scheduled with their corresponding start and end times. In
Fig. 2(a) we aggregate the reservation durations information of the
sites for the whole domain Dj, using the AND Boolean operator, so
as to obtain the time periods [intervals (ŜT 1, ÊT 1) and (ŜT 2, ÊT 2)
in Fig. 2(a)] during which all the sites in the domain are reserved.
This means that during the remaining time periods, there is at
least one resource that is idle and available (e.g., for reservation
or for executing new tasks). This information may be useful for
schedulers performing timed and advance resource reservations;
the schedulerwill avoid sending a reservation requestwith specific
start and end time requirements to a domain Dj whose sites
are all occupied during the corresponding period. In Fig. 2(b) we
aggregate the reservation durations information of all the sites of
the domain Dj, using the OR Boolean operator, so as to obtain the
time periods [intervals and in Fig. 2(b)] during which at least one
site is reserved. Thismeans that during the remaining time periods
all the sites in the domain are free. It is evident, that the aggregation
definition that uses the AND operator is more permissive than
the one using the OR operator, meaning that it reports more free
periods of time for the domain. With the second approach (OR
operator), it is possible that a reservation request is blocked even
though there are resources that can serve it.

Another issue regarding the sites’ reservation periods is how
this information can be efficiently recorded and the aggregation
operation be efficiently performed. Having several sites in a
domain with many reservation periods (STs and FTs) makes it
difficult to perform the operations described in Fig. 2. A known
approach for handling time is its discretization in constant slots,
and the introduction of an indicator variable for each time slot,
which is zero or one depending on whether the resource is free
or not, for the corresponding time period. This is the approach
also followed in [32] where the network resource’s availability is
captured through discretized availability information vectors, so as
to perform efficient resource reservation using exact information.
In particular, the algorithm calculates the availability information
vectors of paths using the corresponding vectors of the constituent
links. We can record the reservation duration information, or,
equivalently, the time availability Ai of a site i, as a binary array:

Ai[k] =

1, if a ST , FT period exists so that
(k − 1) · s ≥ ST & k · s ≤ FT

0, otherwise


,
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Fig. 3. Discretizing the availability information of two computational resources and then performing time aggregation using the OR operator.
Fig. 4. The single point aggregation technique, where the site vectors V1, V2, . . . , V8 of the eight sites of domain Dj are aggregated into a single vector. After aggregation the
domain Dj is described by a single vector V̂ .
whose size depends on the discretization step s. The time
availability array of a site is included in the site’s information
vector. Fig. 3 presents an example of first discretizing the time
availability information of two computational resources and then
performing time aggregation using the OR operator. The Boolean
operations are performed between the corresponding discrete
time periods. The aggregated availability of a domain Dj is denoted
by Âj.

The discretization of the time axis in steps of duration s re-
sults in some loss of information (unless all durations aremultiples
of s). The choice of the discretization step s introduces a tradeoff
between the amount of reservation information transferred, pro-
cessed and stored, and the accuracy of this information. A small
discretization step results in large vectors for the time availabil-
ity of the sites or domains, but provides good accuracy of the time
information represented. The opposite holds when the discretiza-
tion step is large. Also, in this study we assume that all sites use
the same discretization step, otherwise prior to the aggregation,
the availability vectors should be homogenized. In addition, in or-
der for time discretization and aggregation to operate efficiently
it is necessary that all sites are time synchronized (e.g., using the
Network Time Protocol, NTP) and that along with the availability
vectors, the sites also advertise the exact reference times they use.
Synchronization requirements of network equipment operating in
a packet network, dealing with the distribution of time and fre-
quency over a network of clocks, have been set by ITU-T [33].

In any case, the list of parameters and aggregation operators
defined above is only indicative of the different options that can be
used by the aggregation schemes. Other parameters and operators
can also be defined, depending on the needs of the applications and
the scheduling algorithms used.
4.3. Aggregation schemes

In this subsection we present aggregation techniques for
reducing the number of vectors in the information matrix Mj of a
given domain Dj.

4.3.1. Single point aggregation scheme
In the single point aggregation scheme, the information vectors of

the sites in each domain are aggregated into a single information
vector. Fig. 4 shows the application of the single point aggregation
technique, where the information matrix Mj that has |Dj| rows is
reduced to an aggregated information matrix M̂j that has only one
row:

Mj =


V1
V2
...
V8

 =


(C1, S1, . . .)
(C2, S2, . . .)

...
(C8, S8, . . .)


⇒ M̂j =


V̂


=


(Ĉ, Ŝ, . . .)


.

The information transferred to the higher levels is greatly
reduced using this aggregation technique, but this happens at
the expense of a degradation in the quality of the aggregated
information and in the value it has for the resource scheduler.

