
 

Abstract 
 

In this paper we present a multicost algorithm for the joint 
time scheduling of the communication and computation 
resources that will be used by a task. The proposed 
algorithm selects the computation resource to execute the 
task, determines the path to route the input data, and finds 
the starting times for the data transmission and the task 
execution, performing advance reservations. We initially 
present an optimal scheme of non-polynomial complexity 
and by appropriately pruning the set of candidate paths we 
also give a heuristic algorithm of polynomial complexity. We 
evaluate the performance of our algorithm and compare it to 
that of algorithms that handle only the computation or 
communication part of the problem separately. We show that 
in a Grid network where the tasks are CPU- and data-
intensive important performance benefits can be obtained by 
jointly optimizing the use of the communication and 
computation resources. 
 
1. Introduction 

 
Grids introduce new ways to share computing, storage 

resources and specific instruments between geographically 
distributed sites, the management of which requires 
scheduling at various levels  [1]. The complexity of the grid 
applications, the user requirements and the system 
heterogeneity would result in inefficient scheduling in the 
case of a manual procedure. Scheduling tasks on a set of 
heterogeneous, dynamically changing resources is a complex 
problem that requires sophisticated algorithms that take into 
account multiple optimization criteria.  

In order for Grid systems to be used in real world 
commercial applications and demanding scientific 
experiments, end-to-end Quality of Service (QoS) is 
desirable. The main approach to providing end-to-end QoS is 
reservations and especially reservations that are performed 
“in-advance”. Reservations in Grids expand in various 
domains, such as computation, communication, storage 
resources and even instruments. The efficiency of a Grid 
system depends on the development of sophisticated resource 
management systems capable of allocating resources based 
on user requirements. However, in order to employ advance 
reservations, temporal information should be taken into 
account. This would considerably increase the complexity of 
the Grid management systems and the related algorithms. 

In this paper we propose an algorithm that jointly 
addresses a communication and computation scheduling 
problem. We assume that task processing consists of two 
successive steps: (i) the transfer of data from the scheduler or 

a data repository site, which we will call source, to the cluster 
or computation resource (these terms will be used 
interchangeably in this paper) in the form of a connection or 
a data burst and (ii) the execution of the task at the cluster. 
The link utilization profiles, the link propagation delays, the 
cluster utilization profiles and the task parameters (input data 
size, computation workload and maximum acceptable delay) 
form the inputs to the algorithm. The proposed multicost 
algorithm selects the cluster to execute the task, determines 
the path to route the input data, and finds the starting times 
for the data transmission and the task execution at the cluster, 
by defining advance reservations. The algorithm takes its 
decisions based on the resources (link and cluster) utilization 
information available at the scheduler when the algorithm is 
executed. Note that the proposed algorithm is designed for a 
distributed architecture and thus the information maintained 
at the scheduler can be outdated. However, it can easily be 
extended to function in a centralized manner. 

The proposed algorithm consists of three phases: it first 
uses a multicost algorithm to compute a set of candidate non-
dominated paths from the source (scheduler or data 
repository site) to all network nodes. Secondly, the algorithm 
obtains the set of candidate non-dominated (path, cluster) 
pairs from the source to all clusters that can process the task. 
Finally, the algorithm chooses from the previously computed 
set a pair that minimizes the task completion time, or some 
other performance criterion. An important drawback of the 
algorithm outlined above is that in its first phase the number 
of non-dominated paths may be exponential. To obtain a 
polynomial-time heuristic algorithm we use a pseudo-
domination relationship between paths to prune the solution 
space. 

We evaluate the performance of the optimal task routing 
and scheduling algorithm and of its proposed polynomial-
time heuristic variation using network simulation 
experiments, and compare it to that of algorithms that handle 
the computation or communication part of the problem 
separately. Our results indicate that when the tasks are CPU- 
and data-intensive it is beneficial for the scheduling 
algorithm to jointly consider the communicational and 
computational problems, as our proposed algorithms do. 
Comparing the optimal multicost algorithm to the proposed 
heuristic we observe that they exhibit similar performance in 
all our experiments. Thus the proposed heuristic combines 
the strength of the optimal algorithm with a low computation 
complexity. 

