
J Grid Computing
DOI 10.1007/s10723-014-9311-x

SuMo: Analysis and Optimization of Amazon EC2 Instances

P. Kokkinos · T. A. Varvarigou · A. Kretsis ·
P. Soumplis · E. A. Varvarigos

Received: 29 January 2014 / Accepted: 3 September 2014
© Springer Science+Business Media Dordrecht 2014

Abstract The analysis and optimization of public
clouds gains momentum as an important research
topic, due to their widespread exploitation by individ-
ual users, researchers and companies for their daily
tasks. We identify primitive algorithmic operations
that should be part of a cloud analysis and opti-
mization tool, such as resource profiling, performance
spike detection and prediction, resource resizing, and
others, and we investigate ways the collected monitor-
ing information can be processed towards these pur-
poses. The analyzed information is valuable in driving
important virtual resource management decisions. We
also present an open-source tool we developed, called
SuMo,which contains the necessary functionalities for
collecting monitoring data from Amazon Web Ser-
vices (AWS), analyzing them and providing resource
optimization suggestions. SuMo makes easy for any-
one to analyze AWS instances behavior, incorporating
a set of basic modules that provide profiling and spikef
detection functionality. It can also be used as a basis
for the development of new such analytic procedures
for AWS. SuMo contains a Cost and Utilization Opti-

P. Kokkinos (�) · T. A. Varvarigou
Department of Electrical and Computer Engineering
National Technical University of Athens, Athens, Greece
e-mail: kokkinop@ceid.upatras.gr

A. Kretsis · P. Soumplis · E. A. Varvarigos
Department of Computer Engineering and Informatics,
University of Patras, Patra, Greece

mization (CUO) mechanism, formulated as an Integer
Linear Programming (ILP) problem, for optimizing
the cost and the utilization of a set of running Ama-
zon EC2 instances. This CUO mechanism receives
information on the currently used set of instances
(their number, type, utilization) and proposes a new
set of instances for serving the same load that mini-
mizes cost and maximizes utilization and performance
efficiency.

Keywords Public clouds · Analysis · Optimization ·
Amazon web services · Toolkit

1 Introduction

Cloud computing [1, 2] provides resources as a service
over the network, enabling their efficient and flexi-
ble management. An increasing number of individual
users, researchers and companies, established or star-
tups, of any size and scope, trust their computing and
storage tasks to public and private clouds, replacing
fixed Information Technology (IT) costs of owner-
ship and operation with variable use-dependent costs.
Public clouds provide resizable compute capacity as a
public service (e.g., Amazon Web Services – AWS [3],
Rackspace [4]), while private clouds are built based
on the organizations’ own infrastructure, using cloud
computing toolkits (e.g., OpenStack [5], OpenNebula
[6], Eucalyptus [7]) and providing computing services
to their employees or customers.

mailto:kokkinop@ceid.upatras.gr

P. Kokkinos et al.

Monitoring, analysis and optimization are a set of
important interrelated operations for cloud resource
management. The sheer number of cloud resources
makes it difficult for a simple user or administra-
tor to effectively monitor and analyze their behavior
or control (optimize) the parameters that determine
their proper use. Estimates in [8] place the number
of servers in commercial data centers, used for pro-
viding public or private cloud services, to 450.000
servers, while even larger ones (in the order of 106 to
107 machines) are envisioned for the future [9]. Also,
organizations may utilize hundreds of virtual instances
of a public cloud provider for their operations [10].
A good analytic and optimization entity ensures that
the monitored resources run uninterrupted and with
acceptable performance and utilization, keeping the
associated (e.g., energy) costs low, either proactively
(e.g., by informing the administration for an ill behav-
ior) or reactively (e.g., by detecting problems as they
appear).

There are a number of important differences
between analyzing private and public clouds, both
regarding the way monitoring is performed and
regarding the parameters of interest and the require-
ments. In private clouds the administrator has full
access to the resources and is able to monitor any
kind of parameter (performance, energy, etc.), with
any kind of software or hardware tools and at any
granularity. This is not the case for public clouds (e.g.,
Amazon Web Services - AWS [3]) where the users
have access to their virtual resources through web
or programmable interfaces that provide only specific
information (e.g., state, performance), and at specific
granularities (e.g., every 5 minutes). The main param-
eters of interest for public clouds are the cost of
the resources and their utilization. Utilization directly
affects the cost, since it determines how effectively the
resources of the cloud provider are being used.

The cost encountered by a user of public clouds
depends mainly on the pricing policy of the cloud
provider, the number and types of resources used, and
the resources’ utilization. Today, there are signs of
merchandising the virtual/cloud resources as goods
(like gold, stocks, or energy). For example, recently, it
became possible for a user of AWS [3] who has bought
a number of computing resources, to resell the unused
part of his owned resources as the needs change, such
as selling capacity for projects that end before the term
expires. In general, cloud economics have emerged

recently as an important field, studied in a number of
works [11, 12].

In our work, we investigate ways in which the
monitoring information collected by a public cloud
provider in general and by AWS in particular, can be
used in a “smart” way to produce valuable informa-
tion and actionable data for the proper and efficient
use and management of the virtual resources. Towards
this end a number, of basic algorithmic operations
are identified, including resource profiling, perfor-
mance spike detection, performance prediction and
resource resizing. We also present a tool, called SuMo,
that we developed to assist in cloud analysis and
optimization. SuMo contains the necessary mecha-
nisms for collecting monitoring data from AWS and
it incorporates an initial set of basic algorithms (for
profiling and spike detection) for analyzing them.
It also contains a Cost and Utilization Optimization
(CUO) mechanism for minimizing the usage cost of
Amazon EC2 instances and maximizing their uti-
lization and the performance efficiency, based on
Integer Linear Programming (ILP) formulation. The
proposed mechanism collects information on the type,
number, utilization and other features of the cur-
rent set of AWS instances running and proposes a
new set of instances that could be used for serving
the same load. Our experimental results show that
the proposed algorithm can increase the utilization
and efficiency of the infrastructure resources, while
lowering the accumulated user costs. When neces-
sary, CUO also increases resources’ capacity so as
to resolve possible performance bottlenecks. Also,
a number of conclusions are drawn regarding the
effects that instances’ characteristics (capacity gran-
ularity, region of operation) have on utilization and
cost. SuMo makes easy for anyone, a researcher
or an administrator, to monitor his instances and
run the proposed analytic mechanisms or implement
new more intelligent ones. SuMo tool is open-source
and available through github [47]. Currently, the
development of the core SuMo functionalities has
been completed and we are investigating whether
SuMo could be coupled with other tools and in
particular, cloud management software for federated
clouds.

The remainder of the paper is organized as follows.
In Section 2 we report on previous work. In Section
III we describe Amazon’s computing and monitor-
ing services. In Section 4, we discuss the algorithmic

SuMo: Analysis and Optimization of Amazon EC2 Instances

challenges posed by the analysis of cloud monitor-
ing data. In Section 5, we present the SuMo toolkit
and its constituent modules. In Section 6 we describe
an Integer Linear Program (ILP) formulation used
for resource re-optimization (resizing). In Section 7
we present performance results obtained using SuMo
and the CUO mechanism. Finally, in Section 8 we
conclude the paper.

2 Previous Work

IT monitoring and analysis has long been around,
targeting the needs of physical servers and other
devices (printers, switches, ups, etc.), clusters, grids
[13] and small or large data centers. Clouds bring
a completely new environment and introduce new
requirements for IT monitoring tools, involving a
very large number of heterogeneous physical and vir-
tual resources and producing a huge amount of raw
monitoring information. Also, clouds’ dynamicity and
flexibility introduce the need for (re-) optimizing their
characteristics.