4.3.2. Intra-domain clustering aggregation scheme
In the intra-domain clustering aggregation technique, each do-

main Dj, j = 1, 2, . . . , L, is partitioned into hj ≤ |Dj| intra-domain
clusters. For the sites belonging to cluster l, l = 1, 2, . . . , hj, the ag-
gregated vector V̂l is calculated and sent to domain monitor DM j.
The aggregated information matrix M̂j containing the aggregated



P. Kokkinos, E.A. Varvarigos / Future Generation Computer Systems 28 (2012) 9–23 15
Fig. 5. The intra-domain clustering aggregation technique, where all site vectors belonging to an intra-domain cluster are aggregated into a single vector. The size of the
information matrixMj is reduced from |Dj| = 8 vectors to hj = 3 vectors in this example.
information vectors V̂l, l = 1, 2, . . . , hj, of the clusters, is sent to
the higher levels. Various approaches can be used for clustering the
sites of a domain:

• An appropriate clustering function can be applied to each
site’s information vector and the sites that yield closer values
are grouped together. The objective is to obtain intra-domain
clusters consisting of sites with similar characteristics so that
the aggregated information vector better represents the sites
in the intra-domain cluster. A special case of this is to define
the clusters based on a particular property or feature some sites
have.

• For Grids that support timed and advance reservations, the
clustering can be performed so as to maximize the time
periods during which the sites belonging to a given cluster are
(un)available (as indicated by their availability vector Ai). In
this way the aggregated availability vector Â of a cluster will
better describe the actual availability of the sites in that cluster.
In [34] a schedulingmethod is presented that increases the time
overlapping of the tasks (or reservation requests) assigned to
different sites and decreases it for tasks belonging to the same
site. We can use a similar method for performing the clustering
of the sites.

• The sites can be clustered randomly or based on other known
clustering approaches.

Fig. 5 shows the application of the intra-domain clustering
aggregation technique, where hj = 3 clusters are created in the
given domain Dj.

Mj =


V1
V2
...
V7
V8

 =


(C1, S1, . . .)
(C2, S2, . . .)

...
(C7, S7, . . .)
(C8, S8, . . .)


⇒ M̂j =

V̂1

V̂2

V̂3

 =

(Ĉ1, Ŝ1, . . .)
(Ĉ2, Ŝ2, . . .)
(Ĉ3, Ŝ3, . . .)

 .
The number of intra-domain clusters per domain influences the
amount of information passed to higher levels and the efficiency
of the scheduler’s decision.

4.3.3. Reducing aggregated information using domination relations
In this subsection we introduce the concept of dominated

resources to further prune the number of information vectors
processed by the domain monitors or the number of aggregated
information vectors processed by the centralmonitor. In particular,
we say that the information vectorV1 dominates information vector
V2, ifV1 is better thanV2 with respect to all the cost parameters. The
term ‘‘better’’ is interpreted differently based on the parameters of
interest.

For the sake of being specific, consider the information vectors
V1 = (C1, S1, FT 1) and V2 = (C2, S2, FT 2). We say that V1 domi-
nated V2 if the following conditions hold:

C1 > C2, S1 > S2 and FT 1 < FT 2.

Information vector V2 can then be discarded from further
consideration, since the site (or domain) characterized by V2 is
inferior to the site (or domain) characterized by V1 with respect
to all parameters of interest: it has smaller computational and
storage capacity and larger future time at which the resource will
be available for executing a new task. We should also note that in
the case of the time availability parameter (Section 4.2), a site A is
better than a site B, if A is available, for serving reservation requests
or tasks, for larger periods of time than B.

The domination relation assumes that all tasks generated have
the same notion about what is ‘‘good’’ and what is ‘‘bad’’ in terms
of resource characteristics. In other words, and more formally, the
only requirement is that the optimization function (to be discussed
in Section 4.4) that selects a resource for a task, based on the
parameters aggregated, is monotonic (increasing or decreasing,
it does not matter) with respect to the parameters involved.
For example, it would be reasonable to expect that tasks prefer
resources with large computational and storage capacity, and
large availability. In this case the application of such domination
relations is as described, without any assumptions about how
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Fig. 6. The border node—site pairs aggregation scheme, considering network,
computational and storage resources.

tasks are scheduled. Even if a class of tasks prefer, say, resources
with small storage capacity (for whatever reason), this case could
also be treated by defining differently the optimization criterion
to be used (which in this case would been the minimization of
storage capacity as opposed to maximization), and consequently
the domination relation should be modified.

Also, the domination relations can either be applied in the
vectors of a domain without any further processing, leading to a
standalone aggregation technique, or they can be applied along
with the single point and intra-domain aggregation techniques
presented earlier.

4.3.4. Border node—site pairs scheme
In this subsection we consider the integration of network and

grid information aggregation schemes. In general, there are several
differences between these schemes: The parameters of interest
are different (e.g., link delay versus computational capacity). Also,
in the network aggregation schemes each domain is represented
by a number of virtual links connecting physical border, ingress
and egress, nodes. In this way the transition matrix of the domain
is created, which contains the aggregated costs of traversing the
corresponding border node pairs [20]. On the other hand, in
the grid information aggregation schemes, virtual links between
resource and border nodes have also to be created, since a domain
can be the final destination of a task, where it is executed.