The remainder of this paper is organized as follows. In 
Section 2 we report on previous work. In Section 3 we 
present the utilization profiles of the communication and 
computation resources. In Section 4 we formally define the 

Joint Communication and Computation Task Scheduling in Grids 
Konstantinos Christodoulopoulos1,2, Nikolaos Doulamis2, Emmanouel (Manos) Varvarigos1,2 

1 Computer Engineering and Informatics Department, University of Patras, Patras, Greece 
2 Research Academic Computer and Technology Institute, Patras, Greece 

kchristodou@ceid.upatras.gr 

Eighth IEEE International Symposium on Cluster Computing and the Grid

978-0-7695-3156-4/08 $25.00 © 2008 IEEE
DOI 10.1109/CCGRID.2008.46

17

Authorized licensed use limited to: University of Patras. Downloaded on January 28, 2009 at 13:56 from IEEE Xplore.  Restrictions apply.



 

problem and show how to compute the utilization profile of a 
path and the utilization profile of a cluster over a path based 
on the profiles defined in Section 3. The joint communication 
and computation scheduling algorithm is presented in Section 
5 and its heuristic variation in Section 6. Section 7 presents 
performance results. Our conclusions follow in Section 8. 
 
2. Related Work 

 
In  [2], the Grid Scheduling Architecture Research Group 

(GSA-RG) of the Open Grid Forum (OGF) presents different 
Grid scheduling use case scenarios and describes common 
usage patterns. Among them, the most complicated scenario 
deals with the scheduling of tasks requesting more than one 
and possibly different service guarantees. In this context, a 
“workflow” is defined as a task that consists of a number of 
“subtasks” with various interdependencies. A workflow 
requests the co-allocation of resources in different time 
frames and advance reservations are employed for the 
orchestration of the corresponding resources.  

Grid applications can be categorized as CPU-intensive, 
data-intensive applications, or both. However, almost all 
tasks have a computation and a communication part, even if 
one part is negligible. For example, it is usual for a task to 
require the movement of a large chunk of data from the 
location of the user or a data repository site to the 
computation resource where the task will be executed. In this 
paper we address such a problem. Note that this problem can 
be also viewed as a simple form of workflow with two 
successive steps: a communication part followed by a 
computation part. 

The Globus Architecture for Reservation and Allocation 
(GARA)  [3] is a framework for advance reservations that 
treats in a uniform way various types of Grid resources. 
Although GARA has gained popularity in the Grid 
community, its limitations in coping with current application 
requirements and technologies led to the proposal of the Grid 
Quality of Service Management (G-QoSm) framework  [4].  

Up until now, a number of algorithms that use advance 
reservations have been proposed for task scheduling on 
computation resources. In  [5] various scheduling algorithms 
for advance reservations in super-computers are proposed. 
The Nimrod/G scheduler is presented in  [6]. Communication 
resources are separately taken into account in a bandwidth 
reservation system within the GARA framework in  [7].  

Some types of joint communication and computation 
problems have also been examined. In  [8] the authors 
decoupled the data replication and the computation problems 
and evaluated the performance of data and task schedulers 
working in a cooperatively manner. In  [9] the proposed 
scheduler selects the computation resource to execute a task 
based on the computation resource capability, the bandwidth 
available from the data host to the computation resource and 
the cost of the data transfer. Similar algorithms have been 
examined in multimedia networks where the co-allocation of 
computation, bandwidth and other resources are examined 
 [10]. The authors in  [11] introduced the concept of time 
scheduling and routing of advance reservation requests in the 
communication plane, proposed several algorithms for 

advance reservations, and also discussed complexity issues.  
The multicost algorithm we propose considers jointly the 

time scheduling of communication and computation 
resources. In comparison to the solutions proposed in  [8]-
 [10] our algorithm also uses advance reservations for the time 
scheduling of the communication resources, in a similar way 
to  [11]. Multicost algorithms have mainly been used for QoS 
routing problems. In  [12] the authors proved that QoS 
routing with parameters being the bandwidth and the delay is 
not NP-complete. The general Multiconstrained Path 
Problem (MCP) is discussed in  [13]. To the best of our 
knowledge, the present work is the first time a multicost 
algorithm is used for the joint communication and 
computation problem in a Grid environment. Moreover, a 
key difference to other multicost approaches is that the 
proposed algorithm is designed to handle temporal 
information, using timeslots as cost parameters in the 
multicost formulation, in order to cope with the time 
scheduling of the resources. 
 
3. Communication and Computation Utilization 
Profiles 
 
3.1. Link Utilization Profiles 
 

In a network that employs advance reservations, each node 
needs to keep a record of the capacity reserved on its 
outgoing links, as a function of time, in order to perform 
channel scheduling and reservations  [14]. 

