
Fair Scheduling Algorithms in Grids
Nikolaos D. Doulamis, Member, IEEE, Anastasios D. Doulamis, Member, IEEE,

Emmanouel A. Varvarigos, and Theodora A. Varvarigou, Member, IEEE

Abstract—In this paper, we propose a new algorithm for fair scheduling, and we compare it to other scheduling schemes such as the

Earliest Deadline First (EDF) and the First Come First Served (FCFS) schemes. Our algorithm uses a max-min fair sharing approach

for providing fair access to users. When there is no shortage of resources, the algorithm assigns to each task enough computational

power for it to finish within its deadline. When there is congestion, the main idea is to fairly reduce the CPU rates assigned to the tasks

so that the share of resources that each user gets is proportional to the user’s weight. The weight of a user may be defined as the

user’s contribution to the infrastructure or the price he is willing to pay for services or any other socioeconomic consideration. In our

algorithms, all tasks whose requirements are lower than their fair share CPU rate are served at their demanded CPU rates. However,

the CPU rates of tasks whose requirements are larger than their fair share CPU rate are reduced to fit the total available computational

capacity in a fair manner. Three different versions of fair scheduling are adopted in this paper: the Simple Fair Task Order (SFTO),

which schedules the tasks according to their respective fair completion times, the Adjusted Fair Task Order (AFTO), which refines the

SFTO policy by ordering the tasks using the adjusted fair completion time, and the Max-Min Fair Share (MMFS) scheduling policy,

which simultaneously addresses the problem of finding a fair task order and assigning a processor to each task based on a max-min

fair sharing policy. Experimental results and comparisons with traditional scheduling schemes such as the EDF and the FCFS are

presented using three different error criteria. Validation of the simulations using real experiments of tasks generated from 3D image-

rendering processes is also provided. The three proposed scheduling schemes can be integrated into existing Grid computing

architectures.

Index Terms—Grid computing, fair grid scheduling.

Ç

1 INTRODUCTION

SCHEDULING and resource management are important in
optimizing multiprocessor Grid resource allocation and

determining its ability to deliver the negotiated Quality-of-
Service (QoS) requirements [1], [2]. This need has been
confirmed by the Global Grid Forum (GGF) in the special
working group dealing with the area of scheduling and
resource management for Grid computing [3]. The resource
manager receives information about the job characteristics
and determines when and on which processor each job will
execute.

Though Grid computing has been exaggerated by the
international community, it is now cooling down. Nowa-
days, the major issue concerns the effective system
integration by efficiently utilizing the existing tools with
research results that will make Grid computing applicable
to many commercial scenarios. Toward this direction,
scheduling and resource allocation schemes play a deter-
minant role. In a scheduling scheme, however, meeting the
requirements of one user should not be achieved by
sacrificing the requirements of another user. When the

desired users’ requirements cannot be achieved, the
degradation should be graceful and fair to all users. As
the tasks’ requirements, we refer to the tasks’ deadlines,
workload, and the time that a task is ready to be executed
on a processor. This naturally leads to the need of congestion
control and the associated notion of fairness issues that we
address in this paper. Fairness is important because it is
inherent in the notion of sharing, which is the raison d’etre
of the Grid.

Several computing toolkits and systems have been
developed to guarantee the QoS requirements of tasks in
a Grid computing architecture. The most well-known
toolkit for Grid computing is Globus [4]. Globus addresses
a wide range of metacomputing issues including hetero-
geneous environments. Development, implementation, and
evaluation of mechanisms that support High Throughtput
Computing (HTC) on a large collection of distributively
owned computing resources are also addressed in the
framework of Condor project [5]. The Grid version of
Condor, called Condor-G, uses the Globus toolkit to
manage Grid jobs [6], [7]. Condor has been designed to
run jobs within a single administrative domain. On the
other hand, the Globus toolkit has been designed to run jobs
across many administrative domains. Condor-G combines
the strengths of both. Condor-G introduces grid scheduler
and manager to allow full-featured queuing services,
credential manager, and fault-tolerance issues. An object-
oriented parallel processing distributed computing en-
hanced with security capabilities is the Legion system.
Legion will provide a single, coherent virtual machine that
addresses scalability, programming ease, fault tolerance,
site autonomy, and security [8].

1630 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

. N.D. Doulamis and T.A. Varvarigou are with the Department of Electrical
and Computer Engineering, National Technical University of Athens,
Greece. E-mail: ndoulam@cs.ntua.gr, dora@telecom.ntua.gr.

. A.D. Doulamis is with the Technical University of Crete, Chania, Greece.
E-mail: adoulam@cs.ntua.gr.

. E.A. Varvarigos is with the Department of Computer Engineering and
Informatics, University of Patras, Greece. E-mail: manos@ceid.upatras.gr.

Manuscript received 1 Aug. 2004; revised 2 Jan. 2006; accepted 28 Sept. 2006;
published online 8 Jan. 2007.
Recommended for acceptance by X. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0191-0804.
Digital Object Identifier no. 10.1109/TPDS.2007.1053.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

The Nimrod-G [9] is a Grid aware version of the Nimrod
tool [10]. Nimrod provides a simple declarative parametric
modeling language for expressing a parametric experiment.
The domain experts can easily create a plan for a parametric
computing (task farming) and use the Nimrod runtime
system to submit, run, and collect the results from multiple
computers (cluster nodes) [11]. The Grid Application Devel-
opment Software (GrADS) tool aims at simplifying distrib-
uted heterogeneous computing in the same way that the
World Wide Web simplifies information sharing over the
Internet [12]. The GrADS environment supports scheduling
algorithms at the application level and metalevel [13]. In the
application level, scheduling of a single application is
performed by minimizing the application execution time of
a set of potentially shared resources. Instead, in the
metascheduling level, many applications are considered at
once to improve the overall system performance.

In the G-commerce architecture, a method of a dynamic
Grid resource allocation is adopted using notions of market
economy [14]. Two categories are considered in the frame-
work of this architecture: the commodities and the auctions.
Modeling the Grid as a commodities market is natural since
the Grid strives to allow applications to treat disparate
resources as interchangeable commodities. On the other
hand, auctions require little in the way of global price
information, and they are easy to implement in a distributed
setting.

The Queue Bank or Quantum Bank (QBank) system is a
CPU allocation bank that consists of a set of routines, a server
daemon, client administration tools, and commands able to
manage and control the allocation of the CPU resources on a
supercomputer. The QBank was developed for:

1. controlling and managing CPU resources allocated
to tasks or users,

2. applying different billing rates according to the
policies adopted, tasks, and resource types,

3. providing balance and usage feedback to users and
administrators, and

4. preventing resource exhaustion when underspent
tasks simultaneously claim allocation fulfillment [15].

A fully distributed view of the Grid usage accounting
system and a methodology for allocating Grid computa-
tional resources for use on a Grid is presented in the work
performed by the distributed accounting working group
(DAWG) of the GGF [16]. In particular, a usage economy
and/or methods for resource exchange are defined along
with implementation standards that minimize and com-
partmentalize the tasks required for a site to be participated
in Grid accounting.

Apart from the above mentioned Grid infrastructures,
several works have been reported in the literature dealing
with scheduling and resource allocation. The most well-
known scheduling algorithm is the Earliest Deadline First
(EDF) [17], which assigns the highest priority to the task
with the most imminent deadline. Another scheduling
approach is the Slack Time algorithm, also referred as Least
Laxity First (LLF) [18], [19], where the tasks are selected for
execution in order of nondecreasing slack time, defined as
the difference between the task’s relative deadline and its
remaining computational time.

However, the aforementioned schemes have been de-
signed for a single processor. Even though these schemes
can be extended in a natural way to the case of a
multiprocessor environment to determine the order in
which the tasks are considered for assignment to proces-
sors, they cannot be used to determine the specific
processor on which the selected tasks are assigned to. A
simple rule to determine the processor on which a task is
executed is the Earliest Start Time (EST) rule. The EST is the
earliest time that a task can start its execution. Another
popular rule is the Minimum Processing Time First rule
(MPTF), where the processor giving the minimum proces-
sing time is selected. For a multiprocessor system, the
authors in [21] have shown that heuristic schemes that takes
into account both the task deadline and EST better performs
than the EDF, LLF, and MPTF algorithms. The authors in
[22] also proposed several heuristic scheduling algorithms
for the multiprocessor case.

The previously mentioned scheduling algorithms as-
sume that the tasks are nonpreemptable. A task is said to be
nonpreemptable if, once it starts execution on a processor, it
has to be completed on that processor, and once it starts
execution, it cannot be interrupted by other tasks and
resume execution later. Scheduling algorithms dealing with
preemptable tasks have also been reported in the literature
[23], [24], [25], [26]. In this case, it is assumed that each task
can be divided into smaller units, each of which is executed
independently. The ability to feasibly schedule preemptable
tasks is always higher than the ability to feasibly schedule
corresponding nonpreemptable tasks. However, this in-
crease in schedulability is obtained at the expense of a
higher implementation overhead. To address this difficulty,
task parallelization can be performed as an intermediate
solution, which tries to meet the conflicting requirements of
schedulability and overhead.

Other scheduling schemes are oriented for Grid comput-
ing. In [27], an extension of the scheduling algorithms of the
GrADS tool is discussed by 1) introducing more sophisti-
cated clustering and data mining schemes, 2) reducing the
computational complexity, and 3) providing single-site
scheduling in case of invalidation of multisite resource
selection. The scheduling objective in [28] is to minimize the
total completion time of the tasks. Since minimization of
task completion time in a multiprocessor scheduling
environment is an NP-hard problem, scheduling heuristics
are discussed and compared with each other in this work.
Genetic algorithm methods are presented in [29] and [30]
for minimizing the total task completion time. The algo-
rithms model the scheduling process as a genetic evolution
and estimate at which Grid resource a task should be
assigned for execution so that the completion time is
minimized.

A survey evaluation of scheduling algorithms is pre-
sented in [31]. Stochastic evaluation of fair scheduling
algorithms is also presented in [32], where networking
issues are discussed. Finally, evaluation of different
scheduling mechanisms for Grid computing is also pre-
sented in [33], such as the First Come First Served (FCFS),
the Largest Time First (LTF), the Largest Cost First (LCF),
the Largest Job First (LJF), the Largest Machine First (LMF),

DOULAMIS ET AL.: FAIR SCHEDULING ALGORITHMS IN GRIDS 1631

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

the Smallest Machine First (SMF), and the Minimum
Effective Execution Time (MEET).