The border node—site pairs aggregation scheme, presented next,
incorporates both network (as in [19,20]) and resource (as in this
work) aggregation techniques. In this scheme, we first perform
resource information aggregation in the Grid, using one of the
techniques presented in Sections 4.3.1–4.3.3. Next, using concepts
similar to [19,20], we record virtual links between border nodes
and virtual sites (such a virtual link is presented in D4 of Fig. 6).
In the case of the single point aggregation technique, there will
be only one virtual site per domain, with virtual links connecting
each virtual site to border nodes. In the case of the intra-domain
clustering aggregation technique, there will be one virtual site per
intra-domain cluster, with virtual links connecting each virtual
site to border nodes. Each border node—site pair is characterized
by a vector consisting of the virtual site’s aggregated resource
characteristics and the virtual link’s network related parameters.
For example, a border node—site pair can be characterized by the
following vector:

V̂u,v = (Ĉv, Ŝv, . . . , d̂u,v, b̂u,v),
where d̂u,v is the delay of the virtual link (u, v) and b̂u,v is its
bandwidth. The delay d̂u,v of the virtual link can be defined as the
maximum delay of any path connecting border site u to any site
v in the domain (or any site v in the corresponding intra-domain
cluster), while its bandwidth b̂u,v can be defined as the minimum
bandwidth of any path connecting the border node u to any site
v of the domain (or any site v in the corresponding intra-domain
cluster).

In this way every domain is characterized by two matrices:
Matrix M̂ contains network information on the virtual links
connecting the border nodes of the domain with its virtual sites.
It also contains resource information (computational and storage
capacity, etc.) on these virtual sites, representing the aggregated
resources in the domain. Matrix B̂ contains network information
(delay and the bandwidth) on the virtual links connecting the
border nodes of that domain.

M̂ =

V̂u,v


=


(Ĉu, Ŝu, . . . , d̂u,v, B̂u,v)


,

and

B̂ =


(d̂u,u′ , B̂u,u′)


.

Each candidate path–domain pair is viewed as a sequence
of consecutive border–border node pairs until the final pair
consisting of a border node–site pair, belonging to the domain
where the task will be executed. Fig. 6 shows the route followed
by a task and its accompanying data from the task’s originating
user to the virtual site where the task will be executed. For the
intermediate domains D2 and D3, border–border node pairs are
selected, while for the final destination domain D4 a border node—
site pair is selected.

4.4. Domain selection optimization functions

Upon the arrival of a new task, the central scheduler CS
selects a proper domain Dj for its execution, and forwards the
task request to the corresponding domain scheduler DS j who
assigns it to a specific site in that domain. The CS uses aggregated
information collected by the central monitor CM, while DS j uses
exact resource information in order to make its corresponding
scheduling decisions. The CS performs the following operations
in order to select the appropriate domain for a task’s execution
(similar are the operations performed by a DS to select the
appropriate site for a task’s execution):
1. It discards all aggregated information vectors that do not satisfy

the task requirements. For example, if the task Tm at hand
requires more storage, or if its starting time is earlier that the
finish time F̂T specified in an aggregated information vector V̂ ,
then this vector is discarded.

2. An optimization function is applied to the remaining vectors
V̂ and the domain giving the optimum value (minimum or
maximum, depending on the function’s definition) is selected.

A number of different optimization functions can be applied in
the second step. For example, consider the aggregated information
vector
V̂j = (Ĉj, Ŝj, N̂j) = (1000, 200, 5)
belonging to domain Dj, which was created using the single point
aggregation scheme.

Using the optimization function

f (V ) =
N

C · S
,

we favor domainswith large computational and storage capacities,
and small numbers of already assigned tasks, getting:

f (V̂j) =
5

1000 · 200
.
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Fig. 7. A multi-level hierarchical network.
This value is then compared to the values produced by the other
candidate aggregated information vectors. Note that for different
users (or VOs) we can use different optimization functions for
selecting the domain or site where tasks will be executed based
on their quality of service requirements.

In addition if the optimization function used is monotonic
in each of its parameters, it implicitly defines a domination
relationship (see Section 4.3.3) that helps reduce the amount of
information kept after aggregation. For example, if the information
vector is Vj = (Cj, Sj, FT j) and f (Vj) is an increasing function of
the capacity Cj and the storage Sj and a decreasing function of
the finish time FT j, then we implicitly obtain the domination
relationship given in Section 4.3.3, since there is no reason to
keep information about sites (or domains) that are inferior than
otherswith respect to all parameters of interest (because such sites
are not going to be optimal for the given optimization function
and, thus, they will not be selected). If different and contradictory
optimization functions, however, are used for selecting the site
on which different tasks will be executed, then a domination
relationship is not defined. For example, if for some tasks we want
to use a policy (equivalently, optimization function) that selects the
site with the minimum finish time (FT ), while for some other tasks
we prefer to use a policy that selects the site with the maximum
finish time (FT ), then no site can be dominated and eliminated
from further consideration due to its FT parameter. In this paper
wedonot consider contradictory optimization functions, assuming
that is natural to want to minimize the delay incurred for serving
a task, and therefore selecting a site with a small FT parameter,
or equivalently, using an optimization function that is decreasing
with the finish time.

5. An example of the applicability of the grid resource
information aggregation

The proposed aggregation schemes have been presented
assuming a simple two-level hierarchy (Fig. 1); however, they
can also be applied in multi-level hierarchical Grid Networks,
organized in domains and subdomains, like the one presented
in Fig. 7. In such a network, the monitoring and scheduling
process is performed in a distributedmanner, and resource-related
information is advertised from sub-subdomains (e.g., D4.1.1 and
D4.1.2) to subdomains (D4.1) where it is aggregated. Subdomains
(e.g., D4.1 and D4.2) publish their aggregated information to
domains (D4), where again it is aggregated. Finally, domains
advertise their aggregated information to each other. This is similar
to the way routing information is collected in a hierarchical data
network.