Assuming each connection reserves bandwidth equal to r 
for a given time duration, the utilization profile Ul(t) of a link 
l is a stepwise function with discontinuities at the points 
where reservations begin or end, and is updated dynamically 
with the admission of each new connection. We define the 
capacity availability profile of link l of capacity Cl as 
Cl(t)=Cl-Ul(t). To obtain a data structure that is easier to 
handle in an algorithm, we discretize the time axis in steps 
(timeslots) of duration τl and define the binary r-capacity 
availability vector Ĉl(r), abbreviated CAV, as the vector 
whose k-th entry is: 

{ } ,1, if
  

1,2,...,
, for all ( -1)( )

( )
0, othewise

l
l ll l

lk

C
C

k z
k t kU t r

r
τ τ∧

=
=

⋅ ≤ ≤ ⋅− > 
 
 

 

where zl the dimension of the CAV (see Figure 1). 
The data structures defined above can be useful in a 

number of network settings. For example, in an optical WDM 
network with full wavelength conversion and w wavelengths 
per link, each of capacity Cw, the total capacity of a link l is 
Cl=w∙Cw. A connection that wants to reserve k wavelengths, 
1≤ k ≤w, requests rate r=k∙Cw. If we can find a path of 
available capacity greater or equal to r, then the connection 
can be established. If no wavelength converters are available, 
each link needs to keep track of the utilization profile of each 
of its w wavelengths separately. Thus, a node has to maintain 
w binary (a wavelength can be reserved or not for a given 
time) utilization profiles for each outgoing link. In this case 
the network can be viewed as w “parallel” networks, each 
having a single wavelength.  

18

Authorized licensed use limited to: University of Patras. Downloaded on January 28, 2009 at 13:56 from IEEE Xplore.  Restrictions apply.



 

 

( )lC r
∧

 
Fig. 1. The capacity availability profile Cl(t), and the binary r-
capacity availability vector Ĉl(r) of a link l of capacity Cl. In a 
similar way we can define the cluster availability profile Wm(t) and 
the binary r-cluster availability vector Ŵm(r). 

 
In order to simplify the notation, in the remainder of the 

paper and when no confusion arises, we will denote the 
profile Ĉl(r) of a link l by Ĉ, suppressing the dependence on l 
and r.  

For the rest of the paper we assume that the network 
connecting the clusters, the schedulers and the data 
repositories follows the Optical Burst Switching (OBS) 
paradigm  [15]. An OBS network falls in one of the two 
aforementioned categories, depending on whether or not 
wavelength conversion is employed. Note that this 
assumption does not limit the applicability of our algorithms, 
which can be used in any network supporting advance 
reservations.  

In OBS networks, the data exchanged are transmitted as 
data bursts that are switched though the network using a 
single label. This reduces the switching and processing 
requirements in the core network. The Grid Optical Bursts 
Switched (GOBS) solution has been proposed to the Open 
Grid Forum (OGF) as a candidate network infrastructure to 
support dynamic and interactive services  [16]. 
 
3.2. Clusters Utilization Profiles 

 
To have a consistent formulation, we define the cluster 

utilization profile in a similar way to the link utilization 
profile. We assume that a cluster-site m consists of Wm CPUs 
of equal processor speed Cm (measured, e.g., in MIPS). We 
also assume that when a task starts executing it cannot be 
preempted. A task requests to be executed in r CPUs 
(r ≤ Wm), and can be scheduled for execution in the future. 

The utilization profile Um(t) of cluster m is defined as an 
integer function of time, which records the number of CPUs 
that have been committed to tasks at time t relative to the 
present time. The maximum value of Um(t) is the number of 
CPUs, Wm, and it has a stepwise character with 
discontinuities of height r (always integer number) at the 
starting and ending times of tasks. In case all tasks request a 
single CPU the steps are unitary. We defined the cluster 
availability profile, which gives the number of CPUs that are 
free as a function of time, as Wm(t)= Wm – Um(t). We 
discretize the time axis in steps of duration τm and defined the 

binary r-cluster availability vector Ŵm(r), as follows:  

{ } ,1, if
  

1,2,...,
, for all ( -1)( )

( )
0, othewise

m
m mm m

mk

W
W

k z
k t kU t r

r
τ τ∧

=
=

⋅ ≤ ≤ ⋅− > 
 
 

 

where zm is the maximum size of the Ŵm(r) vector. To 
simplify the presentation, we assume that each task requests 
r=1 CPUs, which is the most usual case. Then, we can denote 
Ŵm(r) by Ŵm suppressing the dependence on r. 

The discretization of the time axis results in some loss of 
information, and provides a tradeoff between the accuracy 
and the size of the maintained information. The discretization 
steps τl and τm used in the link and cluster utilization profiles, 
respectively, can be different to account for the different time 
scales in the reservations performed in these different types 
of resources and to separately control the efficiency/accuracy 
we want to obtain in each case. Note that the timeslot-based 
management of Grid resources is a well established and 
efficient way to manage utilization information  [11], [17]. 
This approach is already used in various environments, e.g. 
denoted as timeslot table in GARA  [3], and used in the 
VIOLA testbed  [18] . 
 