A drawback of the previously mentioned approaches is
that scheduling is performed without taking into account
fair considerations. For example, the works in [28], [29], and
[30] try to minimize the total completion time by dropping
overdemanded tasks (for example, tasks of high workload
and short deadlines), which is not a fair policy. Instead, in
this paper, a fair scheduling policy is introduced based on
the max-min fair scheduling scheme. The Generalized
Processor Sharing scheme (GPS) has been proposed for fair
scheduling over packet switched networks [34]. The GPS
scheme provably provides guarantees on the delay and
bandwidth of a session in a network of switches but is hard
to implement. The GPS scheme is emulated in practice
using the Weighted Fair Queuing (WFQ) algorithm [35],
which exploits concepts of the max-min fair sharing scheme
[36]. GPS-based algorithms are widely implemented in the
Internet and mobile communications today.

In this paper, three new scheduling algorithms are
proposed suitable for Grid computing. All scheduling
policies are based on the max-min fair sharing scheme. The
first, called Simple Fair Task Order (SFTO) algorithm,
schedules the tasks according to their respective fair comple-
tion times and then assigns each of them to the appropriate
processor using a modified Earliest Completion Time (ECT)-
based policy. The second, called Adjusted Fair Task Order
(AFTO), refines the SFTO policy by ordering the tasks using
the adjusted fair completion times, resulting in more fair
treatment of the jobs. Finally, for the third scheme, we present
the Max-Min Fair Share (MMFS) scheduling algorithm,
simultaneously address the problem of finding a fair task
order, and assign a processor to each task based on a max-min
fair sharing policy. Experimental results and comparisons
with traditional scheduling schemes such as the EDF and the
FCFS are presented using three different error criteria. The
simulations have been conducted using a large number of
processors, ranging from 50 to 1,000, using a very large
number of tasks 2,500 to 6,500 of varying sizes (workload) and
deadlines. The simulations are also performed for varying
capacities of the processors using either the symmetric case
(almost all processors follow the same capacity) or asym-
metric case (high deviation in the processor capacity) into
groups or distributions of high standard deviation values.
Validation of the simulations using real submitted tasks as
derived from 3D image-rendering applications is also
examined. The experiments are conducted in a real multi-
processor Grid cluster implemented in the framework of the
GRID Resources for Industrial Applications (GRIA) and
GRIDLAB European Union (EU)-funded projects. As a result,
the algorithms are applicable for large-scale computing
systems embedded with multiple processors. The proposed
scheduling algorithms can be also integrated in any other
existing Grid computing system to improve its performance
as far as the task allocation to the available processors is
concerned.

The remainder of the paper is organized as follows: In
Section 2, we discuss the relation between the scheduling
policy and the adopted charging policy, an issue that is
closely related to the commercial exploitation of Grid
computing. In Section 3, we introduce some basic notation,
whereas in Section 4, we present urgency-based scheduling
schemes and the modified ECT policy used for processor

assignment. Starting with Section 5, we turn our attention to
scheduling algorithms that take fairness into account, and
we introduce the SFTO and AFTO schemes. In Section 6, we
present the MMFS scheduling algorithm, which simulta-
neously addresses the problem of finding a fair task order
and assigning a processor to each task, whereas experi-
mental results and comparisons with traditional scheduling
schemes are presented in Section 7. Finally, Section 8
concludes the paper.

2 SCHEDULING EVALUATION AND ITS RELATION TO

THE CHARGING POLICY

Evaluating the efficiency of a scheduling algorithm depends
on the utility function that we seek to optimize, which in
turn depends on technoeconomic criteria. For example, a
scheduling algorithm that maximizes the number of tasks
served by the Grid tends to favor tasks of low workload at
the expense of tasks of heavy workload. The opposite is true
when the evaluation criterion used is the total workload
served, since, in that case, there is a tendency to reject tasks
of low workload in favor of tasks of heavy workload. A fair
scheduling algorithm, however, should not favor tasks of
specific characteristics (for example, high or low workload)
against others.

In a scheduling problem, the goal is to appropriately assign
all the tasks that are requesting service to the available
processors so that the time constraints are satisfied. The time
constraints of a task are the task’s deadline (which is the time
by which it is desirable for it to complete execution) and the
task’s earliest starting time on each processor (which is the
earliest time at which the task can start execution at that
processor; it takes into account the communication delay
incurred for transferring the task at that processor and the
current load of that processor). This problem may have zero,
one, or many feasible solutions. Often, finding a single
feasible schedule may not be sufficient. In some cases, the goal
may be to find the optimal schedule among all feasible
schedules, according to a desired optimality criterion. In
other cases, a feasible solution may not exist, in the sense that
some tasks cannot be scheduled to meet their respective
deadlines. In this case, we need criteria to select in a “fair”
way the tasks that are rejected and the tasks that receive a
degraded QoS. The fairness of a solution depends on the
adopted charging policy of the system.

A common measure for evaluating the scheduling
performance is the success ratio, defined as the ratio of the
number of tasks that are feasibly scheduled (that is, the
tasks whose time constraints are met) over the total number
of tasks requesting service. This measure treats all tasks
equally, regardless of their workload, and it does not take
into account the users’ contribution to the Grid infrastruc-
ture or the price that a user pays for the service he receives.
Another performance measure is the total workload of all
feasibly scheduled tasks. Here, the charging policy is
implemented per workload unit, and it is more beneficial
to serve tasks of heavy workload than tasks of low
workload. In such a case, the fees charged are proportional
to the customer task workload, so it is preferable to serve a
few customers who are willing to pay a lot, rather than a lot
of customers who are willing to pay only little for their
services. Such a policy is similar to the one used in
traditional telephone networks.

1632 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

The objective of the algorithms that we will present in
Sections 5 and 6 for scheduling tasks with deadlines on
resources is to optimize a fairness criterion. A fair scheduler
tries to meet the different requirements of the users. When
this is not possible, the resources are allocated so that the
degradation in some requirements perceived by each user is
done in a (weighted) fair way. For example, tasks submitted
by users who are willing to pay a higher fee or who
contribute more to the Grid infrastructure are treated more
favorably (in a measurable way) than those of other users.

3 NOTATION AND PROBLEM FORMULATION

We let N be the number of tasks that have to be scheduled.
We define the workload wi of task Ti, i ¼ 1; 2; . . . ; N , as the
duration of the task when executed on a processor of unit
computation capacity. The task workloads are assumed to
be known a priori to the scheduler and are provided by a
prediction mechanism such as script discovery algorithms,
databases containing statistical data on previous runs of
similar tasks, and so forth. An algorithm for workload
prediction of 3D rendering in a Grid architecture is
presented in one of our earlier works in [37]. We assume
that the tasks are nonpreemptable, so that when they start
execution on a machine, they run continuously on that
machine until completion. We also assume that time
sharing is not available and a task served on a processor
occupies 100 percent of the processor capacity.

We assume a multiprocessor system of M processors and
that the computation capacity of processor j is equal to
cj units of capacity. (The computation capacity of a
processor is the available capacity of the processor, and it
does not include capacity occupied by local tasks.) The total
computation capacity C of the Grid is defined as

C ¼
XM
j¼1

cj: ð1Þ

Let dij be the communication delay between user i and
processor j. More precisely, dij is (an estimate of) the time
that elapses between the time a decision is made by the
resource manager to assign task Ti to processor j and the
arrival of all files necessary to run task Ti to processor j.

Each task Ti is characterized by a deadline Di that defines
the time by which it is desirable for the task to complete
execution. In our formulation, Di is not necessarily a hard
deadline. In case of congestion, the scheduler may not assign
sufficient resources to the task to complete execution before
the deadline. In that case, the user may choose not to execute
the task, as may be the case when he/she expects the results to
be outdated or not useful by the time they are provided. We
use Di together with the estimated task workload wi and the
communication delays dij to obtain estimates of the computa-
tion capacity that task Ti would have to reserve to meet its
deadline if assigned to processor j. If the deadline constraints
of all tasks cannot be met, our target is that a schedule that is
feasible with respect to all other constraints is still returned,
and the amounts of time by which the tasks miss their
respective deadlines is determined in a fair way.

We let �j be the estimated completion time of the tasks
that are already running on or already scheduled on
processor j. �j is equal to zero (that is, the present time)

when no task has been allocated to processor j at the time a
task assignment is about to be made; otherwise, �j
corresponds to the remaining time until the completion of
the tasks that are already allocated to processor j. We define
the earliest starting time of task Ti on processor j as

�ij ¼ maxfdij; �jg: ð2Þ

�ij is the earliest time at which it is feasible for task Ti to
start execution on processor j. We define the average of the
earliest starting times of task Ti over all the M available
processors as

�i ¼

PM
j¼1

�ijcj

PM
j¼1

cj

: ð3Þ

We will refer to �i as the grid access delay for task Ti, and it

can be viewed as the (weighted) mean delay required for

task Ti to access the total grid capacity C ¼
PM

j¼1 cj. Since in

a Grid computation power is distributed, �i plays a role

reminiscent of that of the (mean) memory access time in

uniprocessor computers.
In the fair scheduling algorithm that we will propose in

Section 5, the demanded computation rate Xi of a task Ti will
play an important role and is defined as

Xi ¼
wi

Di � �i
: ð4Þ

Xi can be viewed as the computation capacity that the Grid
should allocate to task Ti for it to finish just before its
requested deadline Di if the allocated computation capacity
could be accessed at the mean access delay �i. As we will
see later, the computation rate allocated to a task may have
to be smaller than its demanded rate Xi. This may happen if
more jobs request service than the Grid can support
(congestion), in which case, some or all of the jobs may
have to miss their deadline. The fair scheduling algorithms
of Sections 5 and 6 attempt to degrade the tasks’ rates in a
fair way.

The scheduling algorithms that we will propose (except
for the MMFS algorithm proposed in Section 6) consist of
two phases. In the first phase, we determine the order in
which tasks will be considered for assignment to processors
(the “queuing order” phase), and in the second phase, we
determine the processor on which each task is scheduled
(the “processor assignment” phase).