When a task is created in a domain (say, D3), the corresponding
domain scheduler (DS3) uses the domain information matrices
(M̂1, M̂2, M̂3, M̂4) to select a domain for the task’s execution.
Using an optimization function, as described in Section 4.4, the
domain scheduler selects the domain (say, D1) where the task
will be executed and forwards it to the corresponding domain
scheduler (DS1). The domain scheduler then chooses in a similar
way one of its subdomains (e.g., D1.2) and forwards the task to
the corresponding subdomain scheduler (DS1.2). This procedure is
repeated until the task reaches a site, and is reminiscent of theway
packet routing is performed in hierarchical data networks. Also,
we should note that it is possible, due to the aggregation of the
resources information, for a task to reach a subdomain where the
corresponding scheduler finds it impossible to schedule it at the
lower levels of the hierarchy. This can be the case when the task’s
hard requirements cannot be satisfied. In this case the task can
either be dropped, or it can backtrack up the hierarchy, searching
for a different candidate subdomain.

Referring again to Fig. 7, we proceed with an example of in-
formation aggregation, to indicate that this approach can lead to
significant information exchange reduction in the network. Specif-
ically, we assume that each site i is characterized by an information
vector, which records (among others) the availability of the data 1
in the site (as indicated by I1) and that the OR Boolean operator
is used for the aggregation of this information. If sub-subdomain
D1.2.1 ‘‘loses’’ for some reason dataset 1, resulting in I1 = 0, while
for subdomain D1.2.2I1 = 1, then when this information is prop-
agated to domain monitor DM1.2, the corresponding information
vector V̂1.2 does not change (I1 = 1) and, consequently, it does not
need to be propagated to the network. In the performance evalua-
tion section that follows, wemeasure the frequency of information
vector changes/updates that result from the changes in the corre-
sponding resources’ dynamic characteristics.

In this paper we assume that the resources in all domains
use the same information vectors, the same operators for their
aggregation, and the same optimization metric for selecting, first,
the domain (using aggregated information) and, next, the resource
in that domain (using exact information). In a multi-domain
environment (like the multi-level hierarchical network presented
in Fig. 7), these assumptions do not always hold, and the resources
in each domain (cluster, organization, virtual organization, etc.)
may use different information parameters, or different operators
for their aggregation and/or apply different optimization metrics
for the selection (using exact information) of a site in the domain.
For example, consider the scenario where the computational
capacities of the resources in a domain are aggregated using the
addition operator, while in another domain they are aggregated
using the max operator. In this case, the scheduler will use an
optimization metric for deciding the domain where a task will be
executed, even though the aggregated information of the various
domains is of a different type (sumormax). Aggregation can still be
performed in this case (using the same methods, e.g., single point,
as the ones proposed here), but with less efficiency. This shows the
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need for open and broadly acceptable standards that would agree
on the parameters, the operators and methods to be used. It is also
possible to add another level of hierarchy (e.g., in Fig. 1), clustering
together domains that follow the same aggregation approach
(i.e., using the same standard). Another approach (see the related
Fig. 7)would be to use the same aggregation operators, parameters,
methods for subdomains belonging to the same hierarchical level
(e.g., 5.1.x), of the same or not main domain (e.g., 5). In any case,
we expect, that this diversity (of parameters, operators, methods)
will degrade the quality of the aggregated information (in terms
of the efficiency of the scheduling decisions taken) in comparison
to the case (assumed in the paper) where there is uniformity in
the aggregation operators, parameters and methods used. This is
also supported by the performance results to be given in the next
section.

6. Performance evaluation

We performed simulations in order to evaluate the proposed
aggregation operators and techniques, and to examine the effects
of information aggregation on the quality of the scheduling
decisions

6.1. Simulation environment

In the experiments we did not use an existing simulator
but created a new simple simulation environment, tailored to
the evaluation needs for the aggregation schemes. The simula-
tion framework attempts to abstract the characteristics of any
distributed computation environment. In this way, we concentrate
on the important issues of aggregation,without having to dealwith
the full complexity of a Grid system that would involvemanymore
parameters and would obscure the picture. Through this simula-
tion environment we create several computational resources, with
different characteristics that belong to different domains. We as-
sume that there is a central scheduler for all the Grid and local
schedulers for each domain. After defining the exact characteristics
of the Grid Network, a large number of tasks with varying charac-
teristics are created and are submitted to the central scheduler. The
rest of the operations performed by the simulator are the same as
those described in Section 4.1.

In the proposed aggregation schemes the information consid-
ered for aggregation can be any set of parameters and aggrega-
tion operators. For the simulations, however, we had to choose
only a few representative parameters so that the results are eas-
ier to present and interpret. The three parameters (computational
capacity, number of tasks queued and the time availability of the
resources) chosen for the simulations are representative of other
Grid related parameters. The computation capacity is a static char-
acteristic and is similar in nature to other static parameters, such
as the number of CPUs of a resource, its storage capacity, its cost of
use, etc. The number of tasks queued is a dynamic characteristic,
and is similar to other dynamic parameters, such as the percentage
of CPU used, the free storage capacity and other. The time availabil-
ity is also a dynamic characteristic that is, however, more difficult
to deal with and perhaps more interesting than the other two pa-
rameters. This parameter is important in data and Grid Networks
when performing in advance reservation of resources; a large re-
search field where aggregation can have many applications.