3.3. Utilization Profiles in a Distributed Architecture 
 

In a distributed architecture, each distributed scheduler 
maintains a “picture” of the utilization of all communication 
and computation resources. In our approach, this is done by 
maintaining a utilization database with link and cluster 
availability vectors for all resources. This picture can be 
different among the distributed schedulers, due to non-zero 
propagation delays. Update information (in the form of 
messages) is communicated to synchronize the locally 
maintained profiles with the actual utilization. Note that in 
the case of a centralized architecture only the single central 
scheduler would have to maintain such information, 
simplifying in this way the synchronization process. Although 
the design of a distributed algorithm is more complex, 
compared to a centralized scheme, a distributed algorithm is 
more general and applicable to more cases, since it scales 
better and avoids many drawbacks of a centralized 
architecture.  
 
4. The Task Routing and Scheduling Problem 
under Consideration 
 

We are given a Grid infrastructure consisting of a network 
with links l of known propagation delays dl and capacity Cl 
(bps), and a set M of clusters. Cluster m∈M has Wm CPUs of 
a given processor speed Cm (MIPS). A task is created by a 
user with specific needs: input data size I (bits) and 
computational workload W (MI). The user communicates this 
information to distributed scheduler S (using e.g. JSDL  [19]). 
We assume that the input data are forwarded by the user to 
the scheduler S or are located at a data repository site R. 
Thus, S or R comprise the source of the input data. Also, S 
has (possibly outdated) information about the capacity 
availability vectors Ĉl of all links l, and the cluster-
availability vectors Ŵm of all clusters M. We assume that 

19

Authorized licensed use limited to: University of Patras. Downloaded on January 28, 2009 at 13:56 from IEEE Xplore.  Restrictions apply.



 

there is an upper bound D on the maximum delay tasks can 
tolerate. Even when no limit D is given, we still assume that 
the dimension zl and zm of the link and cluster utilization 
vectors are finite, corresponding to the latest time (relative to 
the present time) for which reservations have been made. 
Given the previous information, we want to find a suitable 
cluster to execute the task, a feasible path over which to route 
the data, and the time at which the task should start 
transmission (from the source) and execution (at the cluster), 
so as to optimize some performance criterion, such as the 
completion time of the task. In other words we want to find a 
(path, cluster) pair and the corresponding Time Offsets, to 
transmit the data of the task (TOpath), and execute the task at 
the cluster (TOcluster). Figure 2 presents an instance of the 
problem. 

 

 

 
Fig. 2. A task request is forwarded to the distributed scheduler S. 
The task requires the transmission of a burst with duration b=I/Cl 
from source (which can be S or a data repository site R) and r CPUs 
to execute. Each link is characterized by its propagation delay (in τl 
time units) and its binary capacity availability vector Ĉl. Node E has 
a cluster with binary r-cluster availability vector ŴE(r). 
 
4.1. Binary Capacity Availability Vector of a Path  
 

Assuming the routing and scheduling decision is made at 
the distributed scheduler S, the capacity availability vectors 
of all links should be gathered continuously at S. For this and 
Section 4.2 we assume that the input data are located at S. If 
the input data were located at a data repository site R, the 
scheduler S would have to compute the paths starting from R.  

To calculate the CAV of a path we have to combine the 
CAVs of the links that comprise it, by defining an associative 
operator ‘&’, as described in  [20]. For example, for the 
topology of Figure 2, the CAV of path SBE (pSBE), consisting 
of links SB and BE, is  
µ µ µ µ µ µ

2 & ( )LSHp SBE SB BE SB BE
SBdC C C C C C⋅= = = ⊕ ,    (1) 

where ĈSB and ĈBE are the CAVs of links SB and BE, 
respectively, and LSH() defines the left shift of ĈBE by 2.dSB 
(twice the propagation delay of link SB measured in τl-time 
units). Left shifting ĈBE by dSB positions purges utilization 
information corresponding to time periods that have already 
expired (time to transfer ĈBE information from B to S), while 
left shifting it by another dSB accounts for the propagation 
delay any burst sent from S suffers to reach node B, assuming 

the link propagation delay is the same in both directions. We 
finally execute a bit-wise AND operation, denoted by ⊕ , 
between the CAVs of SB and BE to compute the binary 
availability vector of the whole path SBE. This process is 
depicted in Figure 3. 
 