3.1 Arrival Model

In this section, we describe the arrival model adopted in the
experimental simulations in this paper. Initially, we define
the normalized load of the grid infrastructure as the ratio of
the tasks’ demanded computational rates Xi over the total
processor capacity C offered by the grid infrastructure:

� ¼

PN
i¼1

Xi

C
: ð5Þ

From (5), it is clear that a grid with load � is able to serve,
on the average, N tasks of workload wi, deadlines Di, and

DOULAMIS ET AL.: FAIR SCHEDULING ALGORITHMS IN GRIDS 1633

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

ready times �i within a time interval of � ¼ � � EfDi � �ig,
where the Ef�g denotes the expectation operator. As a

result, arrival of an average number of N tasks within a
time interval of � ¼ � � EfDi � �ig does not change the load

� of the Grid.
In the arrival model adopted, in this paper, we assume

that the N tasks arrive in the Grid into groups of N=� tasks.
We also assume that the probability of each group of

N=� tasks to arrive in the Grid during an interval (0; t0) of
duration t0 follows the Poisson distribution:

P ðt ¼ toÞ ¼
e���to

to !
ð6Þ

with parameter � equals ��1 ¼ � � �. At the time t ¼ t0,

the resource management is activated for scheduling the

N=� tasks that have arrived by time t ¼ t0. The schedul-
ing policies adopted are described in the rest of this

paper. In our experiments, � equals 10. Fig. 1 presents an

illustrative example of the adopted arrival model.

4 EARLIEST DEADLINE FIRST AND EARLIEST

COMPLETION TIME RULES

The most widely used urgency-based scheduling scheme is
the EDF method, also known as the deadline-driven rule.

This method dictates that, at any point, the system must

assign the highest priority to the task with the most
imminent deadline. The most urgent tasks (that is, the task

with the earliest deadline) are served first, followed by the
remaining tasks according to their urgency.

The EDF rule answers only the “queuing order”

question, but it does not determine the processor where

the selected task is assigned. To answer the “processor
assignment” question, the ECT technique presented next

can be used. The EDF/ECT algorithm is also identical to the

Horizon scheduling used in burst switched networks [38].
If task Ti starts execution on processor j at the earliest

starting time �ij, its completion time will be �ij þ wij, where

wij ¼ wi=cj is the execution time of task Ti on processor j.
(Recall our assumption that each task occupies 100 percent

of a processor’s capacity when executed; in this way, tasks

are executed in the earliest possible time.) Among the
M available processors, the ECT rule selects the one that

minimizes the following quantity:

ĵ ¼ arg min
j2f1;���;Mg

f�ij þ wijg: ð7Þ

The earliest starting time �ij depends through (2) on the
time �j at which the last task already allocated to processor j
is expected to complete service.

A note regarding the way �j is defined is necessary here.
One way to define �j is to define it as the processor release
time, that is, the time at which all tasks already scheduled on
this processor finish their execution. Fig. 2 illustrates a
scheduling scenario in which 1) the task queuing order is
selected using the EDF algorithm, 2) the processor assignment
is selected using the ECT approach, and 3) �j is defined as
the processor release time. In this example, we assume that
all tasks arrive at time t ¼ 0.

Defining �j as the processor release time makes it easy to
compute and independent of the task that is about to be
scheduled, but it has the drawback that gaps in the
utilization of a processor are created (for example, the gap
between tasks T1 and T3 in Fig. 1), resulting in a waste of
processor capacity. An obvious way to overcome this
problem is to examine the capacity utilization gaps and,
in case a task fits within a capacity gap, assign the task to
the corresponding time interval. Among all candidate time
intervals, the one that provides the ECT is selected. Fig. 3
shows how the schedule for the example given in Fig. 1 is
improved by exploiting capacity gaps. The completion
times of tasks T5 and T6 are shorter than those obtained in
Fig. 1. The gap filling version of the algorithm is very
similar to the Latest Available Unused Channel with Void
Filling (LAUC-VF) adopted in burst switching [39].

1634 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Fig. 1. An illustrative example of the adopted arrival model. Fig. 2. An example of the EDF/ECT algorithm for the case �j is defined
as the processor release time. In this figure, we assume that all tasks Ti,
i ¼ 1; 2; . . . ; 6, request service at time t ¼ 0, the processors have equal
computational capacity ðc1 ¼ c2Þ, and both processors are initially idle.
We also assume that D1 < D2 < � � � < D6 and �i1 ¼ �i2. The task T1 of
the earliest deadline D1 is first assigned for execution on processor 1
(processor 1 is chosen randomly in this case, since there is a tie). Task
T2 is then assigned for execution on processor 2 (since it is the
processor that yields the ECT). In a similar way, we assign the
remaining tasks.

Fig. 3. An example of the EDF/ECT algorithm that exploits processor

utilization gaps.

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

5 FAIR SCHEDULING

The scheduling algorithms described in Section 4 do not
adequately address congestion, and they do not take
fairness considerations into account. For example, tasks
with relative urgency (with the EDF rule) or tasks that have
small workload (with the ECT rule) are favored against the
remaining tasks. With the ECT rule, tasks that have long
execution time have a higher probability of missing their
deadline even if they have a late deadline. Also, with the
EDF rule, a task with a late deadline is given low priority
until its deadline approaches, giving no incentive to the
user to specify an honest deadline (especially in the absence
of any pricing mechanism). To overcome these difficulties,
we propose in this section an alternative approach, where
the tasks requesting service are queued for scheduling
according to what we call their fair completion times. The fair
completion time of a task is found by first estimating its fair
task rates using a max-min fair sharing algorithm as
described in the following section. It should be mentioned
that the algorithms proposed in this paper are oriented for
large-scale computing systems in which multiple processors
are taken into account.

5.1 Estimation of the Task Fair Rates

5.1.1 Ideal Nonweighted Max-Min Fair Sharing of

Grid Resources

Intuitively, in max-min fair sharing, all users are given an
equal share of the total resources, unless some of them do
not need their whole share, in which case, their unused
share is divided equally among the remaining “bigger”
users in a recursive way. In other words, in the max-min
fair sharing scheme, small demanded computation rates Xi

get all the computation power they require, whereas larger
rates share leftovers.

The idea of the max-min fair sharing is explained by the
following example, where four tasks request service with
rates 10, 8, 5, and 15, respectively, in a multiple processor
architecture. The iterations involved are shown in Table 1.
Let us assume that the total offered processor capacity
equals 30 units. The total demanded rate of the tasks equals
10þ 3þ 5þ 15 ¼ 32 units, which is greater than the total
offered processor capacity. As a result, the max-min fair
sharing algorithm reduces the task rates in a fair way so
that the demanded task rates equal the total offered
processor capacity. Since all tasks are of equal importance,
the algorithm initially divides the 30 units of the total
processor capacity into four equal parts of 30=4 ¼ 7:5 units.
The second and the third task request service less than
7.5 units (3 and 5, respectively) and, thus, they get the rate
they request. Instead, the first and fourth task demand rate

more than 7.5 units (10 and 15, respectively) and, therefore,
at the first iteration of the algorithm, a rate of 7.5 units is
assigned to them. Consequently, at the end of the first
iteration, a residue of 30� 23ð7:5þ 3þ 5þ 7:5Þ ¼ 7 units is
obtained. In the second iteration, the residue of seven units
is equally shared among the first and fourth task, whose
actual rates are less than the demanded ones, so that each of
the two tasks can get an additional rate of 7=2 ¼ 3:5 units.
Since, however, the first task request service less than
11ð7:5þ 3:5Þ units, it gets the rate it requests, that is,
10 units. On the contrary, the fourth task gets a rate of
11 units and the end of second iteration, and a residue of
one unit is accomplished. This residue is then shared to the
fourth task whose rate is less than the demanded one in the
third iteration of the algorithm. At the end of the
nonweighted max-min fair sharing algorithms, the non-
adjusted fair computational rates ri of tasks Ti are
computed. A graphical conceptualization of the aforemen-
tioned example is depicted in Fig. 4.

More details about the max-min fair sharing algorithm
can be found in Appendix A.

5.1.2 Ideal Weighted Max-Min Fair Sharing of the

Grid Resources

We now consider the case where users have different
priorities. More specifically, we assume that each task Ti is
assigned an integer weight ’i, determined, for example, by
the user’s contribution to the grid infrastructure or by the
price he is willing to pay for the services he receives. We
assume, without loss of generality, that the smallest task
weight is equal to one.

In order to clarify the weighted max-min fair sharing, the
example of Section 5.1.1 is modified as follows: Let us assume
that the second and the fourth task are of twice importance
comparedtothe firstandthe third task.That is, the weightsare

DOULAMIS ET AL.: FAIR SCHEDULING ALGORITHMS IN GRIDS 1635

TABLE 1
An Example of the Nonweighted Max-Min Fair Sharing Algorithm If the Overall Processor Capacity is 30

Fig. 4. A graphical conceptualization of the examples in Table 1.

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

1, 2, 1, and 2, respectively. Since the second and the fourth task
are of twice importance, we can consider that six virtual tasks
demand for service (the sum of weights 1þ 2þ 1þ 2 ¼ 6).
Therefore, the algorithm divides the total processor capacity
of 30 units into six parts (the sum of the weights), that is,
30=6 ¼ 5 units. At the first iteration, five units are assigned to
the first and third task, which have a weight of 1. Instead,
10 units ð2 � 5Þ are assigned to the second and fourth task,
since their weights equal 2. However, the demanded rate for
the second task is 3, which is less than the assigned rate of 10.
Consequently, a residual of seven units is obtained. Instead,
the demanded of the tasks 1, 3, and 4 are greater or equal to the
initial assigned fair rates, yielding no residual capacity. This
remaining capacity of seven units is weighted and divided to
the first and fourth task whose rate are strictly less than the
demanded ones so that these tasks can get an additional
capacity of 7=3 ¼ 2:333 units (the weights of the first and
fourth task equal 3). In this case, the first task gets 5þ 2:333 ¼
7:333 units, whereas the fourth task gets 10þ 2:333 � 2 ¼
14:666 units, and no residual capacity is observed. Thus, the
algorithm terminates at the second iteration. The values
obtained at each iteration are presented in Table 2.

A detailed description of the weighted max-min fair
sharing algorithm is presented in Appendix B.

5.2 Fair Task Queue Order Estimation

As mentioned previously, a scheduling algorithm should
answer two questions. First, it has to choose the order in
which the tasks are considered for assignment to a
processor (the queue ordering problem). Second, for the task
that is located each time at the front of the queue, the
scheduler has to decide the processor on which the task is
assigned (the processor assignment problem). To solve the
queue ordering problem in fair scheduling, we will describe
shortly, in Sections 5.2.2 and 5.2.3, several ordering
disciplines of different degrees of implementation complex-
ity. Before doing so, however, we have to introduce some
additional notation that will be useful in our presentation.

5.2.1 Nonadjusted Fair Completion Time Estimation

We define the nonadjusted fair completion time ti of task Ti as

ti ¼ �i þ wi=ri: ð8Þ

ti can be thought of as the time at which the task would be
completed if it could obtain constant computation rate
equal to its fair computation rate ri, starting at time �i (recall
that �i is the mean grid access time for task Ti). Note that
finishing all tasks at their fair completion time is unrealistic
because the grid is not really a single computer that can be
accessed by user i at any desired computation rate ri at a
uniform delay �i. More precisely, 1) the task is actually

assigned to a specific processor j and the earliest starting
time on that processor is �ij, 2) even if ri < cj, it may not be
possible to execute the task at rate ri on that processor (we
do not assume that time sharing is supported), and 3) the
estimates wi of the task workloads may be inaccurate. The
nonadjusted fair completion times ti are used by our
algorithm as an index for determining the order in which
tasks are processed by the scheduler.

5.2.2 Simple Fair Task Order (SFTO)

According to the SFTO rule, the tasks are ordered in the
queue in increasing order of their nonadjusted fair comple-
tion times ti. In other words, the task that is first considered
for assignment to a processor is the one for which it would
be “fair” to finish sooner. As described earlier, the
nonadjusted fair completion times are estimated from the
nonadjusted computational rates ri, which are in turn
estimated from the tasks’ demanded rates Xi and the total
grid processor capacity C. The SFTO rule is simple to
implement, but it is not as fair as some of the other rules
described in the following. Its performance and its fairness
characteristics are rather good as shown by the simulation
results presented in Section 7.

It should be mentioned that in the proposed fair
scheduling algorithms, the task fair rates are approximately
estimated by taking into consideration the total offered
capacity of all M processors. However, the task assignment
exploits the properties of each individual processor result-
ing in a multiprocessor schema.

5.2.3 Adjusted Fair Task Order (AFTO)

An issue not addressed in the definition of the nonadjusted
fair completion times given in Section 5.2.1 and in the SFTO
scheme presented in Section 5.2.2 is that, when tasks
become inactive (because they complete execution), more
capacity becomes available to be shared among the active
tasks, and the fair rate of the active tasks should increase.
Also, when new tasks become active (because of new
arrivals), the fair rate of existing tasks should decrease.
Therefore, the fair computational rate of a task is not really a
constant ri, as assumed so far, but it is a function of time
that increases when tasks complete execution and decreases
when new tasks arrive. By accounting for this time-
dependent nature of the fair computational rates, the
adjusted fair completion times, denoted by t;ai , can be
calculated, which can better approximate the notion of
max-min fairness. In the AFTO scheme, the tasks are
ordered in the queue in increasing order of their adjusted
fair completion times tai . The AFTO scheme results in
schedules that are fairer than those produced by the SFTO
rule; it is, however, more difficult to implement and more

1636 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

TABLE 2
An Example of the Weighted Max-Min Fair Sharing Algorithm If the Overall Processor Capacity is 30

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

computationally demanding than the SFTO scheme, since
the adjusted fair completion times tai are more difficult to
obtain than the nonadjusted fair completion times ti. The
way the adjusted fair completion times can be computed is
described in Section 5.2.4. Simulation results on the
computation complexity of all schemes will be presented
in Section 7.

5.2.4 Adjusted Fair Completion Times Estimation

To compute the adjusted fair completion times tai , the fair

rate of the active tasks at each time instant must be

estimated. This can be done in two ways. In the first

approach, each time an unused processor capacity is

available, it is equally divided among all active tasks. In

the second approach, the rates of all active tasks are

recalculated using the max-min fair sharing algorithm, as

described in Section 5.1, based on their respective de-

manded rates. The first approach is considerably less

computationally intensive than the second one, since the

max-min fair sharing algorithm is activated only once. The

second approach, however, yields a schedule that is fairer.

Regardless of the approach used, the estimated fair rate of

each task is a function of time, denoted by riðtÞ.
Having estimated the fair rates riðtÞ, the fair completion

time can be obtained using the following algorithm. We
assume that the rates riðtÞ of all tasks have been normalized
so that the minimum fair task rate equals 1. We introduce a
variable called the round number, which defines the number
of rounds of service that have been completed at a given
time [40]. A noninteger round number represents a partial
round of service. The round number depends on the
number and the rates of the active tasks at a given time.
In particular, the round number increases with a rate equal
to the sum of the rates of all active tasks, that is, with a slope
equal to 1=

P
i riðtÞ. Thus, the rate with which the round

number increases changes and has to be recalculated each
time a new arrival or task completion takes place.

Based on the round number, we define the finish number
FiðtÞ of task Ti at time t as

FiðtÞ ¼ Rð�Þ þ wi=riðtÞ; ð9Þ

where � is the last time a change in the number of active
tasks occurred (and, therefore, the last time that the round
number was recalculated), and Rð�Þ is the round number at
time � . FiðtÞ is recalculated each time new arrivals or task
completions take place. Note that FiðtÞ is not the time that
task Ti will complete its execution. It is only a service tag
that we will use to determine the order in which the tasks
are assigned to processors. Using (9), the adjusted fair
completion times tai can be computed as the time at which
the round number reaches the estimated finish number of
the respective task. Thus,

tai : Rðtai Þ ¼ Fiðtai Þ: ð10Þ

As mentioned earlier, the task adjusted fair completion
times determine the order in which the tasks are considered
for assignment to processors in the AFTO scheme: The task
with the earliest adjusted fair completion time is assigned
first, followed by the second earliest, and so on.

5.3 Fair Processor Assignment

The SFTO scheme or the AFTO scheme is used to determine
the order in which the tasks are considered for assignment
to processors, but it still remains to determine the particular
processor where each task is assigned. A simple and
efficient way to do the processor assignment is to use the
ECT rule, modified so that it exploits the capacity gaps
(Section 4.1). According to this rule, each task is assigned to
the processor that yields the ECT. Simulation results on the
performance of the SFTO and AFTO schemes when
combined with the ECT rule are described in Section 7.

6 MAX-MIN FAIR SCHEDULING (MMFS)

In this section, we present an alternative fair scheduling
scheme that simultaneously obtains a fair task queuing
order and a fair processor assignment.

In this algorithm, our goal is to assign a schedulable
(actual) rate rsi to each task so that it is as close as possible
to its fair task rate ri (derived by applying the max-min
fair sharing algorithm on the demanded rates Xi, as
described in Section 5.1). The schedulable rates rsi are
smaller or equal to the task fair rates ðrsi � riÞ, and they
are chosen so as not to violate the processor capacity
constraints. This is expressed in the following constrained
minimization problem:

minE ¼ min
XN
i¼1

���rsi � ri��� ð11aÞ

subject toX
i2Pj

rsi � cj Pj ¼ fi : Ti scheduled on j processorg: ð11bÞ

The set Pj contains all tasks scheduled on processor j. The
total deviation E of the schedulable rates from the fair rates
will be referred to as the error of the scheduler.

The minimization of (11a) subject to the constraint of
(11b) can be found using the proposed algorithm described
in Appendix C. The main idea of the proposed scheme is to
perform an initial processor assignment and, then, appro-
priately rearrange the underflowed with the overflowed
processors so that a better exploitation of the processor
capacity is obtained. This is illustrated with the following
example (see Fig. 5) where we consider two processors with
capacities 20 and 25 and six tasks with fair rates 2, 5, 5, 6, 9,
and 10 that have to be scheduled. Initially, processor 1 is the
overflow (the processor capacity is 20 and the sum of the
rates of the assigned tasks is 21), whereas processor 2 is the
underflow (the processor capacity is 25 and the sum of the
rates of the assigned tasks is 16). By rearranging the task of
rate 2 initially assigned to processor 2 with the task of rate
10 initially assigned to processor 1, both processors turn to
the underflow state, resulting in a reduction in the error.
The example of Fig. 5 illustrates one iteration of the
algorithm. However, in full algorithm implementation,
more iterations take place.

This scheme assigns tasks to the available processors so
that their actual scheduled rates are as close as possible to
their respective fair rates, but it does not guarantee that a
feasible solution is found, that is, it does not guarantee that

DOULAMIS ET AL.: FAIR SCHEDULING ALGORITHMS IN GRIDS 1637

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

all tasks are assigned to the available processors without
any violation of the respective deadlines.

As a result, a rate reduction is required for those tasks
that are assigned to the overflow processors, so as to
achieve a feasible solution. In Section 6.2, a fair rate
reduction is proposed so that the feasible solution is
obtained.

6.1 Initial Processor Arrangement

For the preceding scheme to work well, we have to start
with a good initial assignment. In what follows, we present
a method similar to a heuristic algorithm used in the bin-
packing problem [41], which is a well-studied problem in
the literature.

Initially, the algorithm sorts the tasks with respect to
their fair rates in a descending order. To obtain an initial
assignment, the task of the largest fair rate is first assigned
to a processor, followed by the task of the second largest fair
rate, and so on. The algorithm assigns, if possible, the task
to a processor of adequate available capacity. If more than
one processor of adequate available capacity exist, we
choose the one that would leave the smallest residual
capacity after the task assignment is made. In case a selected
task cannot be feasibly scheduled on any processor, the task
is assigned to the processor of minimal overflow. This
process is terminated when all tasks have been scheduled
on the available processors.

6.2 Fair Sharing of the Overflow Capacity and Task
Queuing Order

In the previous section, we have described an algorithm for
the assignment of tasks to processors so that the task
schedulable rates are as close as possible to their respective
fair rates. The solution obtained, however, is not necessarily
feasible, since some processors may be the overflow
processors. For this reason, the schedulable task rates rsi of
the overflow processors are reduced in a fair way in order to
obtain a feasible solution. This is performed by the use of the
max-min fair sharing algorithm as described in Section 4.

After finding the schedulable task rates (the solution also
gives the processor which task each is assigned to), the tasks
are scheduled for execution in an ascending order of their
fair completion times on the processor to which they have
been assigned. That is, the task with the ECT is first
scheduled for execution, followed by the second earliest
task, and so on.

7 EXPERIMENTAL RESULTS

The proposed scheduling algorithms have been designed as
part of the scheduler module of a Grid toolkit being
implemented as part of the EU funded GRIDLAB (A Grid
Application Toolkit and Testbed) project. A brief descrip-
tion of the GRIDLAB architecture is described in Section 8.1.
In Section 8.2, several criteria are proposed for measuring
the performance of the presented Grid scheduling algo-
rithms, whereas in Section 8.3, simulation results and
comparisons with traditional scheduling policies are given.