We consider a number of sites that are randomly grouped into
domains, each having an approximately equal number of sites.
Site i is characterized by its computational capacity Ci, measured
in MIPS and chosen from a uniform distribution UC. In our sim-
ulations, tasks (or reservation requests) are created with expo-
nentially distributed interarrival times with mean I , while their
workload (or duration) follows a uniform distribution UW. A task’s
execution time and reservation duration of the corresponding
resource, depend on the resource’s computational capacity and the
task’s workload. Also, in this paper, each reservation request is
made for the whole resource and it has a certain duration specifi-
cation, independently of the resource it is assigned on. The tasks
(or reservation requests) are submitted to the central scheduler
that makes its decisions using either complete or aggregated re-
source information. In the simulation results we do not consider
the effects of the information propagation delay, assuming that re-
source information (aggregated or not) is not outdated by the time
it is used by the scheduler due to the delay between measuring
some parameter and the moment the measured value is available
to the scheduler. However, we believe that in practice the aggrega-
tion operation can reduce the negative effects of this delay, since
summarized information is usually less affected by the change in
the values of the parameters measured. Also, in each scenario ex-
amined, we alter a number of parameters, such as the number of
domains, the number of sites, the minimum or maximum values
of the uniform distributions, and we average the measured values
over a number of simulation rounds using independent random
seeds. Network related issues are not considered in these simula-
tion experiments.

Users generate either tasks or reservation requests.We consider
two cases respectively, regarding the sites’ information vectors:

• The information vector Vi of site i contains its computational
capacity Ci and the number of tasks Ni queued at it:

Vi = {Ci,Ni}.

In case no aggregation is used a new task Tm is assigned to the
site i that minimizes

min
i


Ni

Ci


.

In case where aggregation is used then the central scheduler
CS uses only the aggregated domain information vectors, and
assigns task Tm to the domain Dj that minimizes

min
j


N̂j

Ĉj


.

Next, the selected domain’s scheduler, DS j, receives the task
and assigns it to a domain site, having complete knowledge
of the information vectors of all the sites in the domain. The
assignment is again performed based on the same optimization
function:

min
i∈Dj


Ni

Ci


.

• The information vector Vi of site i contains only its time
availability array Ai. In case no aggregation is used a reservation
request (ST, FT) is assigned to first the site ifound, which can
satisfy it. By the term ‘‘satisfy’’ wemean that the resource is free
at the corresponding time period. In case where aggregation is
performed then the central scheduler CS assigns, using only the
aggregated domain information vectors, a reservation request
(ST, FT) to the domain Dj that can satisfy it. Next, the selected
domain’s scheduler DS j, receives the request, and, having
complete knowledge of the information vectors of all the sites
in the domain, assigns it to any domain site that can satisfy it.

6.2. Aggregation schemes evaluated

We implemented and evaluated the performance of the
following schemes:

• FlatCpuTasks: In this scheme no information aggregation is
performed of the sites’ computational capacity and number of
tasks parameters.
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• MinCpuSumTasks: In this scheme the information vectors of the
sites belonging to the same domain are aggregated (single point
aggregation—Section 4.3.1) using the minimum representative
and the additive operators, respectively:

Ĉ = min
i

Ci and N̂ =

−
i

Ni.

• MinCpuMaxTasks: This scheme is similar to the MinCpuSum-
Tasks, except that themaximum representative operator is used
for aggregating the number of tasks in the sites of a domain:

N̂ = max
i

Ni.

• MinCpuAvgTasks: This scheme is similar to theMinCpuSumTasks,
except that the average number of tasks in the sites of the
domain, is used as the domain’s aggregated value for the
corresponding property:

N̂ = avgiNi.

• DomMinCpuSumTasks: This scheme is similar to the MinC-
puSumTasks, except that domination relations (Section 4.3.3)
are applied to the vectors of the sites of a domain, before they
are aggregated using the single point aggregation scheme.

• ICMinCpuSumTasks: This scheme is similar to the MinCpuSum-
Tasks, except that the intra-domain clustering aggregation
scheme (Section 4.3.2) is applied, instead of the single point one,
where sites are randomly clustered into intra-domain clusters.

• FlatTime: In this scheme no information aggregation is per-
formed on the sites’ time availability parameter.

• AndTime: In this scheme the sites’ time availability arrays are
aggregated using the AND Boolean operator:

Â = AND
i

(Ai).

• OrTime: In this scheme the time availability arrays are
aggregated using the OR operator:

Â = OR
i
(Ai).

6.3. Performance metrics

We are interested in evaluating the degree to which the
information produced by the proposed aggregation schemes leads
to efficient scheduling decisions, while the size and the frequency
of the information updates is kept low.