SBC
∧

BEC
∧

SBEC
∧

SBC
∧

BEC
∧

⊕

 
Fig. 3. Calculation of the path capacity availability vector ĈSBE. ĈBE 
is left shifted by 2∙dSB τl-time units (dSB=2 in this example), before 
the AND operation is applied. 

 
4.2. Binary Cluster Availability Vector over a Path  
 

Let p be the path that starts at the distributed scheduler S 
and ends at cluster m, and let Ĉp be its capacity availability 
vector and dp be its delay. We want to transmit a task with 
data duration b (b=I/Cl where I is the data size) over the path 
p in order to execute it at cluster m. We define Rp(b) as the 
first position after which Ĉp has b consecutive ones. In other 
words, Rp(b) is the earliest time after which a burst of 
duration b can start its transmission on path p. The earliest 
time that the task can reach cluster m is then given by 

( )EST( , ) p pR b b dp b + += . The distributed scheduler S has a 
partial (outdated) knowledge of the cluster availability vector 
Ŵm of m. We define MUV )( mk W

∧
 as the operation of setting 

zeros (making unavailable) the first k elements of vector Ŵm. 
Then, vector EST( , )( , ) = MUV )(m mp bp bW W

∧ ∧
 gives the time 

periods that S can schedule the task at cluster m over path p. 
 

 
Fig. 4. Scheduler S wants to transfer a task of data duration b=3 
over path pSBE. We denote by EST(pSBE,b) the earliest time the task 
can reach E over pSBE, and by ŴE(pSBE,b) the cluster availability 
vector that gives the periods at which S can schedule the task on E. 
To calculate ŴE(pSBE,b), we put 0’s in the first EST(pSBE,b)=9 
elements of ŴE. 

 
With respect to Figures 2 and 3, we assume that we want 

to transmit a task of duration b=3 from S to the cluster at 
node E, over path pSBE with propagation delay dSBE=6. The 

20

Authorized licensed use limited to: University of Patras. Downloaded on January 28, 2009 at 13:56 from IEEE Xplore.  Restrictions apply.



 

capacity availability vector ĈSBE was calculated in Section 
4.1, and we have also calculated ( ) 0SBEpR b = . The task 
reaches E after  ( )EST( , ) 9SBE SBE SBEpR b b dp b + += = . Also, S 
has a (possibly outdated) knowledge of the cluster 
availability profile ŴE. The cluster availability vector that 
gives the periods that S can schedule the task on E is 

EST( , )( , ) MUV )(
SBEE SBE Ep bp bW W

∧ ∧
= =  9MUV )( EW

∧
, which is the 

operation of setting the 9 first entries of vector ŴE to zero. 
This calculation is depicted in Figure 4. 
 
5. Joint Communication and Computation Task 
Scheduling Algorithm in Grids 

 
In what follows we present a multicost algorithm for the 

joint communication and computation scheduling of tasks. 
The algorithm consists of three phases: given that the input 
data are located at source (which can be the scheduler S or a 
data repository site R) we first calculate the set Pn-d of non-
dominated paths between the source and all the network 
nodes (Section 5.1). We then obtain the set PMn-d of 
candidate non-dominated (path, cluster) pairs from source to 
all the clusters that can process the task (Section 5.2). We 
finally choose from PMn-d the pair that minimizes the 
completion of the task execution, or some other performance 
criterion (Section 5.3). 
 
5.1. Algorithm for Computing the Set of Non-Dominated 
Paths 
 

In multicost routing, each link l is assigned a vector Vl of 
cost parameters, as opposed to the scalar cost parameter 
assigned in single-cost routing. In our initial formulation, the 
cost parameters of a link l include the propagation delay dl of 
the link and its binary capacity availability vector Ĉl: 

 

Vl =(dl, Ĉl)=(dl, c1,l, c2,l, …, cz,l), 
 

but they may also include other parameters of interest (such 
as number of hops, the number of executed tasks in a cluster, 
etc). A cost vector  [21] can then be defined for a path p 
consisting of links l ∈p, based on the cost vectors of its 
links: 

       ( ) , & ,
def

ll l l pl p l p
V p V d C

∧

∈∈ ∈

 = =  
 
∑e       (2)   

where & is the associative operator defined in Eq. (1).  
We say that path p1 dominates path p2 for a given burst and 

source-destination pair, if the propagation delay of p1 is 
smaller than that of p2, and path p1 is available for scheduling 
the burst (at least) at all time intervals at which path p2 is 
available. Formally:  

p1 dominates p2  (notation: p1 > p2) iff   
   

2
1 2

1
 and & & ,l l l ll p l pl p l p

d d C C
∈ ∈

∈ ∈

∧ ∧
< ≥∑ ∑      (3) 

where the vector inequality “≥” should be interpreted 
component-wise. The set of non-dominated paths Pn-d for a 
given burst and source-destination pair is then defined as the 
set of paths with the property that no path in Pn-d dominates 
another path in Pn-d. 

An algorithm for obtaining the set Pn-d of non-dominated 
paths from a given source to all destination nodes is given in 
 [20] and  [21], and is a generalization of Dijkstra’s algorithm 
that only considers scalar link costs. 
 
5.2. Set of Non-Dominated (path, cluster) Pairs 
 

In the first phase of our proposed routing and scheduling 
algorithm we obtained the set of non-dominated paths 
between the source (S or R) and all the nodes of the network. 
We now expand the definition of the path cost vector to 
include the utilization profiles of the clusters. More 
specifically, we define the cost vector of a (path, cluster) pair 
pm (path p ending to cluster m) as: 

( ) ( ),  ( , ) ,  & ,  ( , )m l l ml pl p
V pm V p W p b d W p bC

∧ ∧

∈∈

∧  = =   
   

∑  ,   (4) 

 

where 
EST( , )( , )=MUV )(m p b mW p b W

∧ ∧
 is the binary cluster 

availability vector of m with 0’s at the first EST(p,b) 
elements (Section 4.2). 

We define a domination relationship between (path, 
cluster) pairs: A (path, cluster) pair p1m1 dominates another 
pair p2m2 for a given task, if p1 dominates p2

 (Eq. 3), and also 
the cluster m1 can execute the task (after the minimum 
transmission delay over p1) at least at all time intervals at 
which cluster m2 is available (after the minimum transmission 
delay over p2). Formally:  

p1m1 dominates p2m2 (notation: p1m1 > p2m2) iff 

  
1 21 2 1 2 and  ( , ) ( , ) m mW Wp p p b p b

∧ ∧

> ≥ ,   (5) 
 

where the vector inequality “≥” is interpreted component-
wise. The set of non-dominated (path, cluster) pairs PMn-d is 
then defined as the set of (path, cluster) pairs with the 
property that no pair in PMn-d dominates another.  

Clearly, we have PMn-d ⊆ Pn-d. Therefore, to obtain the set 
PMn-d we apply Eq. (5) to the elements of Pn-d. 
 
5.3. Finding the Optimal (path, cluster) Pair and the 
Transmission and Execution Time Offsets 
 

In the third phase of the proposed algorithm we apply an 
optimization function f(V(pm)) to the cost vector, V, of each 
pair pm ∈  PMn-d. The function f yields a scalar cost per pm 
in order to select the optimal path and cluster pair. The 
function f can be different for different tasks, depending on 
their QoS requirements. For example, if we want to optimize 
data transmission, which corresponds to the routing 
optimization problem, the function f will select the path 
minimizing the reception time of the data at the cluster. If we 
consider the optimization of the computation problem, the 
function f will select the cluster that has the fewer scheduled 
tasks, or the one that minimizes its completion time. A 
weighted combination of the above considerations can be 
also employed. Note that the optimization function f applied 
to the cost vector of a pm has to be monotonic in each of the 
cost components. For example, it is natural to assume that it 
is increasing with respect to delay, decreasing with increased 
capacity availability, decreasing with increased cluster 
availability, etc. The final step is to choose from PMn-d the 

21

Authorized licensed use limited to: University of Patras. Downloaded on January 28, 2009 at 13:56 from IEEE Xplore.  Restrictions apply.



 

pm pair that minimizes f(V(pm)).  
In the context of this study we assume that we want to 

minimize the completion time of the task and that we are 
using a one-way connection establishment and reservation 
scheme. This is accomplished in the following way: 
i) Compute the first available position to schedule the task 
We start from the cost vector V(pimi) of pair pimi and 
calculate the first position Ri(wi) after which  ( , )mi iW p b

∧
 has 

wi =W/Cmi consecutive ones. In other words, Ri(wi) is the 
earliest time at which a task of computation workload W can 
start execution on mi. Note that the way wi is calculated 
accounts for the computation capacity of resource mi, and 
that ( , )mi iW p b

∧
, by definition, accounts for the earliest 

transmission time, the propagation delay of path pi and the 
transmission delay (Section 4.2).  

 

ii)Select the cluster with the minimum task completion time 
Select the pair pimi that results in the minimum completion 
time Ri(wi)+wi for the task. In case of a tie, select the path 
with the smallest propagation delay. The time offset of task 
execution (TOcluster) is given by Ri(wi). 