7.1 Scheduler Architecture

Fig. 6 depicts the scheduler architecture adopted in the
GRIDLAB infrastructure, the main modules of which are
the following:

. Queuing System. Each time a task is submitted for
execution, its characteristics (for example, the task
deadline) are stored in a database, which is the core
of the Queuing System module.

. Queuing Order. This unit addresses the task-queue-
ordering problem, that is, it determines the order in
which the tasks are considered for assignment to the
available resources. The queuing order unit commu-
nicates with the queuing system module, where the
tasks requesting service along with their respective

1638 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Fig. 5. The idea of the task rearrangement. (a) Initial task assignment. (b) Task rearrangement.

Fig. 6. The architecture of the scheduler architecture adopted in the

GRIDLAB infrastructure.

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

characteristics are stored and with the Resource
Discovery module, which determines the available
resources of the infrastructure.

. Processor Assignment. The information collected by
the Queuing Order unit is then passed to the Processor
Assignment unit, which determines the processor on
which each task is assigned.

. Adaptive Components. This module is responsible
for 1) predicting the workload of the tasks request-
ing service and 2) estimating the task-ready times �i
through the respective communication delays di;j
and the processor release times �j of the tasks
already allocated to processor j. The adaptive
component module provides the information re-
quired by the scheduler to perform the task queue
ordering and the processor assignment functions. A
method for predicting the task workload in the
particular case of 3D rendering applications is
described in [37].

. Resource Discovery. This module determines the
available resources of the Grid.

. Local Resource Manager. This module is responsible
for implementing the task execution locally as
instructed by the scheduler.

In the following sections, we will compare the perfor-
mance of the fair scheduling algorithms proposed in
Sections 6 and 7 with that of the FCFS and the EDF policies.

7.2 Objective Evaluation

One criterion that we will use for measuring the perfor-
mance of a scheduling algorithm is the relative error
between the demanded task rates and the actual schedul-
able rates defined as

E1 ¼
X
i

Xi �Xc
i

�� ��
Xi

; ð12Þ

where Xi is the demanded rate, and Xc
i is the actual rate

allocated to the ith task. Low values of error E1 indicate that
most of the tasks are served at rates close to their respective
demanded rates.

In the FCFS and EDF algorithms, the tasks are either
executed at their demanded rates Xi or they are rejected.
Therefore, for the FCFS and EDF schemes, the actual task
rates are equal to Xc

i ¼ fXi; 0g (depending on whether the
task is assigned for execution or not). In contrast, in the fair
scheduling schemes we proposed, all tasks are executed,
possibly at a rate smaller than their demanded rate.
Execution of a task with a rate smaller than its demanded
rate means that the task deadline is violated.

Another criterion we will use for comparing the
performance of the scheduling schemes is the ratio

E2 ¼

P
i

Xc
i

C
: ð13Þ

E2 expresses the efficiency of the scheduling algorithm in
allocating the available processor capacity; the greater the
value of E2, the better is the scheduling efficiency. WhenP

i Xi > C, an ideal scheduler would use the total offered
processor capacity, and E2 would equal 1. When

P
i Xi < C,

an ideal scheduler would serve all tasks with rates equal to the
demanded ones. In practice, however, due to task and

processor constraints (tasks are nonpreemptable, time shar-
ing is not allowed, and so on), the ideal case cannot be
achieved.

A third criterion we will use for evaluating scheduling
efficiency is the average relative deviation of the demanded
task deadlines to the actual task completion time:

E3 ¼
1

N

X
i

Di �maxðDc
i ;DiÞ

�� ��
Di

; ð14Þ

where Di is the requested deadline and Dc
i is the actual

completion time of the ith task. Tasks whose actual
completion times are smaller than their respective deadlines
do not contribute to E3.

As already mentioned, the FCFS and EDF algorithms
do not permit any violations of the task deadlines and
they may reject tasks, in which case, the error E3 becomes
equal to infinity. To overcome this difficulty, we evaluate
the performance of these schemes assuming that tasks
whose deadline is violated are put in a waiting list and
reapply for execution after the completion of the last
feasibly assigned task.

7.3 Simulation Results

In this section, we simulate the proposed scheduling schemes
(SFTO, AFTO, and MMFS) against 1) a large set of tasks of
varying size and workload variance, 2) a large and varying
number of processors, and 3) processor asymmetries (for
example, groups of processors of different capacities). The
statistical significance of the results is obtained by averaging
the scheduling performance over 70 different runs. This
statistical significance is plotting for confidence intervals of
66 percent and 95 percent, respectively. Furthermore, in the
simulation results, we evaluate the effect of task deadline
deviation on the performance of the proposed algorithms.
Validation of the simulations under real conditions is also
conducted in Section 7.3.6 for tasks generated by 3D image-
rendering applications. In all experiments, the arrival model,
described in Section 3.1, is adopted.

7.3.1 The Effect of Task Size

Fig. 7 presents the simulation results obtained for the SFTO,
AFTO, and MMFS scheduling policies for the errors E1, E2,
andE3 against the normalized load� (see (5)). For comparison
purposes, we also depict in Fig. 7 the results obtained for the
FCFS and EDF schemes. The simulations were performed
assuming a Grid architecture of 500 processors with almost
the same capacity (symmetric processor case). In particular, we
assume that the capacity of all the 500 processors follows a
normal distribution with a standard deviation of 1 percent of
the respective mean capacity value. In addition, we consider
that 2,500 tasks arrive to the Grid within a time interval of �
(see Section 3.1). The experiment is repeated for 20 time
intervals �, that is, for 2; 500 � 20 ¼ 50; 000 total tasks. In this
experiment, we assume that all tasks present almost similar
deadlines with a normal distribution of 1 percent standard
deviation of the respective mean deadline value. The mean
value of tasks’ workload (task size) is varying, in this
experiment, so that the normalized load � takes values from
0.25 to 2.5, whereas the respective standard deviation equals
10 percent the mean value.

Under all criteria, we observe that the MMFS scheduling
policy yields the highest efficiency, whereas the AFTO
comes second. On the contrary, the worst performance is

DOULAMIS ET AL.: FAIR SCHEDULING ALGORITHMS IN GRIDS 1639

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

obtained for the FCFS policy. For light load ð� < 0:6Þ, all
algorithms efficiently schedule the tasks, but as the load �
increases (that is, the tasks’ size), the MMFS policy outper-
forms the other schemes. As is observed in error E2, the
MMFS performance is close to an ideal scheduler even for
heavy load � > 1:5 (congestion).

Figs. 8 and 9 illustrate the statistical significance of the

results of Fig. 7 by plotting the errors E1, E2, and E3 versus �

(that is, varying of the tasks’ size) for a confidence interval of

66 percent and 95 percent, respectively. As is observed, the

results slightly vary around the average value, verifying their

statistical robustness. In particular, for a confidence interval

of 66 percent, the worst performance of a scheduling policy

(for example, MMFS) outperforms the best results of the other

scheduling policies. The same conclusions are drawn for

almost all cases even if a confidence interval of 95 percent is

selected as shown in Fig. 9.
The effect of the tasks’ deadline deviation on the error E1

for varying tasks’ size is shown in Fig. 10. In this figure, the

performance of the SFTO, AFTO, and MMFS algorithms are

compared using low and high variation in the tasks’ dead-

lines. In particular, Fig. 10 compares the results obtained from

Fig. 7a with the results obtained assuming that the deadlines

follow a normal probability density function (pdf) of high

standard deviation (in this experiment, as standard deviation,

weselect the meanvalueof thetaskdeadlines). As isobserved,

for all algorithms except for MMFS, an improvement in the

errorE1 is noticed. However, the MMFS scheduling efficiency

deteriorates as the tasks’ deadline variation increases mean-

ing that the algorithm improvement compared to the other

1640 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Fig. 7. The errors E1, E2, and E3 versus the normalized load p for the FCFS, the EDF, the SFTO, the AFTO, and the MMFS policies.

Fig. 8. The errors E1, E2, and E3 versus the normalized load p for a confidence interval of 66 percent in case of the FCFS, the AFTO, and the MMFS

policies.

Fig. 9. The errors E1, E2, and E3 versus the normalized load p for a confidence interval of 95 percent in case of the FCFS, the AFTO, and the MMFS

policies.

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

techniques also decreases. This is due to the fact the MMFS
policy reallocates the tasks in the processors without taking
into consideration their deadlines. Similar conclusions are
drawn using the criterion E2 (see Fig. 11).

7.3.2 The Effect of Workload Variance

The effect of the task workload variance on scheduling
performance is illustrated in Fig. 12. In this figure, again, a
symmetric case of 500 processors is considered as in Fig. 7
along with tasks of similar deadlines and � ¼ 1:25. The
arrival model of Section 3.1 is adopted. In this experiment,
the number of tasks equals 2,500 within the time interval �.
The experiment is repeated for 20 time intervals �, that is,
for 2; 500 � 20 ¼ 50; 000 total tasks. We recall that, for each
experiment, 70 runs have been conducted as in the previous
case, and the average value over all runs is depicted in
Fig. 12. The MMFS scheme performs better than the other
scheduling methods, for all values of workload variances

and errors E1, E2, and E3. Note that as the workload
variance increases, the performance of all the schemes
improves (except for that of MMFS, which remains almost
the same since it is close to the ideal case).

The variation of the values obtained across all the 70 runs
is shown in Fig. 13 for a confidence interval of 66 percent.
As it is noticed, in all cases, the worst performance of the
MMFS and the AFTO outperforms the best performance of
the FCFS under all three criteria.

7.3.3 The Effect of the Number of Processors

Fig. 14 illustrates the performance of the five examined
scheduling policies with respect to the number of proces-
sors. The experiments have been conducted for a number of
processors ranging in ½50; . . . ; 1; 000�. In all cases, a
symmetric processor capacity is considered for a load
� ¼ 1:5. It is also assumed that the workload variance
equals 10 percent of the respective mean value. As the

DOULAMIS ET AL.: FAIR SCHEDULING ALGORITHMS IN GRIDS 1641

Fig. 10. The error E1 versus the load � in case of low and high deadline deviation for (a) the SFTO, (b) the AFTO, and (c) the MMFS policy.

Fig. 11. The error E2 versus the load � in case of low and high deadline deviation for (a) the SFTO, (b) the AFTO, and (c) the MMFS policy.

Fig. 12. The errors E1, E2, and E3 versus the variance of the task workload for the FCFS, EDF, SFTO, AFTO, and the MMFS scheduling policies.

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

number of processors increases, the number of tasks also
increases to retain a constant load to the Grid infrastructure.
As is observed, the MMFS scheduling policy outperforms
the other ones, with the AFTO scheme being the second
best. In addition, as the number of processor increases, a
slight improvement in scheduling efficiency is accom-
plished, with a decreasing ratio, however. For the error
E2, the performance of the MMFS approach is almost near
to the ideal one independent from the number of the
processors comprise the Grid infrastructure.

7.3.4 The Effect of the Number of Tasks

Fig. 15 presents the influence of the number of tasks that
arrive within the time interval �. In this experiment, the
load � equals 1.5 and 500 processors of similar capacity are
adopted. As is observed, the MMFS scheduling policy
yields the best results compared to the other examined

approaches. It is also observed that as the number of tasks
increases, the scheduling efficiency also increases, but with
a decreasing rate. As the number of tasks increases, the task
size decrease to retain a constant load �. This indicates that,
for a large number of small tasks, the scheduling algorithms
better exploit the available processor capacity of the Grid
infrastructure.

7.3.5 The Effect of Processor Capacity Variation

In this section, we evaluate the effect of the processor
asymmetries (variation of the processor capacity) on the
scheduling performance. In all experiments, 70 runs have
been conducted, and the average value over all runs is
chosen. In addition, 500 processors are considered of
varying capacity. Furthermore, we consider that 2,500 tasks
arrive to the Grid within a time interval of � and that each
experiment is repeated until the time reaches 20 � �, that is,
for 2; 500 � 20 ¼ 50; 000 total tasks.

1642 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Fig. 13. The errors E1, E2, and E3 versus the workload variance for a confidence interval of 66 percent in case of the FCFS, the AFTO, and the

MMFS scheduling policies.

Fig. 14. The errors E1, E2, and E3 versus the number of processors for � ¼ 1:5 and workload variance 0.1.

Fig. 15. The errors E1, E2, and E3 versus the number of tasks for � ¼ 1:5 and workload variance 0.1.

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

In particular, Fig. 16 illustrates the performance for the five
examined scheduling schemes with respect to the normalized
� load under different scenarios of processor capacity for the
errorE1. In all experiments, the same mean processor capacity is
considered. Fig. 16a shows the results of processors of similar
capacities (as in Fig. 7a), whereas Figs. 16b, 16c, 16d, and 16f
show the results obtained using asymmetric processor
capacities. In particular, Fig. 16b considers that the capacity
of the processors follows a normal pdf of high standard
deviation (in this case, the half of the respective mean value),
called Asymmetric Gaussian case. Fig. 16c assumes a uniform
distribution of the processor capacity in the interval of
½a2 � �þ a�, wherea is a small value of processor capacity, and
� is the mean processor value (this is called the Asymmetric
Uniform case). The effect of different groups of processors,
with processors in each group having the same capabilities, is
presented in Figs. 16d, 16e, and 16f. In the scenario of Fig. 16d,
the processors are equally divided into two groups, one of
high capacity and one of low capacity—Cluster Symmetric
case. Fig. 16e presents the scenario where the majority of the
processors (80 percent) are of low capacity, whereas the
remaining are of high one—Cluster Biased Low case. In
contrast, Fig. 16f shows the opposite scenario, where the
majority of the processors (of 80 percent) are of high
capacity—Cluster Biased High case.

As observed, in all cases, the MMFS outperforms the
other examined scheduling schemes. In addition, we notice
that high deviation of the processors’ capacities deteriorates
the scheduling performance for the FCFS, EDF, SFTO, and
AFTO policies. Instead, the MMFS scheme remains robust.
This is due to the fact that the task reallocation adopted in
the MMFS method optimizes the task assignment to the
processors, which is not achieved by the other approaches.
This is more evident in case of many low capacity
processors, since the few processors of high capacity cannot
compensate the infeasible scheduling of tasks assigned to
low-capacity processors.

Comparisons of the error E1 for the six different
examined cases of the processors’ variations are presented
in Fig. 17 for the five different scheduling policies. In this
figure, the aforementioned conclusions are more evident.
More specifically, the best performance for FCFS, EDF,
SFTO, and AFTO is accomplished for the symmetric case
and the worst for the case wherein many processors of low
capacity exist. It is also noticeable that the differences are
not so important in case that the processors’ capacity is
allocated over all possible values (see the normal and
uniform distribution). On the contrary, the existence of
processor groups with extreme capacity values yields
significance deterioration of the results (better performance
in a case biased of high processor capacity is accomplished).

7.3.6 Validation in Real Experiments

Validation of the aforementioned simulations in real experi-
ments is presented in Fig. 18. The experiment has been
conducted using the GRIA and GRIDLAB architecture as
described in Section 7.1. In this case, 50 processors consist of
the cluster of the Grid infrastructure. Tasks are generated
from 3D rendering algorithms in computer graphics. The
validation is performed assuming an arrival of 250 tasks
within the � time intervals. All tasks are assumed to have
similar deadlines. Similar conclusions are observed in this
case, which validates the simulations conducted in the
previous sections. More specifically, the MMFS yields the
best performance with the AFTO scheduling policy comes the
second.

7.3.7 Computational Complexity

The computational complexity of the EDF, SFTO, AFTO, and
MMFS scheduling schemes is presented in Table 3 for
different values of tasks requested service and different
number of processors. The worse expressions for the
algorithm complexity over all the 70 runs are taken into
account. The computational complexity has been normalized

DOULAMIS ET AL.: FAIR SCHEDULING ALGORITHMS IN GRIDS 1643

Fig. 16. The effect of processor capacity variation on the error E1 (a) symmetric case, (b) asymmetric Gaussian case, (c) uniform case, (d) cluster

symmetric case, (e) cluster asymmetric case biased of low processor capacity, and (f) cluster asymmetric case biased of high capacity.

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

with respect to the cost of the EDF scheme when the number
of submitted tasks equals 2,500 and the number of processors
equals 100. As expected, the computational complexity
increases with respect to the number of tasks and with
respect to the number of processors. The MMFS policy is
sensitive to the number of processors, though in our
experiments, it presents a low computational complexity
for a relatively small number of processors. However, it
should be mentioned that the computational complexity of
the MMFS can be retained very small if a constant number of
iterations is adopted at the expense of the performance
efficiency. Instead, the AFTO policy is sensitive to the number
of the submitted tasks, since it requires reestimation of the fair
rates upon task arrivals or departures. The complexity of the
other scheduling policies is almost linearly affected with
respect to the number of tasks and processors.

8 CONCLUSIONS

In this paper, we proposed three new scheduling algorithms
for the Grid environment that could be used to implement
scheduling in a fair way. In the SFTO, the tasks are ordered in
the queue in an increasing order with respect to their
nonadjusted fair completion times. The nonadjusted fair
completion times are obtained by the nonadjusted fair

computational rates of the tasks by applying a max-min fair
sharing algorithm. An improved version of the SFTO scheme
is the AFTO scheduling policy, where the fair rates are
dynamically adjusted each time tasks become inactive (for
example, they complete execution) or active (for example,
new arrivals) to better exploit the offered multiprocessor
capacities. In the AFTO scheme, the fair rates of the tasks are
not constant, as is assumed in the SFTO scheme, but they
increase when tasks complete execution and decrease when
new tasks arrive. In both scheduling methods, the processor
at which the tasks are assigned for execution is found based
on the ECT policy modified so that processor capacity gaps
are taken into account. Finally, in the third fair Grid
scheduling scheme that we presented, the max-min fair
scheduling (MMFS) scheme, the selection of a fair task
queuing order and the selection of a processor assignment are
simultaneously addressed. In particular, the algorithm
allocates the tasks to the available processors so that the
actual task rate after the scheduling is much as close to the fair
ones as obtained by the max-min fair sharing scheme. All the
three proposed scheduling algorithms are oriented to a
multiprocessor computing system. The three proposed
algorithms can be integrated in existing Grid computing
systems to improve the task allocation performance.

1644 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Fig. 17. Comparison of the processor capacity variation for the error E1. (a), (b), (c), and (d) The symmetric case, the asymmetric Gaussian case,

and the uniform case for the EDF, SFTO, AFTO, and MMFS, respectively. (e), (f), (g), and (h) The cluster symmetric case, the cluster asymmetric

case biased of high processor capacity, and the cluster asymmetric case biased of low capacity for the EDF, SFTO, AFTO, and MMFS, respectively.

Fig. 18. The scheduling performance on a real experiment of tasks generated by 3D rendering computer graphics algorithms with (a) the error E1,

(b) the error E2, and (c) the error E3.

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

Experimental results and comparisons with the tradi-
tional FCFS and EDF scheduling schemes indicate that our
proposed scheduling schemes are fairer and better exploit
the available multiprocessor Grid resources. The simula-
tions have been conducted by submitted thousands of tasks
of varying size and workload variance to a multiprocessor
computing system comprising of hundreds of processors of
varying capacity. The experiments indicate that the MMFS
algorithm is less sensitive to processor capacity variations
instead of the SFTO and AFTO scheme. However, in all
conditions, the proposed algorithms outperform the tradi-
tional ones. The AFTO policy is more effective than the
SFTO one in the extent of computational complexity. The
MMFS policy outperforms the SFTO and the AFTO schemes
in all the simulation conditions.

APPENDIX A

IDEAL NONWEIGHTED MAX-MIN FAIR SHARING

ALGORITHM

The nonweighted max-min fair sharing algorithm is de-
scribed as follows: The demanded computation rates Xi,
i ¼ 1; 2; . . . ; N , of the tasks are sorted in ascending order, say,
X1 < X2 < � � � < XN . Initially, we assign capacityC=N to the
task T1 with the smallest demandX1, whereC is the total grid
computation capacity (1). If the fair share C=N is more than
the demanded rate X1 of task T1, the unused excess capacity
of C=N �X1 is again equally shared to the remaining tasks
N � 1 so that each of them gets an additional capacity
ðC=N þ ðC=N �X1ÞÞ=ðN � 1Þ. This may be larger than what
task T2 needs, in which case, the excess capacity is again
equally shared among the remaining N � 2 tasks, and this
process continues until there is no computation capacity left
to distribute or until all tasks have been assigned capacity

equal to their demanded computation rates. When the
process terminates, each task has been assigned no more
capacity than what it needs, and, if its demand was not
satisfied, no less capacity than what any other task with a
greater demand has been assigned. This scheme is called
nonweighted max-min fair sharing since it maximizes the
minimum share of a task whose demanded computation rate
is not fully satisfied.

We can mathematically describe the previous algorithm
as follows. We denote by riðnÞ the nonadjusted fair
computation rate of the task Ti at the nth iteration of the
algorithm. Then, riðnÞ is given by

riðnÞ ¼
Xi if Xi <

Pn
k¼0

OðkÞ
Pn
k¼0

OðkÞ if Xi �
Pn
k¼0

OðkÞ;

8>><
>>: n � 0; ðA1aÞ

where

OðnÞ ¼
C �

PN
i¼1

riðn� 1Þ

cardfNðnÞg ; n � 1 ðA2bÞ

with

Oð0Þ ¼ C=N: ðA1cÞ
In (A1b), NðnÞ is the set of tasks whose assigned fair

rates are smaller than their demanded computation rates at
the beginning of the nth iteration, that is,

NðnÞ ¼ fTi : Xi > riðn� 1Þg and Nð0Þ ¼ N; ðA2Þ
whereas the function cardð�Þ returns the cardinality of a
set. The process is terminated at the first iteration no at
which either OðnoÞ ¼ 0 or the number cardfNðnoÞg ¼ 0.
The former case indicates congestion, whereas the latter
indicates that the total grid computation capacity can
satisfy all the demanded task rates, that is,

XN
i¼1

Xi < C: ðA3Þ

The nonadjusted fair computation rate ri of task Ti is
obtained at the end of the process as

ri ¼ riðn0Þ: ðA4Þ

APPENDIX B

IDEAL WEIGHTED MAX-MIN FAIR SHARING

ALGORITHM

In this case, we allocate computation capacity as if the number

of submitted tasks is equal to the sum of the respective

weights, that is, as if there were ~N ¼
PN

i¼1 ’i virtual tasks. An

equal fair sharing is performed for all ~N virtual tasks using

the algorithm of Section 6.1.1. Equation (A1) is then modified

as follows:

riðnÞ ¼
Xi if Xi < ’i �

Pn
k¼0

OðkÞ

’i �
Pn
k¼0

OðkÞ if Xi � ’i �
Pn
k¼0

OðkÞ;

8>><
>>: n � 0; ðB1Þ

DOULAMIS ET AL.: FAIR SCHEDULING ALGORITHMS IN GRIDS 1645

TABLE 3
The Normalized Computational Complexity of the EDF, SFTO,
AFTO, and MMFS with Respect to the Number of Tasks and the

Number of Processors (Four Instances)

Normalization is performed for the EDF at 100 processors and
2,500 tasks.

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

where

OðnÞ ¼
C �

PN
i¼1

riðn� 1Þ

~NðnÞ
; n � 1 ðB2Þ

and

Oð0Þ ¼ C= ~N; with ~N ¼
XN
i¼1

’i: ðB3Þ

~NðnÞ is the sum of the weights of the tasks whose assigned fair
rates are smaller than their demanded computation rates at
the beginning of the nth iteration of the algorithm, that is,

~NðnÞ ¼
X
i

’i : for all i : Xi > riðn� 1Þ and ~Nð0Þ ¼ ~N:

ðB4Þ

The process is terminated at an iteration no at which either
OðnoÞ ¼ 0 or cardf ~NðnoÞg ¼ 0.

APPENDIX C

MAX-MIN FAIR SCHEDULING

Since tasks are nonpreemptable (they cannot be split in
smaller units that are executed on different processors), the
sum of the rates of the tasks assigned for execution to a
processor may be smaller than the processor capacity, and
some processors may not be fully utilized. A processor with
unused capacity will be called an underflow processor. In an
optimal solution, tasks assigned to underflow processors
have schedulable rates that are equal to their respective fair
rates, rsi ¼ ri, and do not contribute to the errorE (otherwise,
we could assign additional capacity to those tasks and reduce
the error). Only tasks assigned to fully utilized processors
may contribute to the error E (but not all tasks assigned to
fully utilized processors contribute to the error).

We define the overflow Oj of processor j as

Oj ¼ max 0;
X
i2Pj

ri � cj

8<
:

9=
; ðC1aÞ

and the underflow Uk of processor k as

Uk ¼ min 0;
X
i2Pk

ri � ck

()
: ðC1bÞ

Processors for which Oj > 0 will be referred to as overflow

processors, whereas underflow processors are those for

which Uk < 0. In an optimal solution, we haveX
i2Pj

rsi ¼ cj; for all j for which Oj > 0

and the error E is equal to the sum of the total processor

overflow

E ¼
XN
i¼1

ri � rsi
�� �� ¼X

j2�

Oj; ðC2Þ

where � is the set of overflow processors (underflow

processors do not contribute to the error E).

Therefore, the minimization problem of (11) can be

rewritten as

minE ¼ min
X
j2�

Oj ðC3aÞ

subject toX
i2Pj

rsi � cj; Pj ¼ fi : Ti scheduled on j processorg: ðC3bÞ

Equation (C3) states that scheduling the tasks with rates
as close as possible to their respective fair rates (11) is
equivalent to finding a solution that minimizes the overall
processor overflow. However, the minimization of (C3a)
subject to the constraint of (C3b) is computationally
intensive (it is the similar to the bin-packing problem,
which is NP-complete), since every possible task assign-
ment to the M available processors should be examined. In
what follows, we propose a heuristic task-rearrangement
scheme of polynomial time to obtain a good assignment of
tasks to processors.

Processor Assignment. The proposed algorithm com-
bines processors of capacity overflow with processors of
capacity underflow to obtain a better exploitation of the
overall processor capacity. More specifically, given an
assignment of tasks to processors, we consider the
rearrangement where a task of rate rl assigned to an
overflow processor is substituted for a task of rate rm
assigned to an underflow processor. After the task
rearrangement, the overflow (underflow) capacity of the
processors is updated as follows:

Rj ¼ Oj � "; ðC4aÞ

Rk ¼ Uk � "; ðC4bÞ

where

" ¼ rm � rl: ðC4cÞ

Equation (C4c) expresses the task rate difference between
the two selected tasks, where Rj and Rk are the updated
processor residuals. If Rj > 0, processor j remains at the
overflow state after the task rearrangement, whereas if
Rj < 0, processor j turns to the underflow state.

The tasks with rates rl and rm that are exchanged are
selected so as to reduce the overall processor overflow or
equivalently reduce the error E given by (C2). A reduction
is accomplished only if the task rate difference as expressed
by (C4c) satisfies the following equation:

" : O0j þO0k < Oj; ðC5Þ

where O0j ¼ maxð0; RjÞ and similarly O0k ¼ maxð0; RkÞ.
The explanation of (C5) is stated as follows: Initially,

processor j is the overflow, and processor k is the under-
flow, so that only processor j contributes to the error E (see
(C3)). After the task rearrangement, the total contribution of
the processors j and k to the error E should be less than
their initial contribution for the rearrangement to yield an
error reduction. Such rearrangements between the overflow
and underflow processors are repeated until no task
rearrangement that satisfies (C5) can be found.

1646 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

REFERENCES

[1] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” Int’l J. Supercomputer
Applications, vol. 15, no. 3, 2001.

[2] W. Leinberger and V. Kumar, “Information Power Grid: The New
Frontier in Parallel Computing,” IEEE Concurrency, vol. 7, no. 4,
pp. 75-84, Oct.-Dec. 1999.

[3] “Scheduling Working Group of the Grid Forum,” Document: 10.5,
Sept. 2001.

[4] I. Foster and C. Kesselman, “Globus: A Metacomputing Infra-
structure Toolkit,” Int’l J. Supercomputer Applications, vol. 11, no. 2,
pp. 115-128, 1997.

[5] J. Basney, M. Livny, and T. Tannenbaum, “High Throughput
Computing with Condor,” High Performance Computer Unit
(HPCU) News, vol. 1, no. 2, June 1997.

[6] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the Grid,”
Grid Computing: Making the Global Infrastructure a Reality,
F. Berman, A.J.G. Hey, and G. Fox, eds., John Wiley & Sons, 2003.

[7] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke,
“Condor-G: A Computation Management Agent for Multi-
Institutional Grids,” J. Cluster Computing, vol. 5, pp. 237-246, 2002.

[8] A.S. Grimshaw, M.A. Humphrey, and A. Natrajan, A Philosophical
and Technical Comparison of Legion and Globus. Corp. Riverton, 2004.

[9] D. Abramson, J. Giddy, and L. Kotler, “High Performance
Parametric Modeling with Nimrod/G: Killer Application for the
Global Grid,” Proc. Int’l Parallel and Distributed Processing Symp.
(IPDPS ’00), 2000.

[10] D. Abramson, I. Foster, J. Giddy, A. Lewis, R. Sosic, R.R. Sutherst,
and N. White, “Nimrod Computational Workbench: A Case Study
in Desktop Metacomputing,” Proc. Australian Computer Science
Conf. (ACSC ’97), Feb. 1997.

[11] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An
Architecture for a Resource Management and Scheduling System
in a Global Computational Grid,” Proc. Fourth Int’l Conf. High
Performance Computing in Asia-Pacific Region, 2000.

[12] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon,
L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D.
Reed, L. Torczon, and R. Wolski, “The GrADS Project: Software
Support for High-Level Grid Application Development,” Int’l
J. High Performance Computing Applications, vol. 15, no. 4, pp. 327-
344, Winter, 2001.

[13] H. Dail, H. Casanova, and F. Berman, “A Decoupled Scheduling
Approach for the GrADS Environment,” Proc. Conf. Supercomput-
ing (SC ’02), Nov. 2002.

[14] R. Wolski, J.S. Plank, J. Brevik, and T. Bryan, “G-commerce:
Market Formulations Controlling Resource Allocation on the
Computational Grid,” Proc. Int’l Parallel and Distributed Processing
Symp. (IPDPS ’01), Apr. 2001.

[15] S.M. Jackson, “Allocation Management with QBank,” white paper,
technical report in Pacific Northwest Nat’l Laboratories, 2000.

[16] T. Hacker and W. Thigpen, “Distributed Accounting on the Grid,”
Grid Forum Working Draft, 2007.

[17] M.S. Fineberg and O. Serlin, “Multiprogramming for Hybrid
Computation,” Proc. Int’l Federation for Information Processing
Societies (IFIPS) Fall Joint Computer Conf., 1967.

[18] J.A. Stankovic, et al. “Implications of Classical Scheduling Results
for Real Time Systems,” Computer, pp. 16-25, June 1995.

[19] M.L. Dertouzos and A.K.-L. Mok, “Multiprocessor On-Line
Scheduling for Hard Real Time Tasks,” IEEE Trans. Software
Eng., pp. 1497-1506, Dec. 1989.

[20] G. Manimaran, C.S.R. Murthy, M. Vijay, and K. Ramamritham,
“New Algorithms for Resource Reclaiming from Precedence
Constrained Tasks in Multiprocessor Real-Time Systems,”
J. Parallel and Distributed Computing, vol. 44, no. 2, pp. 123-132,
Aug. 1997.

[21] K. Ramamritham, J.A. Stankovic, and P.-F. Shiah, “Efficient
Scheduling Algorithms for Real-Time Multiprocessor Systems,”
IEEE Trans. Parallel and Distributed Systems, vol. 1, no. 2, pp. 184-
194, Apr. 1990.

[22] W. Zhao, K. Ramamritham, and J.A. Stankovic, “Scheduling Tasks
with Resource Requirements in Hard Real Time Systems,” IEEE
Trans. Software Eng., vol. 12, no. 3, pp. 360-369, May 1990.

[23] J.Y-T. Leung and M.L. Merrill, “A Note on Preemptive, Schedul-
ing of Periodic, Real-Time Tasks,” Information Processing Letters,
pp. 115-118, Nov. 1980.

[24] X. Deng, N. Gu, T. Brecht, and K.-C. Lu, “Preemptive Scheduling
of Parallel Jobs on Multiprocessors,” SIAM J. Computing, vol. 30,
no. 1, pp. 145-160, 2000.

[25] G. Manimaran and C.S.R. Murthy, “An Efficient Dynamic
Scheduling Algorithm for Multiprocessor Real-Time Systems,”
IEEE Trans. Parallel and Distributed Systems, vol. 9, no. 3, pp. 312-
319, Mar. 1998.

[26] L.E. Jackson and G.N. Rouskas, “Deterministic Preemptive
Scheduling of Real Time Tasks,” Computer, vol. 35, no. 5, pp. 72-
79, May 2002.

[27] W. Zhang, B. Fang, H. He, H. Zhang, and M. Hu, “Multisite
Resource Selection and Scheduling Algorithm on Computational
Grid,” Proc. 18th Parallel and Distributed Processing Symp., pp. 105-
115, 2004.

[28] S. Zhuk, A. Chernykh, A. Avetisyan, S. Gaissaryan, D. Grushin, N.
Kuzjurin, A. Pospelov, and A. Shokurov, “Comparison of
Scheduling Heuristics for Grid Resource Broker,” Proc. IEEE Fifth
Mexican Int’l Conf. Computer Science, pp. 388-392, 2004.

[29] D.P. Spooner, S.A. Jarvis, J. Cao, S. Saini, and G.R. Nudd, “Local
Grid Scheduling Techniques Using Performance Prediction,” IEE
Proc. Computers and Digital Techniques, vol. 150, no. 2, pp. 87-96,
Mar. 2003.

[30] S. Kim and J.B. Weissman, “A Genetic Algorithm Based Approach
for Scheduling Decomposable Data Grid Applications,” Proc. Int’l
Conf. Parallel Processing (ICPP ’04), pp. 406-413, 2004.

[31] R. Jain, A Survey of Scheduling Methods. Nokia Research Center,
Sept. 1997.

[32] M. Hawa, “Stochastic Evaluation of Fair Scheduling with
Applications to Quality-of-Service in Broadband Wireless Access
Networks,” PhD dissertation, Univ. of Kansas, Aug. 2003.

[33] I. Ahmad, Y.-K. Kwok, M.-Y. Wu, and K. Li, “Experimental
Performance Evaluation of Job Scheduling and Processor Alloca-
tion Algorithms for Grid Computing on Metacomputers,” Proc.
IEEE 18th Int’l Parallel and Distributed Processing Symp. (IPDPS ’04),
pp. 170-177, 2004.

[34] A.K. Parekh and R.G. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single-Node Case,” IEEE/ACM Trans. Networking, vol. 1, no. 3,
pp. 344-357, 1993.

[35] A. Demers, S. Keshav, and S. Shenker, “Design and Analysis of a
Fair Queuing Algorithm,” Proc. ACM SIGCOMM ’89, Sept. 1989.

[36] D. Bertsekas and R. Gallager, Data Networks, second ed., section
starting on p. 524. Prentice Hall, 1992.

[37] N. Doulamis, A. Doulamis, A. Panagakis, K. Dolkas, T. Varvar-
igou, and E. Varvarigos, “A Combined Fuzzy-Neural Network
Model for Non-Linear Prediction of 3D Rendering Workload in
Grid Computing,” IEEE Trans. Systems Man and Cybernetics, Part-B,
vol. 34, no. 2, pp. 1235-1247, Apr. 2004.

[38] J. Turner, “Terabit Burst Switching,” J. High Speed Networks, vol. 8,
no. 1, pp. 3-16, 1999.

[39] Y. Xiong, M. Vandenhoute, and H.C. Cankaya, “Control Archi-
tecture in Optical Burst-Switched WDM Networks,” IEEE
J. Selected Areas in Comm., vol. 18, pp. 1838-1851, 2000.

[40] S. Keshav, An Engineering Approach to Computer Networking.
Addison-Wesley, 1997.

[41] D.S. Johnson, “Fast Algorithms for Bin Packing,” J. Computer and
System Sciences, vol. 8, pp. 272-314, 1974.

DOULAMIS ET AL.: FAIR SCHEDULING ALGORITHMS IN GRIDS 1647

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

Nikolaos D. Doulamis (S’96-M’00) received the
Diploma (with the highest honor) and the PhD
degree in electrical and computer engineering
from the National Technical University of Athens
(NTUA) in 1995 and 2000, respectively. His PhD
thesis was supported by the Bodosakis Founda-
tion Scholarship. He joined the Image, Video,
and Multimedia Laboratory of NTUA in 1996 as a
research assistant. From 2001 to 2002, he
served his mandatory duty in the Greek army

at the Computer Center Department of the Hellenic Air Force. Since
2002, he has been a senior researcher at NTUA. His research interests
include video transmission, content-based image retrieval, summariza-
tion of video sequences, and intelligent techniques for video processing.
He was awarded as the Best Greek Student in the field of engineering in
the national level by the Technical Chamber of Greece in 1995. In 1996,
he received the Best Graduate Thesis Award in the area of electrical
engineering with A.D. Doulamis. During his studies, he has also
received several prizes and awards from the NTUA, the National
Scholarship Foundation, and the Technical Chamber of Greece. In
1997, he was given the NTUA Medal as Best Young Engineer. In 2000,
he served as the chairman of the technical program committee of the
VLBV ’01 workshop, and he has also served on the program committee
of several international conferences and workshops. In 2000, he was
given the Thomaidion Foundation Best Journal Paper Award in
conjunction with A.D. Doulamis. He is an editor in the Who is Who
bibliography. He is a reviewer of IEEE journals and conferences, as well
as other leading international journals. He is a member of the IEEE.

Anastasios D. Doulamis (S’96-M’00) received
the Diploma (with the highest honor) and the
PhD degree in electrical and computer engineer-
ing from the National Technical University of
Athens (NTUA) in 1995 and 2000, respectively.
His PhD thesis was supported by the Bodosakis
Foundation Scholarship. From 1996 to 2000, he
was with the Image, Video, and Multimedia
Laboratory of NTUA as a research assistant.
From 2001 to 2002, he served his mandatory

duty in the Greek army at the Computer Center Department of the
Hellenic Air Force. In 2002, he joined the NTUA as senior researcher.
Since September 2006, he has been an assistant professor at the
Technical University of Chania. His research interests include nonlinear
analysis, neural networks, multimedia content description, and intelligent
techniques for video processing. He has received several awards and
prizes during his studies, including the Best Greek Student in the field of
engineering in the national level in 1995, the Best Graduate Thesis
Award in the area of electrical engineering with N.D. Doulamis in 1996,
and several prizes from the NTUA, the National Scholarship Foundation,
and the Technical Chamber of Greece. In 1997, he was given the NTUA
Medal as Best Young Engineer. In 2000, he received the Best PhD
Thesis Award, in conjunction with N.D. Doulamis, from Thomaidion
Foundation. In 2001, he served as technical program chairman of the
VLBV ’01. He has also served on the program committee of several
international conferences and workshops. He is a reviewer of IEEE
journals and conferences, as well as other leading international journals.
He is the author of more than 100 papers in the above areas in leading
international journals and conferences. He is a member of the IEEE.

Emmanouel A. Varvarigos received the Diplo-
ma in electrical and computer engineering from
the National Technical University of Athens in
1988 and the MS and PhD degrees in electrical
engineering and computer science from the
Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, in 1990 and 1992,
respectively. His research interests include
protocols and algorithms for high-speed net-
works, all-optical networks, high-performance

switch architectures, grid computing, parallel architectures, performance
evaluation, and ad hoc networks. In 1990, he worked as a researcher at
Bell Communications Research, Morristown, New Jersey. From 1992 to
1998, he was an assistant and later an associate professor in the
Department of Electrical and Computer Engineering, University of
California, Santa Barbara. From 1998-1999, he was an associate
professor in the Department of Electrical Engineering, Delft University of
Technology, the Netherlands. In 1999, he became a professor in the
Department of Computer Engineering and Informatics, University of
Patras, where he is currently the director of the Communication
Networks Laboratory. He is also the director of network technologies
sector of the Research Academic Computer Technology Institute (RA-
CTI). He was the organizer of the 1998 Workshop on Communication
Networks and was on the program committee of several international
conferences.

Theodora A. Varvarigou (S’88-M’92) received
the BTech degree from the National Technical
University of Athens, Athens, in 1988, the MS
degrees in electrical engineering and computer
science from Stanford University, Stanford,
California, in 1989 and 1991, respectively, and
the PhD degree from Stanford University also in
1991. She worked at the AT&T Bell Labora-
tories, Holmdel, New Jersey, between 1991 and
1995. Between 1995 and 1997, she worked as

an assistant professor at the Technical University of Crete, Chania,
Greece. She is an associate professor at the National Technical
University of Athens. Her research interests include parallel algorithms
and architectures, fault-tolerant computation, optimization algorithms,
and content management. She is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1648 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2007

Authorized licensed use limited to: University of Patras. Downloaded on January 29, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