For the evaluation of the MinCpuSumTasks, MinCpuMaxTasks,
MinCpuAvgTasks, DominanceMinCpuSumTasks, and ICMinCpu-
SumTasks aggregation schemes we use the Stretch Factor (SF),
as the metric that measures the scheduling efficiency and in
practice the quality of the aggregated information. The Stretch
Factor is defined as the ratio of the task delay D when
the task is scheduled using complete resource information
(FlatCpuTasks) over the task delay when an aggregation scheme
is used (MinCpuSumTasks, MinCpuMaxTasks, MinCpuAvgTasks,
DominanceMinCpuSumTasks, or ICMinCpuSumTasks). The task
delay is defined as the time that elapses from the task’s submission
to the Grid until the completion of its execution at a site. A stretch
factor metric is also encountered in the hierarchical networks
related literature [4], where it is defined as the ratio of the
average number of hops (or average delay) between a source and a
destination when flat routing is used over the corresponding value
when hierarchical routing is used. The Stretch Factor (SF) metrics
we use in this paper are calculated using the following expression:

SF aggregation_scheme =
DFlatCpuTaks

Daggregation_scheme
.

In all cases SF ≤ 1, since when a scheduler has complete re-
source information, it can make better decisions than when this
information is aggregated. An aggregation technique is efficient
when its corresponding SF is close to 1.
For the evaluation of the AndTime and OrTime aggregation
schemes, we use the number of reservation requests that were
not scheduled (blocked), as the metric that characterizes the
quality of the aggregated information. The measured values are
of course compared with the ones produced in the case where
no aggregation is performed (FlatTime). A reservation request is
blocked when no free time space is found either because there is
no available resource or because the aggregation scheme led to the
selection of an overused domain.

In the experiments, for all the aggregation schemes, we
also measure the frequency of changes/updates caused to the
aggregated information vectors (of the domains) due to the
scheduling of new tasks. This metric is measured as the number of
aggregated information vector changes over the number of tasks
scheduled; its value is always ≤1, where a value close to 1 means
that the aggregated information vectors change frequently. Since
the evaluated aggregation schemes (Section 6.2) consider only one
dynamic parameter (either the number of tasks scheduled in each
site or the site’s time availability), the information vector of a site
changes only if a new task or reservation request is scheduled
on it. In general, we expect that by using aggregated resource
information, the changes in the dynamic characteristics of the
resources will not always propagate to the central monitoring
system, since aggregated information vectors will sometimes
absorb these changes. In the experiments, we do not directly count
the number of information vector changes due to tasks completing
execution (or reservation); these are counted indirectly when a
new task is scheduled and the information vectors are checked
for changes. An additional metric used for the evaluation of
the aggregation schemes is the number of information vectors
produced and sent to the central scheduler in order to make its
decisions. In this case, we assume that the central scheduler has
no a priori knowledge of the sites/domains information and all the
corresponding vectors (changed or not) are sent to it.

6.4. Aggregating computational capacity and number of tasks

6.4.1. Aggregation schemes
Fig. 8 presents the Stretch Factor (SF) for the MinCpuSumTasks,

the DomMinCpuSumTasks and the ICMinCpuSumTasks aggrega-
tion schemes when 1000 Grid sites are clustered in a variable
number of domains and 25000 tasks are created and scheduled.
The sites’ computational capacity and the tasks’ workload fol-
low uniform distributions (UCmin/max = 10/10000 MIPS and
UWmin/max1000/10000000 MI respectively). In general, all the
stretch factor metrics measured behave similarly, that is, their
value first decreases up to some point, after which it starts in-
creasing towards 1. This is becausewhen the number of domains is
small, then the number of sites per domain is quite high, increas-
ing the probability that more than one ‘‘best’’ sites or sites simi-
lar to the ‘‘best’’ site exist in different domains. This increases the
probability that a domain with such a site will be chosen, even if
aggregation is used. Next, as the number of domains increases, this
probability decreases and the stretch factors also decrease. After
some point, as the number of domains increases and the number
of sites per domain decreases, the quality of information produced
by the aggregation schemes improves. This is because when there
are few sites per domain, the aggregated information better repre-
sents the characteristics of its sites.

Comparing the different aggregation policies we observe that
the ICMinCpuSumTasks produces the best results, followed by
the DomMinCpuSumTasks and the MinCpuSumTasks aggregation
policies. The ICMinCpuSumTasks aggregation scheme uses h = 5
intra-clusters in each domain and its use leads to better scheduling
decisions (as measured by the corresponding stretch factor),
however this comes at the cost of increased number of information
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Fig. 8. The Stretch Factor (SF) for the MinCpuSumTasks, the DomMinCpuSumTasks
and the ICMinCpuSumTasks aggregation schemes, when 1000 Grid sites are
clustered in a variable number of domains and 25000 tasks are created and
scheduled.

Table 1
The number of information vectors produced by each aggregation scheme for the
central monitor (Fig. 1), when N = 1000 sites are clustered in L = 100 domains.

Aggregation scheme # of information vectors

FlatCpuTasks N = 1000
MinCpuSumTasks L = 100
DomMinCpuSumTasks L = 100
ICMinCpuSumTasks (h = 5 intra-domain clusters) L · h = 500

vectors advertised (Table 1). Reducing the number of intra-domain
clusters, reduces the number of information vectors produced, but
also reduces the quality of the information provided (as measured
by the corresponding stretch factor). In addition, it seems that
the domination operation, which discards dominated information
vectors, improves the quality of the information provided to the
scheduler. Also, we observe that the average task delay results,
using the MinCpuSumTasks, the DomMinCpuSumTasks and the
ICMinCpuSumTasks aggregation algorithms, are in accordance
with the results presented in Fig. 8, that is they are essentially each
other’s inverse. A large task delay indicates that the information
produced by the corresponding aggregation scheme, leads to
wrong task scheduling decisions. Table 1 shows the number of
information vectors provided by each scheme when 1000 sites are
clustered in 100 domains.

Fig. 9 illustrates the frequency with which the aggregated
information vectors change. Since, the evaluated aggregation
schemes (Section 6.2) consider only one dynamic parameter (that
is, the number of tasks scheduled in each site), this means that
the information vector of a site changes only if a new task is
scheduled into it. We observe that the MinCpuSumTasks and
ICMinCpuSumTasks aggregation schemes result in a large number
of updates, almost equal, in most cases, to the maximum one.
On the other hand using the DomMinCpuSumTasks aggregation
scheme, we observe that when the number of domains is small,
and as a result many sites exist in each domain, the domination
operation achieves in absorbing a large percent of the changes in
the sites’ information vectors. As the number of domains increases
and fewer sites exist in eachdomain, this capability declines almost
linearly.

We also performed several other experiments altering the
number of sites, the number of tasks created or their creation
pattern. We omit presenting these results, since the conclusions
and observations obtained were similar to the above.

6.4.2. Distribution of values
Fig. 10(a) shows the results obtained for the MinCpuSumTasks

aggregation scheme when changing the upper and lower limits
Fig. 9. The frequency of information vector updates for the FlatCpuTasks,
the MinCpuSumTasks, the DomMinCpuSumTasks and the ICMinCpuSumTasks
aggregation algorithms, when 1000 Grid sites are clustered in a variable number
of domains and 25000 tasks are created and scheduled. The lines corresponding
to MinCpuSumTasks, ICMinCpuSumTasks and FlatCpuTasks are indistinguishable,
since they fall on top of each other.

of the uniform distributions assumed for the computational
capacities of the sites (UC) and for the tasks’ workloads (UW ). This
way we investigate the effects that the uniformity of the resources
(or lack of it) have on performance. The scenarios/probabilistic
distributions used are presented in Table 2; in our previous
experiments we have assume the UC4/UW4 scenario. In general,
all the stretch factor metrics measured behave similarly, that
is, their value first decreases up to some point, after which it
starts increasing towards 1. This was also observed and explained
previously for Fig. 8. The main observation in Fig. 10(a) is that
the stretch factors measured increase along with the contraction
of the UC and UW distributions. This is because as the these
distributions contract, the number of possible information vectors
and their differences also decrease; for example the number of
different information vectors that theUC1/UW1 scenario produces
is smaller than the ones produced by the UC2/UW2 scenario
and so on. When the number of possible information vectors is
small and their differences are also small, then the aggregation
policies applied do not distort much the value of the information
of the sites in the domain. Fig. 10(b) shows the frequency of
updates for the MinCpuSumTasks aggregation algorithm and for
the uniform distribution scenarios presented in Table 2. Again,
when the number of possible information vectors is small (e.g., for
the UC1/UW1 scenario) then the number of updates is also small.
Corresponding experiments were performed for all the proposed
aggregation schemes, producing similar results.

6.4.3. Aggregation operators
We also preformed experiments, evaluating different operators

for the aggregation of the number of tasks parameter. The
results illustrate the importance that the resource parameters
and the aggregation operators have on the efficiency of the
aggregation schemes. In our previous experiments, we were
using the Sum operator (MinCpuSumTasks policy), while next
we present experiments also using the Avg (MinCpuAvgTasks
policy) and the Max (MinCpuMaxTasks policy) operators (Fig. 11).
We observe that the MinCpuSumTasks and the MinCpuMaxTasks
aggregation policies, produce the best results (in terms of the
stretch factors achieved). On the other hand the MinCpuAvgTasks
policy results in a smaller frequency of information vector updates
than the other policies. We should note that the average number
of tasks, aggregated parameter, is rounded to an integer value
and this is the main reason for the small number of updates
achieved. Also, the MinCpuMaxTasks policy also achieves a small
frequency of information vector updates. In any case, the frequency
of updates increases along with the number of domains, since in
this way fewer sites exist in each domain.
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Table 2
The scenarios UC/UW, correspond to different choices for the upper and lower limits
of the uniform distributions assumed for the computational capacities of the sites
and the tasks’ workload.

Scenario Computational capacity (min/max) Task workload (min/max)

UC1/UW1 10/10 1000/100000
UC2/UW2 10/100 1000/1000000
UC3/UW3 10/1000 1000/10000000
UC4/UW4 10/10000 1000/100000000
UC5/UW5 10/100000 1000/1000000000
a b

Fig. 10. The Stretch Factor (SF), (b) the frequency of updates for the MinCpuSumTasks aggregation algorithm and for the uniform distribution scenarios presented in Table 2,
when 1000 Grid sites are clustered in a variable number of domains and 25000 tasks are created and scheduled. In (b) the lines corresponding to all scenarios, except
UC1/UW1, are indistinguishable, since they fall on top of each other.
a b

Fig. 11. (a) The Stretch Factor (SF), (b) the frequency of updates for the MinCpuSumTasks, the MinCpuAvgTasks and the MinCpuMaxTasks aggregation algorithms, when
1000 Grid sites are clustered in a variable number of domains and 25000 tasks are created and scheduled.
6.4.4. Experiments performed with real traces
In order to verify our findings we also performed experiments

using real traces found in Grid Workloads Archive [35], and
collected from the Grid’5000 infrastructure. Grid’5000 is an
experimental Grid platform consisting of 9 sites geographically
distributed in France. Each site comprises one or several clusters,
for a total of 15 clusters inside Grid’5000. There are mainly
two kinds of traces provided, both containing the same (for our
purposes) information and referring to the same time period of
about 1 year and a half, of Grid Network operation. The first
contains detailed information on the tasks’ execution, such as the
site where the execution took place, the submission time, the
queuing time, the execution time, the average CPU time used,
the memory used and other parameters. The second trace file
contained information on the computational resource reservations
performed by the users, that is, their start and finish times. From
these traces we extracted information regarding the submitted
tasks, their order and their duration, which was converted to
workload measured in MIPS based on a baseline computational
resource. We believe this kind of information is sufficient to
provide a more realistic setting for the simulations.

Fig. 12 presents the stretch factor obtained for theMinCpuSum-
Tasks, the DomMinCpuSumTasks and the ICMinCpuSumTasks ag-
gregation algorithms when 1000 Grid sites are clustered in a vari-
Fig. 12. The Stretch Factor (SF) for theMinCpuSumTasks, theDomMinCpuSumTasks
and the ICMinCpuSumTasks aggregation algorithms, when 1000 Grid sites are
clustered in a variable number of domains and tasks based on data collected from
the Grid’5000 infrastructure are created and scheduled.

able number of domains. We observe that our findings with real
traces are similar qualitatively to those presented in Fig. 8. All
the stretch factor metrics measured behave similarly, that is, their
value first decreases up to some point, after which it starts in-
creasing towards 1. The ICMinCpuSumTasks aggregation policy
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a b

Fig. 13. (a) The percentage of blocked/failed reservation requests, (b) the frequency of updates for the FlatTime, AndTime and OrTime aggregation algorithms, when 1000
Grid sites are clustered in a variable number of domains and 25000 reservation requests are created and scheduled.
produces the best results, while the MinCpuSumTasks and Dom-
MinCpuSumTasks similar (probably due to the tasks’ characteris-
tics, e.g., workload distribution).

6.5. Aggregating reservation periods

Fig. 13(a) presents the percentage of blocked/failed reservation
requests for the FlatTime, AndTime and OrTime aggregation
schemes, when 1000 Grid sites are clustered in a variable number
of domains and 25000 reservation requests are created and
scheduled. The FlatTime scheme’s results, where no aggregation
is actually performed, are our baseline results; all the reservation
request blockings under this scheme are because no available
resources were found to serve them.We observe that the AndTime
aggregation scheme produces very good results, close to those
achieved by the FlatTime, while the OrTime scheme exhibits a very
large number of blockings. This is mainly because the OR operator,
used in the aggregation of the sites’ availability information, is
quite restrictive, since fewer free periods of time are reported for a
domain than those actually existing in its sites. As a result, requests
are easily blocked even though there are available resources to
serve them. As the number of domains increases and the number
of sites per domain decreases, the quality of information produced
by the aggregation schemes improves, and fewer requests are
blocked. Fig. 13(b) presents the frequency of information vectors
(and in particular of the availability arrays) updates due to the
service of new reservation requests. This number is constant for the
FlatTime scheme, where the set of vectors are updated every time
a new request is served. Also, we observe that the OrTime scheme
results in fewer updates than the AndTime scheme, mainly due to
the nature of the AND and OR operators.

7. Conclusions

We proposed several techniques for resource information ag-
gregation in Grid networks. Each site is assigned a parame-
ter/information vector that records its computation and storage
capacity, its time availability, the number of tasks queued and
other parameters of interest. The information vectors of the sites
belonging to a given domain are aggregated into a small number
of vectors, using appropriate associative operations.We performed
several simulation experiments using the Stretch Factor (SF ) as the
main metric for judging the extent to which the proposed aggre-
gation schemes preserve the value of the information aggregated
and assist the scheduler in making efficient decisions. The SF is de-
fined as the ratio of the task delay incurred when scheduling based
on complete resource information over that incurred when an ag-
gregation scheme is used. We observed that in many scenarios the
proposed aggregation schemes enabled efficient task scheduling
decisions as indicated by the SF achieved, while achieving large
information reduction. We looked into the frequency of informa-
tion vector updates resulting from the aggregation schemes, and
observed that the changes in the dynamic characteristics of the re-
sources will not always propagate to the central monitoring sys-
tem, since aggregated information vectors sometimes absorb these
changes. We also observed that the uniformity of the sites’ and the
tasks’ characteristics significantly affects the quality of the aggre-
gated information. Finally, we performed experiments aggregating
the time availability information of the sites and concluded that us-
ing the AND operator for the aggregation can be quite beneficial.
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