Most works on the monitoring and analysis of cloud
resources assume full access to the corresponding
resources and are consequently more relevant to pri-
vate clouds. In particular, a number of works attempt
to aggregate (or summarize) the raw monitoring data.
In [19], the authors propose a scalable distributed data
collection system that utilizes technologies from the
semantic web in order to generate a machine readable
overview of a cloud system without the need for an
additional dedicated monitoring system. In [20], the
authors propose a runtime model for cloud monitoring
(RMCM) that provides an intuitive representation of a
running cloud. Raw monitoring data gathered by mul-
tiple monitoring techniques are organized by RMCM
to present a more intuitive profile of a running cloud.
CloudSense, described in [14], is a switch design that
performs in-network compression of monitoring data
streams via compressive sensing.

The diversity of cloud providers and applications
has also raised the issue of providing a middle layer
for their interaction (providers and applications). The
mOSAIC project [15, 39] aims at developing an open-
source platform that enables applications to negotiate
Cloud services as requested by their users. Using the
Cloud ontology, applications will be able to specify
their service requirements and communicate them to

the platform via an API. The platform will imple-
ment a multi-agent brokering mechanism that looks
for services matching the applications’ request, and
possibly composes the requested service if no direct
hit is found. Other similar projects are Optimis [16,
40] and Aeolus [41]. Aoleus is an open-source Cloud
management software that allows users to choose
between Private, Public or Hybrid Clouds, using δ-
Cloud library. The Optimis Toolkit offers a platform
for Cloud service provisioning that manages the life-
cycle of the service and addresses issues like risk and
trust management. In [45] authors present a federated
cloud management solution that utilizes cloud-brokers
for various IaaS providers. In this work, among oth-
ers, a monitoring service has been designed with the
capability to simultaneously monitor both private and
public clouds. In [46] the execution of scientific appli-
cations in federated clouds is examined, defining a
related middleware architecture.

Quite recently, a number of products/services have
appeared offering monitoring and analysis tools for
public cloud resources, while the functionality of
other already established products has been extended
appropriately to meet the particular needs of private
clouds. The authors in [18] discuss the design and
implementation of a private cloud monitoring system
(PCMONS) and argue that it is possible to deploy a
private cloud within an organization using only open-
source solutions and integrating it with traditional
monitoring tools, such as Nagios [29]; significant
development work, however, has to be carried out
in order to actually integrate these tools. In [24] the
authors present an approach for configuration plan-
ning based on data refinement; correlating economic
goals with sound technical data. The authors also
present a proof of concept tool, called CloudXplor,
which can be modularly embedded in generic resource
monitoring and management frameworks. Newvem
[30] cloud usage analytics collects raw usage metrics
from Amazon Web Services (AWS) and performs pro-
prietary analysis on the data gathered in order to iden-
tify cost, security, utilization and availability issues.
Cloudability [31] collects daily spend updates, creates
predictive alerts, and records the history of the users’
cloud costs, and has been designed to support several
cloud services (AWS, RackSpace, Heroku, Google
Apps and other). Cloudvertical [32] helps companies
manage and track the cost and usage of their cloud
infrastructure efficiently.

P. Kokkinos et al.

Our work and the developed toolkit (namely
SuMo) cannot directly compare against EU projects
like mOSAIC, Optimis and Aeolus or start-ups like
Newvem, Cloudability and Cloudvertical. In a way we
attempt to stand in the middle, in terms of function-
ality, targeted audience and ease of use. On the one
hand, the aforementioned EU funded projects provide
algorithms, methodologies and tools/modules cover-
ing a wide range of topics (e.g., application porting,
resource management, application brokering, service
provisioning, SLAs etc.), focusing less on providing a
solution that any user can actually use today. On the
other hand, the services offered by the aforementioned
startups are very good in aggregating the collected
monitoring information and presenting it in a user
friendly manner to the users, leaving however signifi-
cant room for adding more intelligence to the analysis
of public cloud monitoring data, instead of simply
forecasting virtual resource usage and associated costs
[17].

SuMo utilizes the monitoring services offered by
AWS (like Newvem, Cloudability and Cloudverti-
cal do) so as to analyze and optimize the resources
used (as mOSAIC also does). Multi-agent moni-
toring infrastructures such as those suggested by
mOSAIC may be difficult to be accepted by the cloud
users, since they assume that a “custom agent” is
installed (by the cloud users) in each resource. On the
other hand utilizing cloud providers monitoring API
(like AWS CloudWatch, Section 3), as SuMo does,
increases service acceptance, ease of use and ensures
cloud users that their resources are well protected.

Additionally, SuMo can be used as a basis for
the development of algorithms and methodologies for
the analysis of collected monitoring information from
AWS, while in the future it may also act as an open-
source alternative to the various commercial solutions
([23–25]). In its current release SuMo includes a set
of basic algorithms that provide profiling and spike
detection functionality. In our work, we also present
an Integer Linear Programming (ILP) formulation for
optimizing the cost, the utilization and the perfor-
mance of Amazon cloud resources. The corresponding
mechanism (namely Cost and Utilization Optimiza-
tion - CUO), included in SuMo, provides specific sug-
gestions regarding which AWS instances’ type should
be modified in order to minimize the cost to the user
and maximize the utilization of the resources, or sug-
gestions on how to increase performance by resolving

capacity bottlenecks. A mechanism similar to CUO
was presented in [25] in the context of the mOSAIC
project [39], focusing on modular applications and
introducing a scheduling method for placing each
application component type on every needed node,
avoiding the unnecessary allocation of extra nodes and
ensuring high availability. In contrast to the mOSAIC
project, CUO is application-agnostic, handling a set of
AWS resources (hosting one or more applications) as
a whole and optimizing their usage.

Part of this paper has been presented in [26]; how-
ever, in this article we add new material, extending
previous work and discussing the algorithmic chal-
lenges posed by the analysis of public cloud monitor-
ing data. We also present in detail the SuMo toolkit
and its constituent modules and elaborate more on
the CUO mechanism and on its evaluation, including
additional performance results.

3 Amazon Web Services – Cloud Watch

Amazon Web Services’ (AWS) [1] public cloud is a
collection of web services that provide access to Ama-
zon’s cloud infrastructure. AWS enables anyone to
run virtually anything in the cloud: from enterprise
applications and big data projects to social games and
mobile apps. Amazon Elastic Computing Cloud - EC2
[27] is one of the most important such services, pro-
viding resizable compute capacity as a service. The
basic unit of EC2 is the “instance”, which repre-
sents a virtual resource with particular computational,
storage and network characteristics, running a partic-
ular Operating System (OS) and located physically in
one of Amazon’s data-centers around the world. The
above characteristics also determine the cost of the
instance. There are two main instance types: i) On-
Demand Instances (ODI) and ii) Reserved Instances
(RI). With ODI a user pays for compute capacity by
the hour, with no long-term commitments, while with
reserved instances the user makes a one-time payment
for reserving an instance and then pays again by the
hour but at a significant discount. There are also Spot
instances allowing one to bid on spare Amazon EC2
instances and run them whenever his bid exceeds the
current spot price.

Table 1 summarizes the various instance types;
there are around 196 different ODI and 1176 different
RI instance types.

SuMo: Analysis and Optimization of Amazon EC2 Instances

Table 1 Amazon EC2 instance types in numbers

14 main types ‘m1.small’, ‘m1.medium’, ‘m1.large’,

of machinesa ‘m1.xlarge’, ‘t1.micro’, ‘m2.xlarge’,

‘m2.2xlarge’, ‘m2.4xlarge’, ‘c1.medium’,

‘c1.xlarge’, ‘cc1.4xlarge’, ‘cc2.8xlarge’,

‘cg1.4xlarge’, ‘hi1.4xlarge’

7 different US East (Northern Virginia), US West

regions – (Oregon), US West (Northern California),

datacenters EU (Ireland), Asia Pacific (Singapore),

Asia Pacific (Tokyo), South America (Sao

Paulo)

2 Operating Windows, Linux

Systems

3 RI utilization low, medium, high

types

2 RI year terms 1 or three years

a. These are actually the instance names used by AWS Appli-
cation Programming Interface (API)

For example, the machine type “Extra Large
Instance” (m1.xlarge) has the following characteris-
tics:

• 15 GB memory
• 8 EC2 Compute Units – ECU: 4 virtual cores with

2 EC2 Compute Units each (according to Amazon
[1], one ECU provides the equivalent CPU capac-
ity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor.)

• 1,690 GB instance storage
• 64-bit platform
• I/O Performance: High

Amazon’s CloudWatch [28] provides monitoring
for AWS cloud resources (such as Amazon EC2).
Developers and system administrators can use it to
collect and track various metrics. The basic Cloud-
Watch metrics are the following, though customized
ones can also be added:

• CPUUtilization: The percentage of allocated EC2
compute units that are currently in use by the
instance

• DiskRead/WriteOps: The number of completed
read/write operations from all ephemeral disks
available to the instance

• DiskRead/WriteBytes: The number of bytes
read/written from all ephemeral disks available to
the instance

• NetworkIn/Out: The number of bytes
received/sent on all network interfaces by the
instance.

Monitoring data are available automatically, at 1 or
5-minute interval steps, depending on the charging
policy chosen. Only 1440 points of a particular metric
can be provided by CloudWatch at time; e.g., the CPU
utilization of an instance per 1-minute (step size) for
the last 24 hours (period). Other step sizes and periods
can also be selected.

4 Algorithmic Operation for Analyzing Public
Clouds

We consider three categories of algorithmic functions
for analyzing monitoring data collected from (mainly
public) clouds:

1. Planning functions: This kind of algorithmic
operations help the administrator plan his future
resource requirements, using as input the behavior
of virtual resources till now. Planning operations
are performed offline.

2. Analytic functions: These operations relate to the
analysis of past monitoring data in order to cre-
ate useful aggregated quantitative information for
future use.

3. Operational functions: Operational functionalities
make online resource management decisions or
detect various kinds of “events” as they occur.

Many of these functions are signal-analysis based
that is they receive as input a signal (Fig. 1) or a set
of signals, representing the utilization (computational,
network, storage, memory) for a particular period of
time (a day, a week, a month, a year, etc.) and they
analyze them using signal processing methodologies.

Fig. 1 Utilization of a virtual resource in a particular time
period

P. Kokkinos et al.

In practice, time-continuous signals like the one
shown in Fig. 1 are rather unusual – typical usage pat-
terns are step functions with some kind of base period
(e.g., 1 hour), where a single or an aggregated (e.g.,
the average) value is provided for each period. The
granularity and the applied window mechanism (slid-
ing, jumping) of the data retrieved is very important
for the various algorithmic functions.

Next, we present a set of algorithmic operations
that we judge to be important for public cloud ana-
lytics and that can be useful in various management
decisions:

• Profiling (analytic): use algorithms or other math-
ematical techniques to discover patterns or cor-
relations in (large) quantities of data. Profiling
relates to a number of research areas, such as
pattern recognition, machine learning (unsuper-
vised learning in our case, since the pattern is not
known) and other. In clouds, profiling can pro-
duce useful information regarding the way virtual
resources are used (e.g., detect cyclical loads),
which can be very important for IT administration
and management. In our case, the signal we wish
to identify patterns on is usually the utilization
(cpu and network) of an instance during a time
period (a day, a week, a month, etc.). The pro-
duced information will show trends of computing
consumption and seasonality in the way virtual
resource are used. In addition, identifying rela-
tionships among instances or groups of instances
is another profiling operation that can trigger sev-
eral management decisions, such as moving these
instances in machines that are close to each other,
or their workload in the same instance.

• Spikes Detection (online): identify abnormal
changes in the resource portfolio of a user and
its associated costs. Spikes detection is an impor-
tant operation in many different research fields,
where a variety of methods have been proposed.
In the cloud computing environment, spikes relate
to abnormal changes in an organizations resources
portfolio, utilization and associated costs. They
may also indicate erroneous operation or mali-
cious attempts that require administrator interven-
tion.

• Prediction (planning): estimate future resource
usage and cost to be used for resource planning.
Again a number of different prediction techniques

can be applied. This function also relates to aging
analysis, where past data is used to estimate the
total or residual running time of a process in
order to determine, for example, if On-Demand
Instances (ODI) or Reserved Instances (RI) would
be more appropriate for serving a new appli-
cation, or if an existing application should be
switched from one mode to the other. Predicting
resource usage and cost is clearly very important
for resource planning.

• Resource Resizing (planning): detect underuti-
lized resource capacity and highlight cost reduc-
tion opportunities by recommending oversized
machines that should be replaced with smaller and
lower-priced ones and vice versa. Under-utilized
or over-utilized resources indicate opportunities
for cost reduction, or performance improvement.
Resource optimization mechanisms can be used
to build a recommendation system regarding
which oversized machines should be replaced by
smaller and lower-priced ones or by more power-
ful machines so as to serve the increasing needs of
the applications.

• Workload consolidation & migration (planning):
identify low performing instances at different time
intervals (using profiling methods) will assist in
consolidating groups of virtual machines in a sin-
gle physical machine; maximizing resource uti-
lization and reducing costs by shutting down the
remaining unused machines.

5 SuMo Toolkit

In this section we present the SuMo toolkit that we
developed to contain the necessary mechanisms for
collecting monitoring data from Amazon Web Ser-
vices (AWS) and analyzing them for optimization pur-
poses. SuMo includes mechanisms that correspond to
the algorithmic operations presented in Section 4, such
as the CUO mechanism, to be presented in Section 6,
for cost and utilization optimization in clouds. SuMo
makes easy for anyone, a researcher or an administra-
tor, to analyze the owned instances, run the proposed
mechanisms or implement new and more intelligent
ones. SuMo is open-source and is available through
github [47].

SuMo is written in Python, utilizing the boto frame-
work [33] for communicating with AWS. SuMo is

SuMo: Analysis and Optimization of Amazon EC2 Instances

used as python library providing the required pro-
grammatically functionality to access, monitor, ana-
lyze and optimize a user’s AWS instances. SuMo uses
the SciPy [34] and NumPy [35] libraries for scientific
computations. For the ILP solving SuMo interfaces
with IBM ILOG CPLEX Optimizer [36], which is free
for non-commercial purposes.

SuMo consists of three main components/modules,
shown in Fig. 2: cloud Data, cloud Keeping and cloud
Force. cloud Data is responsible for collecting moni-
toring data, cloud Keeping contains a set of Key Per-
formance Indicators (KPI), while cloud Force incor-
porates a set of analytic and optimization algorithms.

5.1 Cloud Data Module

The cloudData module contains all the necessary
methods for retrieving a user’s current running
instances, for getting the type and price of an instance,
and its exact characteristics (e.g., EC2 Compute Units
- ECU). Interestingly, AWS do not provide directly,
through an API, instance pricing and information
on the instance characteristics. Therefore, to obtain
explicit pricing information one has to retrieve and
analyze the JSON files used by the AWS web site
that contain the relative information [37]. For the

Fig. 2 SuMo – SuMo basic modules

instances’ characteristics, SuMo provides static JSON
files with the necessary information. The cloudData
module also contains methods that return, through the
boto API (and indirectly through CloudWatch, see
Section 3 and [28]) information regarding the CPU,
disk and network utilization by a particular instance,
for a given time period and particular time slot. The
returned utilization information is in the form of a sig-
nal (Fig. 1). Some of the most important functions of
cloud Data module are the following:

• get instances: returns a list of all running
instances

• get instance metric: returns statistics for the met-
rics listed in Section III for a particular time
period

• get instances workload: computes per instance
workload based on their capacity and CPU usage

• get instances cost: computes per instance cost
based on their prices [37] and running times

Since it is not always possible for a researcher to
have access to a large number of instances and their
related data, SuMo also includes simCloudData mod-
ule. This module provides access to a set of functions
for creating “simulated” (or synthetic) instances and
the associated data (e.g., utilization profile). Users
can configure all the basic parameters (machine type,
region, operating system, status, instance usage) for
creating the simulated instances. In particular, the
user specifies the number of simulated instances to
be created along with arrays of values, indicating
the percentage of these instances that will be of a
specific machine time (e.g., m1.small), be located at
a particular region (e.g., US East), etc. Each simu-
lated instance’s values for a particular metric (e.g.,
CPU utilization) over a period of time (e.g., over a
whole day with step size of one hour) are calculated
using uniform distributions whose limits (minimum
and maximum values) can be selected. For example, in
case of the CPU utilization, the candidate limits are the
following: idle=[0,0], low=[1,10], normal=[11,35],
medium=[36,69], high=[70,90], very high=[91,98],
exceedable=[99,100], uniform=[0,100]. Other distri-
butions can easily be added.

The “simulated” data/information produced by sim-
CloudData can be used by the methods available to
the other modules, without any other requirements
or modifications, since they are in the same for-
mat with the data produced by cloudData module’s

P. Kokkinos et al.

methods. Some of the most important functions of the
simCloudData module are the following:

In what follows we present an example of what
get instances function returns (in JSON format):

Also, we present an example of what
get instance metric function returns (in JSON format)
for the CPUUtilization metric:

5.2 Cloud Keeping Module

ThecloudKeeping module contains a set of Key Per-
formance Indicators (KPI) that perform a number of
best practice checks (as the corresponding monitor-
ing tools provided by various companies [30–32]) and
statistics calculations. The current version of cloud-
Keeping module includes the following functions:

A useful notion in public clouds is that of instance
aging. As mentioned earlier, in Amazon Web Services
(AWS), a user pays for the compute capacity of an
ODI instance by the hour, while in the case of RI
instances there is a one-time payment for reserving
an instance and then the hourly cost is quite smaller
than that of ODI instances. As a result for every used
ODI instance there is a “breakeven” usage duration
beyond which the use of an equivalent RI would be
more advantageous in terms of cost. Vice versa, the
use of a RI instance may be a bad choice if its usage
duration is way lower than this breakeven point.
In Fig. 3, we see the breakeven point for a Small
Linux Instance in the US East region. In this case
the ODI instance’s cost is $0.065 per hour, while
the corresponding cost of a RI instance (assum-
ing light utilization and 1 year term) is $0.039
per hour and $69 upfront. We see that the break
even point occurs around the ∼107th day, assum-
ing of course that the instance is constantly used.
The get instances aging function returns informa-
tion for each instance indicating how close it is
to the breakeven point, and suggesting the need to
transform an ODI instance into a RI instance or
vice versa.

In what follows we present an example of what
get instances per region function returns (in JSON
format):

Similary, get instances per type function returns
(in JSON format) the following:

5.3 Cloud Force

The cloud Force module includes SuMo’s algorithms
for executing the algorithmic operations mentioned
in Section 4. More advanced mechanisms/algorithms
(e.g., for pattern or spark detection) will also be
included in the future.

For profiling SuMo implements a pattern recogni-
tion mechanism that uses cross-correlation as a mea-
sure of the similarity of two time signals. The first
signal is the pattern we wish to match. Since we do not
initially have any idea about the periodicity (if any) of

SuMo: Analysis and Optimization of Amazon EC2 Instances

Fig. 3 ODI and RI
breakeven point

the pattern, we apply the pattern recognition method-
ology recursively by selecting a pattern e.g., the signal
in 1st hour, day, week, etc. and then matching it against
the original signal. The second waveform is the origi-
nal signal shifted in various periods. In the following
snippet of code, the cloudForce function for pattern
detection, namely patternDetection.based on xcorr,
receives as input a signal (corresponding, for example,
to the computational utilization of an instance), and
returns an array of patterns that have been identified
in that signal.

Additionally, for profiling SuMo uses the work pre-
sented in [22] and considered for the case of clouds in
[23], so as to detect relationships between instances. In
[23], authors analyze tweets to detect real-life events.
They build a signal for individual words by mea-
suring the number of words appearing in tweets at
fixed intervals and then applying wavelet analysis on
the frequency-based raw signals of the words. The
authors then build a correlation matrix, which is par-
titioned, using a modularity-based graph partitioning
technique, into groups of words each indicating a
particular event. A similar event detection method is
used in SuMo for analyzing communication traces and
capacity utilization profiles, by creating a respective
signal per VM (e.g., counting the amount of data sent
(and received) by a VM in each period / time slot). The
implemented function returns groups of instances that
relate to each other.

For spike detection SuMo uses the return function
R(t), defined as:

R(t) = S(t)− S(t − 1)

S(t − 1)
,

where S(t − 1) and S(t) are two consecutive observa-
tions for a signal at time instances (or time slots) t-1
and t respectively. The advantage of looking at returns
of a signal is that one can see the relative changes in
the signal variable. After calculating all returns, SuMo
selects the ones that exceed the average by a number
of standard deviations (σ):

R(t) > avg(R)+ param · σ(R).

In the following snippet of code, the cloudForce
function for spike detection, namely sparkDetec-
tion.based on returns, receives as input a signal
corresponding, for example, to the computational
utilization of an instance and returns an array
of indices in the array where spikes have been
identified.

For resource resizing, SuMo incorporates Cost
and Utilization Optimization (CUO) mechanism that
solves a cost and utilization optimization problem,
formulated as an ILP (Integer Linear Program),
which is presented in detail in Section 6. In the

P. Kokkinos et al.

following we present a snippet of code for retriev-
ing instance information and computing a new set
of instances, which can serve the initial workload
with lower cost and higher utilization (in the case

of computational capacity decrease) or with bet-
ter performance (in the case of resource capacity
increase).

6 CUO Mechanism

In this section, we present Cost and Utilization Opti-
mization (CUO) mechanism that receives as input the
static (e.g., type, cost) and dynamic (cpu utilization,
running time) characterists of as set of running AWS
instances, and computes, using a multi-objective func-
tion, a new set of instances that maximizes resource
utilization for the cloud provider and minimizes the
associated cost for the user. This new set of instances
can serve as a suggestion to the instances’ owner for
modifying (at least some of) the types of the instances
he uses, and realizing cost benefits assuming that
the past behaviour is indicative of the owner’s future
computing needs.

CUO’s described optimization is formulated as
an Integer Linear Programming (ILP) problem and
solved optimally using the IBM ILOG CPLEX Opti-
mizer [36] ILP solver. Heuristics can also be used for
solving the same problem.

6.1 Modelling

We denote by

S = {I1, I2, . . . , IM}
the set of running instances. Each running instance
Ii is characterized by two parameters: the type of
instance (ITi) and its workload (WLi), that is, the
CPU utilization (measured in EC2 Compute Units -
ECU) over time:

Ii={ITk,WLi}, i ∈ [1, 2, . . . ,M], k∈[1, 2, . . . , D],
where Dis the number of different instance types
(Section 3). In AWS, a running instance’s type is

defined by the machine type, the operating system
(O) and the region (R) where it runs (Table 1). In the
remainder of our work, we assume that all instances in
S are either On-Demand Instances (ODI) or Reserved
Instances (RI). Also, we can infer from the set S the
number of instances Ni of each type i that are in use
and the total number of running instances

M =
D∑

k=1

Nk.

It is assumed that an infinite number of instances of
each type can be used. Also, the CPU utlization of
an instance over a time period T , provided as input
to the ILP (through CloudWatch Section 3, [10]), is
a signal

WLi = [wli(1),wli (2), . . . , wli(T)], (1)

where wli (t) is the CPU utilization (measured in EC2
Compute Units - ECU) of the i-th instance at time
slot t (as already mentioned, the step/slot size in AWS
is 1 or 5-minutes). The proposed mechanism assumes
that the workload WLi of the i-th instance over
time period T (referred to as aggregated workload of
instance Ii) is equal to the average (avg(WLi)) of the
CPU utilization signal WLi (it could also be equal to
its maximum value, max(WLi)). Moreover, the pro-
posed mechanism attempts to select instances that are
in position to serve the input workload even with high
fluctuations, that is, variations in the CPU capacity
they use overtime. To this end, the Desired/targeted
Utilization DU (for the new set of instances Snew)
in the average case scenario is computed based on
the workload served by the original set of instances
and on an utilization factor f provided each time by
the user:

DU = f ·
M∑

i=1

WLi, f ≥ 1 (2)

The parameter f plays an important role. For example,
setting f equal to 1 we state that the feature work-
load requirements will be similar to the present ones.
This could lead to the selection of instances that serve
the workload with just enough resources, reaching in
this way utilization around 100 %, since CUO max-
imizes resources utilization. However, full (100 %
percent) utilization is not necessarily something desir-
able, as it exhibits the workload’s need for a larger

SuMo: Analysis and Optimization of Amazon EC2 Instances

capacity instance, while possible incremental work-
load flactuations cannot be handled efficiently. So,
setting parameter f to a value larger than 1, we (in a
way) overestimate the future workload requirements,
resulting in an utilization less than 100 % (since CUO
will select larger capacity instances than in the former
case) and enabling the better serving of instances that
exhibit fluctuations in their capacity needs. Of course,
using a very large value for f would result in an inef-
ficient (in terms of the utilization and associated costs)
selection of resources.

6.2 Formulation

Table 2 presents the proposed ILP formulation.
The first constraint is used to ensure that an

instance can be replaced by only one new instance,
while the selection of the same type of instance means
actually no change. The second constraint guaran-
tees that the new instance is able to serve the orig-
inal workload. The third constraint guarantees that
the new set of instances has the appropriate capac-
ity to accommodate the instances’ desired workload,
based on Eq. (2). The fourth set of constraints relates
to a number of choices an administrator should be
able to make. Changing the operating system of an
instance is usually not a desired option, since this
could incur additional overhead (e.g., configuration,
code rewriting) to the administrator. The administrator
may also wish (or not) to keep unchanged the region
an instance is operating in, or its type, for various rea-
sons, including policy or security. In addition, it may
be important for the administrator that some basic or
particular memory constraints are satisfied by the new
instances.

The presented ILP finds the appropriate instance
to serve each demand. The objective is to minimize
a weighted sum of two parameters: i) the cost for
using the instances for a given period of time (the cost
parameter), and ii) the difference between the offered
processing capacity and the desired utilization (the uti-
lization parameter), Eq. (5). The weighting coefficient
W controls the relative significance given to these
two parameters in the optimization function. Values
of W close to 0 make the cost for using the instances
the dominant optimization parameter, in which case
instances with low cost (and probably lower CPU
capacity) are prefered, neglecting the resource utiliza-
tion ctiterion. In contrast, values of W close to 1 make

Table 2 ILP Formulation

ILP formulation
Input
D: Number of different types of instances
S: The set of running instances S = {I1, I2, ..., IM }

Ii = {ITk ,WLi}
i ∈ [1, ...,M], k ∈ [1, ...,D]

Ii : A running instance
Nk,, k ∈ [1, 2, ...,D]: Number of instances of type k that are

currently in use
M: Total number of instances of all types that are in use
WLi, i ∈ [1, 2, ...,M] : The aggregated workload of the i-th

running instance of the whole time
period of observat ion

Pk,k ∈ [1, 2, ...,D]: CPU capacity of instance of type k

Ck,k ∈ [1, 2, ...,D] : Cost per hour of instance of type k

CPk,k ∈ [1, 2, ...,D] : Capital cost of instance of type k (for
ODI, this cost is equal to zero)
DU : Desired/targeted utilization for the new set of instances
T : period of observation
W : weighting coefficient for the cost function

Variables:
Xi,ki ∈ [1, 2, ...,M], k ∈ [1, 2, ...,D]: Boolean variable equal
to 1 if i-th running instance is of type i, equal 0 otherwise

P : The total computational capacity P =
M∑
i=1

D∑
k=1

Xi,k · Pk (3)

of the set(old or new) of instances
for each
i ∈ [1, ...,M], k ∈ [1, ...,D]

C: Cost of the instances C =
M∑
i=1

D∑
k=1

Xi,k · Ck · T (4)

for the given time period
for each
i ∈ [1, ...,M], k ∈ [1, ...,D]

ILP formulation
Minimize W · C + (1 −W) · (P −DU) (5)

Constraints
1. New instance assignment

D∑
k=1

Xi,k = 1 for each i ∈ [1, ...,M]
2. Instance capacity constraint

Xi,k ·WLi ≤ Pk for all
i ∈ [1, ...,M], k ∈ [1, ...,D]

3. Desired Utilization constraint
P ≥ DU

4. Additional Constraints:
• Operating System (O)
• Region of Operation (R)
• Instance Type (IT)
• Memory Size

P. Kokkinos et al.

resource utilization the dominant optimization param-
eter, in which case the selected instances processing
capacity is close to the desired utilization without tak-
ing their cost into consideration. However, in practice,
as the results in Section 7 will exhibit, the total cost is
also reduced.

The number of variables and constraints in the
above ILP formulation depend on the number D of
instance types that can be used and the number M

of running instances in S. In the worst case, all the
D available instance types are candidates to replace
a running instance’s type. Additionally, the number
of candidate types can be reduced if the user sets
region and operating constraints. For example, the
user can set constrains to ensure that the new run-
ning instance is of the same machine type, of the
same operation system, or running in the same region
(Table 1) with the current one. Using these constraints
the number of available choices for the algorithm is
reduced significantly, along with the time required to
acquire the optimal solution. For that reason the pro-
posed mechanisms include a pre-processing phase, in
order to select the type of instances that can be used
by the ILP. In case there are no such constraints, the
pre-processing phase can be omitted.

6.3 Extensions

The presented algorithm can also be used to sup-
port and optimize other resource characteristics, such
as the the memory (instead of the CPU) of the vir-
tual instances. Similarly, the presented mechanism can
maximize the utilization of the memory usage for
all instances by suggesting the replacement of under-
utilized (in terms of memory) instances with other
instances of lower memory capacity and of lower
cost. Again, by configuring properly parameter f , the
CUO algorithm can also lead to the selection of high
memory instances in order to replace instances with
utilization near 100 %, indicating memory bottleneck.
In our implementation of the CUO algorithm in SuMo,
we did not include this extension because memory uti-
lization is not among the metrics provided by default
by CloudWatch (Section 3).

In the CUO algorithm presented, we do not con-
sider instance migration costs, which are in any case
difficult to calculate. Migration costs depend on a
number of measurable and non-measurable (at least,
not easily) parameters. For example the instance data

size need to be moved can be relatively easily calcu-
lated, while the cost of disrupting the service offered
by the particular instance, is quite more difficult to
calculate. In any case, if instance migration cost is
known, the CUO algorithm can easily be extended
appropriately to include it in its optimization.

A limitation of the ILP formulation presented is that
the number of instances in the new set of instances
is the same as in the original one. Nevertheless, CUO
can be coupled with AWS autoscaling functional-
ity. AWS Auto scaling ensures that the number of
instances one is using increases during demand spikes,
and decreases automatically when demand is reduced.
CUO algorithm’s suggestions can be applied even
when this auto scaling functionality is enabled, pro-
viding suggestions for the resizing of the resources
independently of whether they have been enabled for
the whole period of observation or not.

Moreover, many real world services (like Pinter-
est content sharing service [38]) utilizing AWS tend
to use a mix of reserved - RI, on demand - ODI
and spots EC2 instances to serve the fluctuating daily
traffic (Fig. 4), utilizing also the AWS auto-scaling
feature. Using RI instances all the time they pro-
vide a baseline capacity, paying an initial fixed cost
and a very small hourly cost. Normal ODI instances
are used for serving the expected capacity for the
day workload, with no upfront cost, only an hourly
one. Additionally, peaks can be handled utilizing spot
EC2 instances, which generally cost less than the
ODI instances. AWS Auto scaling ensures that the
number of instances used increases during demand
spikes, and decreases automatically when demand is
reduced. (Other services, utilizing AWS will probably
use similar tactics, however we bring up Pinterest use
case, since some internal information of the service’s
operation have become public [34]).

The CUO algorithm can also handle both ODI
and RI instances, providing instance resource resizing
suggestions for ODI instances and workload migra-
tion suggestions from ODI to RI instances, so as
to increase their utilization. Moreover, the proposed
mechanism focuses on EC2 recourses only and does
include propositions for migrating to other kind of
resources (e.g., to Amazon DynamoDB if an instance
is I/O bounded). Another, possible extension is that
different aggregation operators (maximum, minimum,
average) can be used to calculate the aggregated work-
load WLi of the i–th instance over time period T . In

SuMo: Analysis and Optimization of Amazon EC2 Instances

Fig. 4 Pinterest use case,
where a mixed of EC2
instances are used to serve
the fluctuating daily traffic

this way, for example, CUO can handle both instances
with cyclical loads (e.g., web servers), where the peak
workload at “rush hours” is important as well as
instances with more uniform load.

7 Results

7.1 Configuration Scenarios and Metrics

We evaluated the Cost and Utilization Optimiza-
tion (CUO) algorithm using synthetic data pro-
duced by simCloudData and feeding them in the
CUO mechanism included in cloudForce. The sim-
CloudData module produces an initial set Sof M

instances, and their workload signal WL (Eq. (1))
for a period of T = 24 hours (step size equal to
1 hour), while cloudForce calculates a new set Snew

of instances for serving the same load. We do not
evaluate the other mechanisms (profiling, spark detec-
tion) incorporated in SuMo, since their operation is
straightforward.

Also, even though using real data would be more
useful in evaluating the proposed mechanism, mon-
itoring data from public clouds are not publically
available. On the other hand, one can find a small set of
raw traces originating from data centers [42, 43] (some
of which we also used in a previous work of ours [23])
and several works profiling these traces [44]. These
cannot be used in our work since they do not match
the model of operation of AWS or of any other public
cloud provider. Instead in order to perform our evalu-
ation, we identify a number of configuration scenarios

that correspond (most of them) to real use cases, such
as the Pinterest’s [38]:

• Flat, where every instance’s OS and region of
operation can be changed by CUO. This is not
a very realistic scenario, and is merely used in
order to obtain some baseline results to com-
pare against. Additionally, the workload of each
instance is selected uniformly in the range of
[0,100] percent of the instance’s machine type
capacity. Other workload ranges ([0,20] and
[80,100] percent) are also evaluated.

• Region-constrained, where every instance’s OS
and region of operation cannot change. The work-
load scenarios of the Flat configuration are used.

• Cyclical-load, where the total workload changes
over time causing the initiation of more instances,
following a pattern similar to the one presented
in Table 2 for the Pinterest use case. Also, we
assume that the OS and region of operation of all
the instances cannot change.

Additionally, in our experiments, we consider ODI
whose exact type is selected uniformly among the
196 different ODI instance types (see Table 1). The
weighting coefficient W in the optimization function
of Eq. (5) was equal to 0.5, while parameter f was set
to 1. Other parameter values were also considered in
the results that follow. A number of experiments with
different values for the parameters (WL, T , f,W)

were also performed with some of the results obtained
presented in the following.

P. Kokkinos et al.

The main metrics of interest are the capacity, the
cost and the utilization of the instances selected by
SuMo, which are compared to those of the initial set
of instances. Furthermore, we are interested in track-
ing the changes of machine types (Table 1) in the new
set of instances Snew selected by SuMo.

7.2 Flat Configuration: Performance

We initially performed a number of experiments to
study the role played by the number M of running
instances. This was the basic set of experiments per-
formed to evaluate the improvements obtained by the
CUO mechanism of SuMo.

Figure 5 shows the total cost (Eq. (4)) of the
instances in the original set S and in the new
set Snewselected by SuMo, assuming an observation
period equal to T . We see that the instances selected
by SuMo result in a 40-50 % reduction in the cost
paid by the user. In both instance sets, S and Snew, the
total cost increases close to linearly with the number
of running instances M , as expected.

Figure 6 shows the utilization of the cloud
resources used and the total capacity (measured in
EC2 Compute Units - ECU) of the instances in S

and in Snew. The instances’ utilization is defined as
the ratio of the instances’ average workload WL dur-
ing the observation period T , over the total capacity
P of instances, defined in Eq. (3). We observe that
the instances selected by SuMo result in a higher uti-
lization ratio (Fig. 6a), around 10 % higher, due to
the smaller total capacity instances chosen (Fig. 6b).
The exact utilization ratio is affected by the cho-
sen parameters (see also Section 7.4). However, the

improvement in utilization shown in Fig. 6a (∼ 10 %)
of Snew in comparison to S is higher than the percent-
age of capacity reduction, shown in Fig. 6b, leading to
the conclusion that the CUO mechanism also achieves
a better matching between the requested workload and
the offered capacity than the one for the initial set S.
The efficiency of the matching provided by the CUO
mechanism is also exhibited by the fact that the utiliza-
tion achieved by the new set of instances Snew, remains
unaffected by the number of running instances M . One
would expect that a large number of running instances
would leave room for more “errors” in the assignment
of instances to resources and inefficient utilization of
the available capacity, but this does not appear to be
the case. Also, we should note that the utilization of
the instances in the initial set S remains unaffected
by M , since the values of the related parameters (e.g.,
workload) were chosen, as already mentioned, from a
uniform distribution.

Additionally, one may expect that CUO (or other
similar mechanisms) should achieve utilization as
close to a 100 % as possible. However, the result-
ing utilization is affected by two parameters: First, it
is affected by the number of upgrades (see also next
section) performed by CUO (so as to alleviate perfor-
mance bottlenecks) that result in selecting instances of
higher capacity, leading to smaller utilization for par-
ticular workload/instance pairs (e.g., from 100 % to
80 %). Second, there is always an upper bound on the
utilization that can be achieved, considering that in the
new set Snew, all the workloads have to be served by
the selected instances (Eq. (6)) and that the machines’
capacity offered by Amazon [27] is not linear. For
example, there are machine types of (this list is not

Fig. 5 The total cost
(measured in $) of the
instances of the initial set S,
and the new set Snew ,
selected by SuMo

SuMo: Analysis and Optimization of Amazon EC2 Instances

(a) (b)

Fig. 6 The percentage utilization and the total capacity (measured in Elastic Compute Units – ECU) of the instances of the initial set
S, and of the new set Snew , selected by SuMo

complete) 1, 2, 4, 5, 7, 8,13, 26 ECU capacity and
so for an instance of 4 ECU capacity and workload
equal to 2.5 ECU, SuMo cannot find an instance that
results in a higher utilization, only a cheaper instance
by choosing another OS or region of operation. This
also leads to the remark that had all possible ECU
capacity granularities (e.g., 1,2,3...,25,26) been pro-
vided by Amazon, the utilization achieved by CUO
would be higher, with the “cost” however landing on
the public cloud provider’s side, regarding the efficient
management of these different instance types.

7.3 Flat Configuration: Instance’S Changes

In Fig. 7, we illustrate the changes in the machine
types, operating systems and regions (Table 1) in the
new set of instances Snew selected by SuMo, in rela-
tion to the original set S. We observe that the CUO

mechanism usually results in regional changes, while
the changes in the machine type and the operating sys-
tems are less. Machine type changes relate both to uti-
lization and cost factors, while regional and operating
system changes relate only to cost parameters.

In particular, while initially the percentage of
Linux versus Windows instances is on average (for
various number of instances) equal, the application
of CUO leads to several instances with Windows
OS to be replaced by the cheaper Linux running
instances (Fig. 8). Also, while the instances of the
initial set S run uniformly in all available regions,
in the set Snew, selected by SuMo, a smaller num-
ber of regions are preferred (Fig. 9). This relates to
the pricing policy used in each region that makes
SuMo choose the “cheaper” regions for running the
instances. We should note that in practice, an admin-
istrator would probably request that the instances’

Fig. 7 Changes in the
machine types, operating
systems and regions
(Table 1) in the new set of
instances Snew selected by
SuMo, in relation to the
original set S

P. Kokkinos et al.

(a) (b)

Fig. 8 Operating Systems of the instances in (a) the initial set S, and (b) the new set Snew selected by SuMo

OS remain unchanged, since not all Linux appli-
cations run in Windows, and vice versa, or simply
because the administrator is not interested in changing
the running environment of the applications. More-
over, regional constraints could also be set by an
administrator.

The percentage of regional changes (that result in
cost reduction) would have been smaller if the migra-
tion costs were also accounted for. However, having
said that, we should highlight the importance for
the cloud community to extend research and devel-
opment efforts towards Wide Area Network (WAN)
Virtual Machine (or instance, in Amazon terms)
migration. Considering a future of many small and
large cloud providers, operating in different regions
of the world, efficient (in terms of time, resources
utilized etc.) instance migration of WAN is a very
important area.

Figure 10 shows the percentage of upgrades, down-
grades and the cases without changes of instances
in the new set Snew, selected by SuMo. We have an

upgrade (or downgrade or no change) when the work-
load of an instance in set S is executed in a higher
(or lower or equal, respectively) capacity instance in
the new set Snew . We observe that the CUO mech-
anism results mostly (40 % -50 %) in downgrades,
while we have fewer upgrades (30 %-40 %) and even
fewer cases without changes (10 %-30 %). These per-
centages are highly affected by the chosen parameters,
nevertheless they demonstrate, generally the efficient
operation of the CUO mechanism used in SuMo, since
not only downgrades are performed, as one would
normally expect so to increase resource utilization
and decrease total cost, but more intelligent and less
obvious choices, often resulting in upgrades, are also
considered.

7.4 Flat Configuration: Role of the Weighting
Coefficient W

The weighting coefficient W determines the relative
importance given to the cost of the user and to the

(a) (b)

Fig. 9 Regions where the instances are running for (a) the initial set S, and (b) the new set Snew selected by SuMo

SuMo: Analysis and Optimization of Amazon EC2 Instances

Fig. 10 Percentage of
instance type upgrades,
downgrades and cases
without changes, in the new
set of instances Snew
selected by SuMo, in
relation to the original set S

Fig. 11 The total cost
(measured in $) of the
instances of the initial set S,
and the new set Snew,
selected by SuMo, for W=0
and W=1

(a) (b)

Fig. 12 The % utilization and the cost per hour of the instances of the initial set S, and of the new set Snew , selected by CUO, for the
Cyclical-load configuration

P. Kokkinos et al.

Fig. 13 The total cost
(cumulative sum) of the
instances of the initial set S,
and of the new set Snew ,
selected by CUO, for the
Cyclical-load configuration

cloud resource utilization criteria in Eq. (5). We per-
formed experiments for W = 0 (maximizing only
resource utilization) and W = 1 (minimizing only cost
to the user). Figure 11 shows, as expected, that when
only cost is optimized (W = 1), the total cost of the
new set of instances Snew, is smaller than when only
utilization is maximized (W = 0). However, even in
the latter case, significant cost reduction is achieved,
since maximizing utilization leads in many cases to
the selection of lower capacity and therefore cheaper
instances (Fig. 10). Also, the utilization achieved in
both cases (W = 0 and W = 1), even though larger
than the initial one (for set S), is independent of the
number of instances M . As mentioned earlier, this is
also because there is always an upper bound on the
utilization that can be achieved, considering that in
the new set Snew, all the workloads have to be served
by the selected instances (Eq. (6)) and the machines’
capacity offered by Amazon [27] is not linear.

7.5 Cyclical-load configuration

In the experiments performed for the Cyclical-load
configuration, we assumed a setting similar to the
one presented in Section 6.3 and in Fig. 4, for the
Pinterest’s use case.

In particular, during a 24-hour period there is a
variable workload that causes the initiation of new
instances to serve the increasing load. In Fig. 12,
we observe that the utilization and the cost per hour
increase during peak hours. Even in this configura-
tion, with time-varying characteristics, CUO achieves
improved utilization and smaller cost. Figure 13 shows
the cumulative sum of the cost.

7.6 Region-constrained Configuration

The results obtained for the region-constrained config-
uration were similar to the Flat configuration, except
for the fact that only machine type changes occurred.

8 Conclusions

The widespread use of public cloud resources makes
analyzing and optimizing clouds increasingly impor-
tant, but also makes it difficult for a user or admin-
istrator to effectively control their proper use. We
have developed a toolkit named SuMo that imple-
ments important functionalities for collecting mon-
itoring data from Amazon Web Services (AWS),
analyzing them and suggesting changes that opti-
mize the use of resources and the associated costs.
SuMo consists of three main components/modules:
cloudData is responsible for collecting monitoring
data, cloudKeeping contains a set of Key Performance
Indicators (KPI), while cloudForce incorporates a set
of analytic and optimization algorithms. Optimization
in SuMo is performed using an ILP-based Cost and
Utilization Optimization (CUO) mechanism that max-
imizes the utilization of the resources/instances and
minimizes the costs of their use. When necessary,
CUO also recommends increasing resource capaci-
ties, so as to resolve possible performance bottlenecks.
In addition, SuMo incorporates an initial set of basic
algorithms (for profiling and spike detection) for ana-
lyzing the collected monitoring data and detecting
trends in the way virtual resource are used or possi-
ble malicious or erroneous instance behavior. SuMo is

SuMo: Analysis and Optimization of Amazon EC2 Instances

open-source [47] and can be used as a basis for the
development of new mechanisms for the analysis of
collected monitoring information from AWS.

We performed a number of experiments using
synthetic monitoring data and illustrated the bene-
fits of the proposed CUO mechanism. In summary,
the instances selected by the CUO mechanism, used
in SuMo, result in a large reduction in the cloud
resources cost. Also, it achieves a good matching
between the requested workload and the offered
capacity, leading also to high utilization ratio. We
also observed that CUO mechanism usually results
in regional changes for the new instances, while the
changes in the machine type and the operating system
are less. Machine type changes relate both to utiliza-
tion and cost factors, while regional and operating sys-
tem changes relate only to cost parameters, tending to
select a limited number of low cost regions for hosting
the instances or of cheaper Linux instances. Neverthe-
less, in practice both regional and operating system
changes may not be always possible or without cost.
Also, the efficient operation of the CUO mechanism
was exhibited by the fact that not only downgrades
(selecting lower capacity instances) are performed, as
one would normally expect so to increase resource uti-
lization and decrease total cost, but more intelligent
and less obvious choices, often resulting in upgrades
(selecting higher capacity instances), are also con-
sidered. CUO parameterized operation and efficiency
under instances with time-varying characteristics is
also exhibited.

Acknowledgments This work is implemented within the
framework of the Action Supporting Postdoctoral Researchers
of the Operational Program Education and Lifelong Learning
(Action’s Beneficiary: General Secretariat for Research and
Technology), and is co-financed by the European Social Fund
(ESF) and the Greek State.

References

1. Buyya, R., et al.: Cloud computing and emerging IT plat-
forms: Vision, hype, and reality for delivering computing
as the 5th utility. Futur. Gener. Comput. Syst. 25, 599–616
(2009)

2. Rimal, B.P., Jukan, A., Katsaros, D., Goeleven, I.: Archi-
tecture requirementes for cloud computing systems: An
enterprise cloud approach. J. Grid Comput. 9(1), 3–26
(2011)

3. Amazon Web Services – AWS: aws.amazon.com, last seen
January 2014

4. RackSpace: www.rackspace.com, last seen January 2014
5. Openstack: www.openstack.org, last seen January 2014
6. OpenNebula: opennebula.org, last seen January 2014
7. Eucaluptus: www.eucalyptus.com, last seen January 2014
8. Amazon data center size: huanliu.wordpress.com/2012/03/

13/amazon-data-center-size, last seen January 2014
9. Designs, Lessons and Advice from Building Large Dis-

tributed Systems. www.cs.cornell.edu/projects/ladis2009/
talks/dean-keynote-ladis2009.pdf

10. Amazon Case Studies: aws.amazon.com/solutions/
case-studies/

11. Wang, H. et al.: Distributed systems meet economics: pric-
ing in the cloud. USENIX Hot Topics in Cloud Computing
(HotCloud) (2010)

12. Chen, J., et al.: Tradeoffs Between Profit and Customer
Satisfaction for Service Provisioning in the Cloud. Interna-
tional Symposium on High performance Distributed Com-
puting (HPDC) (2011)

13. Zanikolas, S., Sakellariou, R.: A Taxonomy of grid moni-
toring systems. FGCS 21(1), 163–188 (2005)

14. Kung, H.T., Lin, C.-K., Vlah, D.: CloudSense: Continu-
ous fine-grain cloud monitoring with compressive sensing.
USENIX HotCloud (2011)

15. Petcu, D., et al.: Experiences in building a mOSAIC of
clouds. J. Cloud Comput. 2(1) (2013)

16. Ferrer, A.J., et al.: OPTIMIS: A holistic approach to cloud
service provisioning. Futur. Gener. Comput. Syst. 28(1),
66–77 (2012)

17. Mallick, S.: Virtualization based cloud capacity prediction.
HPCS, pp. 849–852 (2011)

18. De Chaves, S., et al.: Toward an architecture for monitor-
ing private clouds. IEEE Comm. Mag. 49(12), 130–137
(2011)

19. Ward, J.S., Barker, A.: Semantic Based Data Collection for
Large Scale Cloud Systems. DIDC, pp. 13–22 (2012)

20. Shao, J., Wei, H., Wang, Q., Mei, H.: A Runtime Model
Based Monitoring Approach for Cloud. IEEE CLOUD,
pp. 313–320 (2010)

21. Meng, S., et al.: Reliable State Monitoring in Cloud Data-
centers. IEEE CLOUD, pp. 951–958 (2012)

22. Weng, J., et al.: Event Detection in Twitter. HP Laboratories
(2011)

23. Kokkinos, P., Kretsis, A., Varvarigou, T., Varvarigos, E.:
Social-like Analysis on Virtual Machine Communication
Traces. IEEE Cloudnet (2012)

24. Malkowski, S., Hedwig, M., Jayasinghe, D., Pu, C.,
Neumann, D.: CloudXplor: A tool for configuration plan-
ning in clouds based on empirical data. ACM Symposium
on Applied Computing (SAC) (2010)

25. M. Frı̂ncu: Scheduling highly available applications on
cloud environments. Futur. Gener. Comput. Syst. 32, 138–
153 (2014)

26. Kokkinos, P., et al.: Cost and Utilization Optimization of
Amazon EC2 instances. IEEE Sixth International Confer-
ence on Cloud Computing, pp. 518–5255 (2013)

27. Amazon Elastic Compute Cloud: aws.amazon.com/ec2,
last seen January 2014

28. Amazon CloudWatch: aws.amazon.com/cloudwatch, last
seen January 2014

29. Nagios: www.nagios.org, last seen January 2014
30. Newvem: www.newvem.com, last seen January 2014
31. Cloudability: cloudability.com, last seen January 2014

aws.amazon.com
www.rackspace.com
www.openstack.org
opennebula.org
www.eucalyptus.com
huanliu.wordpress.com/2012/03/13/amazon-data-center-size
huanliu.wordpress.com/2012/03/13/amazon-data-center-size
www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
aws.amazon.com/solutions/case-studies/
aws.amazon.com/solutions/case-studies/
aws.amazon.com/ec2
aws.amazon.com/cloudwatch
www.nagios.org
www.newvem.com
http://cloudability.com

P. Kokkinos et al.

32. Cloudvertical. www.cloudvertical.com, last seen January
2014

33. boto - A Python interface to Amazon Web Services: docs.
pythonboto.org, last seen January 2014

34. SciPy: www.scipy.org, last seen January 2014
35. NumPy: numpy.scipy.org, last seen January 2014
36. IBM ILOG CPLEX Optimizer: www-01.ibm.com/

software/integration/optimization/cplex-optimizer, last
seen January 2014

37. On demand instances pricing: aws.amazon.com/ec2/
pricing/pricing-on-demand-instances.json, last seen
January 2014

38. Pinterest use case: www.theregister.co.uk/2012/04/30/
inside pinterest virtual data center, last seen January 2014

39. mOSAIC project: http://www.mosaic-cloud.eu, last seen
January 2014

40. Optimis project: http://www.optimis-project.eu, last seen
January 2014

41. Aeolus project: www.aeolusproject.org, last seen January
2014

42. Data Set for IMC 2010 Data Center Measurement: pages.
cs.wisc.edu/∼tbenson/IMC10 Data.html, last seen January
2014

43. Google. Google Cluster Data V1. Available: http://code.
google.com/p/googleclusterdata/wiki/TraceVersion1, last
seen January 2014

44. Kavulya, S., et al.: An analysis of traces from a produc-
tion mapreduce cluster. Cluster, Cloud and Grid Comput.
(CCGrid), pp. 94–103 (2010)

45. Kertesz, A., Kecskemeti, G., Oriol, M., Kotcauer, P., Acs,
S., Rodrıguez, M., Merce, O., Marosi, A.C., Marco, J.,
Franch, X.: Enhancing federated cloud management with
an integrated service monitoring approach. J. Grid Comput.
11(4), 699–720 (2013)

46. Mendez, V., Casajus, A., Fernandez, V., Graciani, R.,
Merino, G.: Rafhyc: An architecture for constructing
resilient services on federated hybrid clouds. J. Grid Com-
put. 11(4), 753–770 (2013)

47. SuMo-tool: https://github.com/SuMo-tool, last seen Jan-
uary 2014

www.cloudvertical.com
docs.pythonboto.org
docs.pythonboto.org
www.scipy.org
numpy.scipy.org
www-01.ibm.com/software/integration/ optimization/cplex-optimizer
www-01.ibm.com/software/integration/ optimization/cplex-optimizer
aws.amazon.com/ec2/pricing/pricing-on-demand-instances.json
aws.amazon.com/ec2/pricing/pricing-on-demand-instances.json
www.theregister.co.uk/2012/04/30/inside_pinterest_virtual_data_center
www.theregister.co.uk/2012/04/30/inside_pinterest_virtual_data_center
http://www.mosaic-cloud.eu
http://www.optimis-project.eu
www.aeolusproject.org
pages.cs.wisc.edu/~tbenson/IMC10_Data.html
pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://code.google.com/p/googleclusterdata/wiki/TraceVersion1
http://code.google.com/p/googleclusterdata/wiki/TraceVersion1
https://github.com/SuMo-tool

	SuMo: Analysis and Optimization of Amazon EC2 Instances
	Abstract
	Introduction
	Previous Work
	Amazon Web Services – Cloud Watch
	Algorithmic Operation for Analyzing Public Clouds
	SuMo Toolkit
	Cloud Data Module
	Cloud Keeping Module
	Cloud Force

	CUO Mechanism
	Modelling
	Formulation
	Extensions

	Results
	Configuration Scenarios and Metrics
	Flat Configuration: Performance
	Flat Configuration: Instance'S Changes
	Flat Configuration: Role of the Weighting Coefficient W
	Cyclical-load configuration
	Region-constrained Configuration

	Conclusions
	Acknowledgments
	References