 

iii) Select the time to schedule the burst 
Having chosen the pair pimi we transmit the task at the 
earliest time possible. The time offset TOpath for the data 
transmission is Rpi(b), defined as the first position after which 
Ĉpi has b consecutive ones (like in Section 4.2). 

 

iv) Update the CAV of chosen (path, cluster) 
Having chosen the (path,cluster) pair and the time offsets to 
transmit the input data and execute the task, the next step is 
to update the utilization profiles of the corresponding links 
and the cluster. Update messages must also be sent to update 
the utilization profiles maintained at the other distributed 
schedulers. Such update mechanisms are extensively 
presented in  [20], [22], and are not described in this paper.  

The procedure described above assumes a tell-and-go 
protocol. If we wish to use a tell-and-wait protocol we simply 
have to redefine ( , )mi iW p b

∧
, Ri(wi), and Rpi(b) to take into 

account the round trip time before the data transmission. 
 
6. Polyonomial Algorithm for Computing the 
Set of Non-Pseudo-Dominated Paths 

 
A serious drawback of the algorithm described in the 

previous section is that the number of non-dominated paths 
may be exponential, and the algorithm is not guaranteed to 
finish in polynomial time. The basic idea to obtain a 
polynomial time variation is to define a pseudo-domination 
relationship >ps between paths, which has weaker requirement 
than the domination relationship > defined in Eq. (3). 

In  [20], two such pseudo-domination relations were 
proposed and evaluated. For the scope of this study we 
present the better performing relation. We define a new link 
metric, called the slot availability weight of the link, as 
weight(Ĉl), which represents the total number of 1’s in the 
vector Ĉl. 

The polynomial-time heuristic variation of the optimal 
multicost algorithm computes the set of non-pseudo-

dominated paths following the same steps presented in 
Section 5.1. The algorithm still maintains the binary vectors 
of the paths but the domination relationship that is used to 
prune the paths is not Eq. (3) but the following: 

p1 pseudo-dominates p2 (p1 >ps p2) iff   

1 2
1 2

  and  ( ) ( )l l l l
l p l pl p l p

d d weight weightC C
∈ ∈

∈ ∈

∧ ∧

< ⊕ > ⊕∑ ∑   (6) 

When the domination relationship of Eq. (6) is used, an 
upper limit on the number of non-pseudo-dominated paths is 
the dimension zl of the capacity availability vectors. The 
heuristic algorithm obtained in this way avoids the tedious 
comparisons of the CAVs of the optimal multicost algorithm, 
by essentially converting a zl+1 dimensioned cost vector into 
a cost vector of 2 dimensions that conveys most of the 
important information contained in the original vector. The 
reduced problem was proven to be polynomial in  [12]. 
 
7. Performance Results 

 
In order to evaluate the performance of the proposed 

multicost algorithm for the joint communication and 
computation task scheduling we conducted simulation 
experiments, assuming an OBS underlined network. We have 
extended the ns-2 platform  [23] and tested the following 
algorithms: 

• Optimal multicost algorithm for the joint communication 
and computation task scheduling (MC-T). MC-T 
algorithm minimizes the completion time of the task, as 
presented in Section 5. 

• AW heuristic multicost algorithm for the joint 
communication and computation task scheduling 
(AWMC-T), as presented in Section 6. 

• Optimal multicost burst routing and scheduling algorithm 
(MC-B), as presented in  [20]. The MC-B algorithm takes 
into account only the communication part of the problem, 
and routes the input data to the cluster at which the data 
will arrive earlier, without using the utilization profiles of 
the related clusters. 

• Earliest Completion time (ECT). The ECT algorithm 
considers only the computation part of the problem, and 
sends the task to the cluster where it will complete its 
execution earlier, using the shortest path and examining 
communication contention only at the first link. 
 

In order to establish the connection and reserve the 
appropriate communication and computation resources we 
have implemented a one-way reservation protocol capable of 
supporting advance reservations. The protocol is similar to 
JET  [14] with extensions to cope with the one-way 
reservation of computation resources. 

The simulations were performed assuming a 5x5 mesh 
network with wraparounds, where the nodes were arranged 
along a two-dimensional topology, with neighboring nodes 
placed at a distance of 400 km. In this topology we placed 4 
clusters, each having 25 CPUs and each CPU having a 
computational capacity Cm = 25000 MIPS (typical value for 
Intel Xeon CPUs). The 4 Clusters were placed randomly in 
the mesh network. Each link had a single wavelength of 
capacity Cl equal to 1 Gb/s. Users were placed at all the 25 

22

Authorized licensed use limited to: University of Patras. Downloaded on January 28, 2009 at 13:56 from IEEE Xplore.  Restrictions apply.



 

nodes of the network and the tasks were generated according 
to a Poisson process with rate λ/25 tasks per second at each. 
The computation workload of each task was exponentially 
distributed with average value W MI (so the average task 
execution time was w=W/Cm). Finally, the size of the input 
data burst was also exponentially distributed with average I 
Bytes (so the average burst duration was b=I/Cl). 

To assess the performance of the algorithms we used the 
following metrics: 

• Average total delay: defined as the time between the 
task creation and its completion time. 

• Burst blocking probability: the probability of an input 
data burst to content with another burst. 

• Conflict probability: the probability of a task to find a 
cluster unavailable at the time predicted by the 
algorithm (equal to TOcluster - Section 5.3), due to 
another task that has already reserved that cluster. 

 

If we used a centralized architecture the burst blocking and 
conflict probabilities would be negligible, since the “central” 
scheduler would have a complete knowledge of the 
utilization of the resources and would schedule the tasks 
accordingly. Thus, these two metrics depend on the update 
strategy used, as well as the examined algorithm. 

We used the following parameters: b = 1 sec and w=10 
sec. We classify the tasks as CPU- and data-intensive since w 
is considerable with respect to the total computation power, 
while b is considerable with respect to the total 
communication capacity of the Grid network. Note that the 
average total delay can take values less than 11sec, since a 
task of a user that is attached to a node with a cluster can be 
executed locally (without data transferring). 

In Figure 5a we observe that the multicost algorithms that 
jointly consider the communication and computation 
resources (MC-T, AWMC-T) perform better than the other 
two algorithms (MC-B, ECT) with respect to the average 
total delay metric. The average total delay of the MC-T and 
AWMC-T algorithms increases slightly with the tasks’ 
generation rate λ. The tasks have high demands for both 
communication and computation resources and these 
algorithms solve this joint problem efficiently, as can be seen 
by the corresponding low burst blocking probability (Figure 
5b) and the low conflict probability (Figure 5c). On the other 
hand, the performance of ECT deteriorates as λ increases. 
ECT does not take into account the communication part of 
the problem, and thus exhibits a high burst blocking 
probability as λ increases (Figure 5b), which results in 
increased average total delay. Similarly, the performance of 
the MC-B algorithm deteriorates as λ increases. MC-B does 
not take into account cluster availability, and the clusters 
chosen are usually not the optimum ones, as can be seen by 
the high conflict probability (Figure 5c). This introduces 
additional delay to the total time of the task.  

 From these results it is clear that in a Grid network where 
tasks are both CPU- and data-intensive (or where some tasks 
are CPU-intensive and some data-intensive) performance 
improves significantly by jointly optimizing the use of the 
communication and computation resources.  

10

11

12

13

0 1 2 3 4 5 6 7

Arrival rate λ (tasks/sec)

A
ve

ra
ge

 to
ta

l d
el

ay
 (s

ec
)

ECT
MC-B
AWMC-T
MC-T

 

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1 2 3 4 5 6 7
Arrival rate λ (tasks/sec)

B
ur

st
 b

lo
ck

in
g 

pr
ob

ab
ili

ty

ECT
MC-B
AWMC-T
MC-T

 

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1 2 3 4 5 6 7
Arrival rate λ (tasks/sec)

C
on

fli
ct

 p
ro

ba
bi

lit
y

ECT
MC-B
AWMC-T
MC-T

 
Fig. 5. Algorithms performance for tasks that are CPU- and data-
intensive: (a) average total delay, (b) burst blocking probability and 
(c) conflict probability. 
 

It is worth noting that the difference in the average delay 
performance between the optimal multicost (MC-T) and the 
heuristic multicost (AWMC-T) algorithms is small. In Figure 
6a we show the average number of searched paths per task 
request (that is, the average size of the set Pn-d, presented in 
Section 5.1). We observe that the optimal multicost algorithm 
searches significantly more paths than the heuristic algorithm 
and the difference increases as the load (expressed by λ) 
increases. Figure 6b shows the average number of operations 
required to route and schedule a task. Note that the MC-T 
algorithm uses as cost parameters the delay and the link 
utilization profiles and thus can be viewed as an algorithm 
with 1+zl costs. The average number of operations is defined 
as the number of operations (additions, Boolean operations 
(e.g. AND) or comparisons (<, >, ≠ , etc)) required to 
manipulate this cost vector. As expected the heuristic 
algorithm requires fewer operations than the optimal 
multicost algorithm.  

23

Authorized licensed use limited to: University of Patras. