
An Open and Integrated Management Platform for
Wireless Sensor Networks

M. Kalochristianakis, v. Gkamas, G. Mylonas, s.
Nikoletseas, E. Varvarigos

Research Academic Computer Technology Institute,
Department of Computer Engineering and Informatics,

University of Patras, Rio, Greece
{kalohr, vgkamas, mylonasg, nikole, manos}@cti.gr

Abstract- We present the conceptual basis and the initial
planning for an open source management architecture for
wireless sensor networks (WSN). Although there is an abundance
of open source tools serving the administrative needs of WSN
deployments, there is a lack of tools or platforms for high level
integrated WSN management. This is because of a variety of
factors, including the lack of open source management tools, the
immaturity of tools that offer manageability for WSNs, the
limited high level management capabilities of sensor devices and
architectures, and the lack of standardization. The current work
is, to our knowledge, the first effort to conceptualize, formalize
and design a remote, integrated management platform for the
support of WSN research laboratories. The platform is based on
the integration and extension of two innovative platforms:
jWebDust, a WSN operation and management platform, and
OpenRSM, an open source integrated remote systems and
network management platform. The proposed system
architecture can support several levels of integration
(infrastructure management, functionality integration, firmware
management), corresponding to different use-cases and
application settings.

Keywords- remote management, wireless sensor networks,
pervasive communications, open source.

I. INTRODUCTION

Wireless sensor networks typically consist of spatially
distributed autonomous devices that use sensors to
cooperatively monitor physical or environmental conditions,
such as temperature, sound, vibration, pressure, motion,
acceleration or pollutants, at different locations. They are
typically being used in the scientific, medical, commercial, and
military domains in order to perform sensing and monitoring in
the physical world, such as habitat monitoring, object tracking
industrial automation, fire detection, traffic monitoring, etc.
The effective and flexible integration of sensory systems with
interconnection networks and grid technologies is a critical step
towards developing major pervasive computing and
communication services and applications. Because of sensor
network inherent characteristics such as heterogeneity, limited
bandwidth and energy constraints, WSN management and
monitoring architectures need to:

• provide a wide range of services so as to cover the whole
spectrum of supported WSN architectures

J. Rolim
Department of Computer Science,
University of Geneva, Switzerland

rolim@cui.unige.ch

• minimize the overall implementation effort and manage
WSNs uniformly to the degree possible

• reduce the needs for network administration and sensor
node software management

• expose web interfaces for WSNs management

Most management tools for WSNs provide network
management functionality; they primarily support visualization
based on collecting data from the network of sensors using data
logging on a designated WSN gateway node. The nodes poll
their sensors at a user-configurable sampling rate and send
them to the gateway using multi-hop protocols; readings from
the network are typically stored in a relational database for
further processing. Most tools that rely on mechanisms such as
the above must be considered monitoring or supervisory tools
rather than management tools, since they lack functionality for
sensor state change or WSN configuration. Moreover, such
tools are typically installed and configured to monitor a single
WSN installation.

A lot of administrative and management tasks that are
typically supported by standard management tools for
workstations would be valuable to WSNs operators and
administrators. Such tasks are:

• multiple WSNs management and monitoring

• web-based control

• remote command execution or remote configuration

• software / firmware upgrade

• reporting

• grouping

An integrated management platform for WSN must
include all the above tasks. The scenery of open source tools
for WSN management is analogous to the one for remote
management of general systems, in terms of product maturity
and market fragmentation. There are very few integrated
management systems offered with open source licensing
schemes and none of them offers WSN interfacing.

This paper presents an architecture that is capable of
delivering remote management functionality to wireless sensor
networks. The idea is based on the combination of jWebDust



[1], a software environment that allows the implementation of
customized applications for wireless sensor networks, and
OpenRSM [2], one of the very few open source remote
management platforms. In order to bring management to WSN,
it is essential to automate routine WSN practice. jWebDust
provides WSN management functionality, including querying,
monitoring, data logging and visualization. jWebDust employs
an extendable architecture and provides easy interfacing and
API. OpenRSM provides the implemented distributed logic
suitable to deliver services, such as inventory and asset
management, software delivery, remote control and network
monitoring, all integrated in one environment.

The paper is organized as follows. Section II describes the
related state of the art regarding monitoring and administration
tools for wireless sensor networks. Section III presents an
overview of the jWebDust and OpenRSM architectures. The
proposed integrated architecture and its applicability to relevant
use-case scenarios are presented in Section IV. Finally,
conclusions and future work are discussed in Section V.

II. RELATED WORK

Software environments that provide the necessary tools and
operations to allow the monitoring and administration of a
wide range ofWSN's applications are relatively few and to our
best knowledge, none of them integrates all the desired
management functionality in a single environment.

TinyDB [3] is an example of an application that allows
multiple concurrent queries, event-based queries and time
synchronization through an extensible framework that supports
adding new sensor types and event types. The central idea of
TinyDB is to provide an SQL-like interface to the programmer
that makes the wireless sensor network look like an RDBMS
(Relational Database Management System). Tiny Application
Sensor Kit (TASK) [4] is built on top of TinyDB in order to
further simplify application deployment and development, and
to provide additional management capabilities. TinyDB is
distributed with TinyOS [5], the de-facto operating system
used in WSNs so far.

MoteWorks [6] is a commercial WSN management product
offered by Crossbow. MoteWorks is built on n-tier architecture
model and offers a number of standard WSN functionalities,
along with APIs for easy interfacing and integration with other
software. It also supports numerous sensor node hardware
platforms. Mote-VIEW [7], a part of MoteWorks, is a platform
that provides visualization tools to the user, combined with a
data logger that runs on the sensor network gateway. The
logger listens to readings arriving from the network through a
control center attached to the gateway and stores them in a
relational database.

ArchRock [8] is an another example of a company which
produces products that offer WSN management capabilities.
Like MoteWorks, it offers sensing functionalities, and APIs to
interface with. It also offers integration of the sensor network
with IP networks, using a 6LoWPAN network stack inside the
sensor network, making it easier to interface with the nodes.

TWIST [9] and MoteLab [10] are examples of testbed
deployment management environments, targeted toward

research teams. They provide capabilities as job scheduling
(i.e., binary code updates from different users), network
activity sniffmg, etc. However, these tools are designed for
specific-purpose environments that focus on the testing
methods ofWSN applications. Moreover, special hardware and
network topologies are required, making TWIST and MoteLab
not well-suited for general network management.

MANA [11] is an example of a other management
architecture for WSNs. It provides functional, information, and
physical management architectures that take into account
specific characteristics of a WSN network. Some of them
restrict physical resources such as energy and computing
power, frequent reconfiguration and adaptation, and faults
caused by unavailable nodes.

GSN [12] is another middleware architecture (extendible
software infrastructure) for rapid deployment and integration of
heterogeneous wireless sensor networks. GSN is tested with
Mica2, Mica2Dot, TinyNodes, Wisenode, Wired & Wireless
cameras, several RFID readers.

Finally, Hourglass [13] is an Internet-based infrastructure
for connecting a wide range of sensors, services, and
applications in a robust fashion. In Hourglass, streams of data
elements generated from sensor networks are routed to one or
more applications. The Hourglass infrastructure consists of an
overlay network of well-connected dedicated machines that
provides service registration, discovery, and routing of data
streams from sensors to client applications.

The above platforms and tools provide specific
administrative functionality, mostly in terms of development,
and do not give an integrated remote management WSN
environment, under which the overall administration and
monitoring of the wireless sensor network can performed both
in low and high level.

III. OVERVIEW OF JWEBDUST AND OPENRSM

In this section an overview ofthejWebDust and OpenRSM
platforms is given. Subsection A describes the jWebDust
platform, while subsection B describes the OpenRSM platform.

A. jWebdust overview

jWebDust [1] differentiates the system into two main
groups: the networked sensor devices that operate using
TinyOS [5], and the rest of the network (e.g. control centers,
database server, etc.) that is capable of executing Java code.
Both system groups use an open architecture implementing a
component-based architecture. The component interface and
the exchange of data over broadly used protocols provide
increased portability. This implies that the system can be used
over different machine architectures as well as operating
system and server technologies.

From a high-level perspective, the components that make
up jWebDust are organized using the n-tier application model.
We distinguish the following five tiers:

• the Sensor Tier that consists of one or more wireless
sensor networks deployed to areas of interest,



OpenRSM
Integration Server

~
NAT

JP
I

~Q
OpenRSM

Pro~y

The components of the OpenRSM platform are the agent
that makes target stations manageable, the graphical
management console presented to the user and the server where
processing logic is implemented. The OpenRSM agents are
abstract, multiplatform, manageable entities that convey
administrative actions coming from the OpenRSM server.
Administrative actions originate from user actions on the
OpenRSM management console, the component exposed to the
end-users and the administrators of the service. Management
commands are conveyed to the OpenRSM server and then to
the agents. The architecture of the OpenRSM system is
presented in Figure 2.

OpenRSM utilizes the power of third party tools that have
been enhanced and integrated in order to deliver the following
services:

Figure 2. The OpenRSM system architecture

open source EMS tool can be developed by extending existing
rated components offered by the open source community [16],
[17].

In principle, OpenRSM needs to be simple and lightweight
[18] so that it can be used by naive end users, not specialized in
the use of management tools or asset reporting tools.
OpenRSM was designed for fast and automated deployment, in
order to cover the needs of administrators who manage very
dynamic environments. The development model adopted for
the OpenRSM system is open source development, in order to
exploit the dynamics of projects that relate to management
technologies [19], [20], [21], [22] and gain value from
integration. The open source community has been put under
scrutiny [23] in order to recover the open source management
initiatives suitable for the purposes of OpenRSM [24], [25].
The architecture of the OpenRSM platform has been chosen to
be modular in order to follow the logical categorization of
entities involved [16] and to provide integration with other
open source management tools. The implemented framework
was based on the agent-server model [26], [27].

Figure 1. Management of multiple WSNs from a single, unified, virtual
sensor network usingjWebDust

• the Control Tier that corresponds to the control centers
where the wireless sensor networks report the realization
of events,

• the Data Tier responsible for storing the information
extracted from the wireless sensor network(s),

• the Middle Tier that is responsible for processing the data
to generate statistics and other meaningful information and

• the Presentation Tier that interfaces the information with
the final user in an easy way based on the capabilities of
the user's machine.

The component-based architecture enables the jWebDust
system to gain control over all critical resources, required by
the implemented functionality (connection to database,
communication with a server, code execution). The autonomy
of the components makes the system independent of the
machine architecture, allowing it to be executed over any
favored machine architectures using best-of-breed server
technologies.

jWebDust uses a simple Discovery Service [I] in order to
keep track of the sensor nodes that participate in the wireless
sensor network and their technical characteristics (e.g., type of
sensors attached to each device, available power, etc) [14].

A distinct feature of jWebDust is its ability to manage
multiple wireless sensor networks, each with a different control
center, under a common installation (Figure I). This is done by
introducing virtual sensor networks that hide the actual
topology and allow users to control the sensor nodes as if they
were deployed under a single, unified, sensor network. This
abstraction significantly reduces the overhead of administering
multiple networks. Furthermore, the idea of a unified, virtual
sensor network allows the integration of totally heterogeneous
sensor networks, i.e. not only regarding different kinds of
sensors attached to the sensor nodes of the network, but also
different kinds of CPU architectures.

~ -- -- - - - -- -- - - -- -- -- - - , .. --- - - - - --- - - - --- - - - --,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I,
I

~.:! ! !~~ (:<
___ ___ ___ ___________ _ L___ __ _______ _________ ~II

Area of Interesl 1 Area of Interest 2 jWebDust server

B. OpenRSM overview

The Open Source Remote System Management
(OpenRSM) [2] is a pioneering initiative in the lightweight
management software area of open source enterprise
management (EMS) tools [15]. The initiative has been based
on the observation that most of the components comprising an

• inventory and asset management

• software delivery

• remote desktop control

• network monitoring



Figure 3. The proposed system architecture

forward them to the agent running at WSN's server/gateway
where jobs will be executed as jWebDust procedures. The
architecture of the integrated system is presented in Figure 3.

C. Firmware level management

In order to cover advanced needs for WSN management
such as firmware development and deployment, a higher level
of integration is required. In order to enable firmware
construction, deployment and discovery of individual sensor
nodes the integration must reach the firmware level. This will
enable the management platform to deliver identifiable sensor
nodes, capable to dynamically change their state and runtime
environment in order to test new ideas, protocols and
implementations. In order to achieve the above it is necessary
for the management platform to:

• support the underlying development environment.

• design a framework for firmware construction that will
support the desired functionality and integration
characteristics.

l.---<SJ
Milnil gcma nl

ClJn~clc

O;>unRSM
Iflltf!JrSIi:)1'1 St"..1;!l'

rou ter
I

Jj)

The underlying development environment for sensor node
firmware, TinyOS, offers development tools that can be
integrated into custom OpenRSM jobs. TinyOS functionality
can be used by OpenRSM via TinyOS job templates,
disposable to users for customization or immediate usage. It
can be disputed whether TinyOS jobs can be generic, or
specialized; generic jobs offer users the freedom to ful1y
exploit the underlying functionality, while specialized ones can
be formalized and their operation can be guaranteed. For the
purposes of remotely managing sensor nodes a conservative
approach must be followed. The compilation and deployment
tasks can be formalized to produce accurate and safe results.
The more generic the supported TinyOS functionality, the
wider the space of cases the overlying firmware framework
must support. The management system will thus support
selected TinyOS functionality. It will formalize the
development and the deployment tasks so as to allow specific
changes disallowing the creation of modules that may result to
fundamental malfunction of the WSN, such as incompatibilities
in the discovery or firmware update services. The output of the
TinyOS jobs will be registered and stored.

The jWebDust layer uses the underlying TinyOS
infrastructure and provides the higher layers of the sensor
nodes protocol stack. The integrated management platform can

IV. THECONCEPT OF INTEGRATED WSN MANAGEMENT

jWebDust and OpenRSM can complement each other in
order to deliver integrated management to WSNs. With respect
to the level of integration we distinguish the fol1owing
management layers:

• WSN server / gateway infrastructure management

• WSN server functionality support, application
programming interface (API) integration

• firmware management

B. Functionality integration

OpenRSM can be further integrated with jWebDust. In
particular, we propose an extension that allows to support
jWebDust services, APls and tools and to expose them as
special-purpose remote management services. The OpenRSM
will then be capable to schedule and synchronize the execution
of jWebDust-specific jobs and provide users with the capability
to define custom jWebDust-specific jobs. In OpenRSM
terminology , jobs are entities abstracted in accordance to object
oriented design principles. They are designed to be abstract
system tasks (e.g., inventory, remote control, remote command,
etc) or reusable user-created objects and playa central role in
terms of usability, design efficiency and system scalability.
Jobs can themselves be managed by administrators/users,
decoupling their creation and execution stages. They can be
grouped or dynamically created based on the attributes of
managed systems. Each jWebDust-specific job will correspond
to a distinct administrative task manageable within the
jWebDust platform. OpenRSM will embody typical jWebDust
template jobs. Users can utilize the template jobs to create
custom ones. Jobs can be correlated with machines and then be
submitted to the OpenRSM integration server; the server will

A. Infrastructure-level management

OpenRSM can be primarily used to delivery infrastructure
management to WSN servers that is, bring inventory and assets
management, network monitoring, software delivery, and
remote desktop control to laboratory servers. This level of
integration is achieved by incorporating the OpenRSM agent
within ajWebDust installation.

Emphasis was given to system integration, extending from
database backend migration, server and web content porting,
and agent logic concatenation. The combined subsystems have
been modified so that information can be shared among them.
At the same time, the overall system has been designed so that
it is subject to the minimum possible set of limitations. Its
capabilities extend to managing any stations reachable through
standard IP connectivity in a secure manner. The architecture at
the server tier has been kept open and thus adaptable to any
specific needs and business models [17]. Care has been taken
so that OpenRSM can manage stations hidden behind the
Network Address Translation (NAT) protocol, using a proxy
server developed for that reason. The system also supports
multiplatform systems management, and provides a
multilingual user interface. The server has been put under
stress and performance tests [2].



support a safe and formalized subset of the API, tools and
functionality provided by jWebDust in the same manner as
TinyOS jobs. The challenge is to create an OpenRSM­
compatible branch of jWebDust firmware, considering the
restrictions in terms of sensor node memory and processing
power, so as to include minimal implementations of OpenRSM
inventory and discovery modules.

Currently jWebDust supports sensor networks based on
TinyOS. In order to provide heterogeneous sensor networks
management, as in the case where individual managed
networks are based on other architectures (eg ContikiOS [28]),
the platform can be extended in order to support the additional
infrastructures. Firstly, firmware management functionality can
easily be mapped to OpenRSM jobs using the graphical
interface of the OpenRSM. jWebDust must then interface with
the sensor architecture communication API in order to establish
connection with the sensors. In the case where the sensor
architecture supports IP-enabled networks, customized sensor
management can be achieved by incorporating the OpenRSM
agent in the code executed on the sensor.

D. Use-case scenarios

We mention here some use-case scenarios, in order to show
the conceptual similarity of usual management tasks in
integrated WSN management tools, and further justify our
conceptual approach. As WSNs tend to come closer to IP
networks (e.g., 6LoWPAN), it is our belief that such
similarities will only become more. In the case of IP-based
sensor networks where the sensors are individually addressed,
they can also be managed by remote management systems such
as OpenRSM. Management can be achieved by integrating the
lightweight agent version in the sensor firmware. In that case
the OpenRSM will have to extend its server functionality in
order to support sensor agents.

Regarding inventory and asset management, which is a
standard feature in OpenRSM and similar management tools, it
is also a necessary feature in WSN as well. Although the initial
concept for WSN was that they should be data-centric, i.e.,
only the information matters and not the source (node) it came
from, this trend has shifted to more node-centric approaches.
Very-large-scale WSNs, at least on a single location, are yet
extremely rare, and with new standards and interoperability
between different WSN hardware, heterogeneous WSNs are
the current and future trend. The administrator of a WSN must
be able to see at any instance the capabilities of the nodes, the
hardware and software associated with each one of them. A
dynamic directory of such "services" is necessary to take full
advantage ofWSN's capabilities.

Also, software delivery is important in WSNs, even more
so than in regular networks. This is because even moderate-size
WSNs include more than 50 nodes, each one usually running
the same software and difficult to interface with and program.
This is a feature that has attracted much attention (e.g.[26]) in
WSNs and we plan to take advantage of such previous work.
For example, a research lab should be able to schedule jobs
related to the software executed in its WSN and reprogram it
dynamically and on-the-air (as opposed to manual
reprogramming).

Regarding remote control, this is an inherent feature of
most WSN software, since the resources of such a network are
its sensors, actuators, communication subsystems, and, if
available, file storage. WSN administrators need a way to
control these resources in a way that resembles the
management of regular networks, i.e., on groups of resources,
that are built based on the dynamic directory mentioned above.

Finally, network monitoring is also an important activity in
WSN. In general, such networks are prone to failures and
topologies change quite often. Statistics like the energy
available, package failures and retransmissions are useful in
evaluating the overall performance of the network and the
software used, e.g., of the routing protocol used, and directly
linked to the overall functionality offered by the WSN.

E. Integration Methodology

The integration of the two platforms will be done in
accordance with the integration levels, mentioned previously.

The first objective is to set the jWebDust under OpenRSM
management by producing an agent module for WSN
gateways. The agent module can be integrated into the
codebase of the jWebDust platform or it can be deployed as an
external module.

The next milestone is the development of high level system
management functionality for the specific needs of WSN
gateways, such as customized reports and assets management,
into the agent module. Integration will proceed further into
producing connectors for the jWebDust API interface. At this
point the remote management agent will be capable to provide
for the execution of all WSN management functionalities
supported by the jWebDust API.

After this point the integration will affect all OpenRSM
levels and will reach the management console where the user
will be presented with visual representations of the managed
boards and even sensors. After this point the integration of
jWebDust and OpenRSM may even consider branching from
OpenRSM and jWebDust, since it will have the potential
needed for building end-user services for WSN management.

One of the most interesting and challenging services will be
the support of TinyOS jobs that will foster development and
maintenance actions for jWebDust managed laboratories. The
cornerstone of these services will be the frrmware management
service that will formulate and support the remote firmware
update.

V. CONCLUSIONS AND FUTURE WORK

This paper presents the conceptual design of an integrated
management environment enhanced with WSN management
functionality. The design is based on the integration of the
WSN monitoring platform jWebDust with the OpenRSM
systems and network management system. The derived
platform is an integrated remote management WSN
environment, under which the overall administration and
monitoring of the wireless sensor network can performed both
in low and high level. Future work includes the gradual
integration of the two platforms in accordance with the
integration levels, as mentioned in Section IV, and the



evaluation of its feasibility and performance (implementation
overhead, evaluation ofperformance metrics).

ACKNOWLEGMENT

This work has been partially supported by the 1ST
Programme of the European Union under contract number IST­
2005-15964 (AEOLUS).

REFERENCES

[1] I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas, jWebDust : A java­
based generic application environment for wireless sensor networks, In
the proceedings of the first International Conference on Distributed
Computing in Sensor Systems (DCOSS '05), 2005, pp. 376-386. Also,
in the International Journal of Distributed Sensor Networks (IJDSN),
Taylor and Francis, accepted, to appear in 2008.

[2] I. Karalis, M. Kalochristianakis, P. Kokkinos, E. Varvarigos ­
OpenRSM: a lightweight integrated open source remote management
solution, Intl Journal of Network Management 2008

[3] TinyDB: A declarative database for sensor networks,
http://telegraph.cs.berkeley.edu/tinydb/

[4] P. Buonadonna, D. Gay, 1. Hellerstein, W. Hong, and S. Madden,
TASK: Sensor network in a box, In the Proceedings of the 2nd European
Workshop on Sensor Networks, 2005.

[5] P Levis, S Madden, J Polastre, R Szewczyk, K Whitehouse, A Woo,
D Gay, J Hill, M Welsh, E Brewer, D Culler - TinyOS: An Operating
System for Sensor Networks. In Ambient Intelligence, Springer Berlin
Heidelberg, (2005), pp. 115-148

[6] Mote-Works monitoring software, Crossbow Technology Inc.,
http://www.xbow.com/

[7] Mote-VIEW monitoring software, Crossbow Technology Inc.,
http://www.xbow.com/

[8] ArchRock, http://www.archrock.com/

[9] TWIST Community Web Site, http://www.twist.tu-berlin.de/wiki

[10] MoteLab, Harvard Experimental Wireless Sensor Network Testbed,
http://motelab.eecs.harvard.edu/.

[11] L. Ruiz, 1. Nogueira, A. Loureiro - MANNA, a management
architecutre for wireless sensor networks. In Communications Magazine,
IEEE, vol 41, issue 2, Feb 2003

[12] K. Aberer, M. Hauswirth, A. Salehi - A middleware for fast and flexible
sensor network deployment. Proceedings of the 32nd international
conference on Very large data base, p1199-1202, 2006

[13] J. Shneidman, P. Pietzuch, 1. Ledlie, M. Roussopoulos, M. Seltzer, M.
Welsh - Hourglass: An Infrastructure for Connecting Sensor Networks
and Applications Harvard Technical Report TR-21-04

[14] I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas, Power conservation
schemes for energy efficient data propagation in heterogeneous wireless
sensor networks, 38th Annual ACMlIEEE Simulation Symposium
(ANSS 2005), IEEE Computer Society Press, pp. 60-71,2005.

[15] D Kakadia, T. Thomas, S. Vembu, 1. Ramasamy, "Enterprise
management systems part I: architectures and standards", Sun
Microsustems, Inc.

[16] A, Westerinen, W Bumpus, "The continuing evolution of distributed
systems management", IEICE Trans. Inf & Syst., vol. E86-D, no. 11,
November 2003.

[17] M. Sale, "IT service management and IT governance: review,
comparative analysis and their impact on utility computing", HP invent
research labs, 2004

[18] M. Dekhil, V. Machiraju, K. Wurster, M. Griss, Remote management
services over the web, Software Technology Lab, HP, May 2000

[19] OpenAudit: http://sourceforge.net/projects/openaudit/

[20] UltraVNCm http://www.uvnc.com/

[21] Windows-get: http://windows-get.sourceforge.net/

[22] Nino network management system: http://sourceforge.net/projects/nino/

[23] A. Hochstein, R. Zarnekow, W. Brenner, Evaluation of service-oriented
IT management in practice, In Proceedings of the International
Conference on Services Systems and Services Management, 2005, Vol.
1, pp. 80-84.

[24] S. Lee, M. Choi, S. Yoo, 1. Hong, H. Cho, C. Ahn, S. Jung, Design ofa
wbem-based management system for ubiquitous computing servers,
http://www.dmtforgjeducation/academicalliance/, accessed on January
2008.

[25] K. Carey, F. Reilly, Integrating CIMlWBEM with the Java enterprise
model, http://www.dmtforgjeducation/academicalliance/, accessed on
January 2008.

[26] M Wren, 1. Gutierrez, Agent and web-based technologies in network
management, In Proceedings of the Global Telecommunications
Confernece (GLOBECOM), 1999, Vol. 3, pp. 1877-1881.

[27] I. Bailey, A simple guide to enterprise architecture, Model Futures TM
white paper, 2006,
http://www.modelfutures.com/file_download/4/SimpleGuideToEA.pdf,
accessed on January 2008.

[28] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Workshop on
Embedded Networked Sensors, Tampa, Florida, USA, Nov. 2004.


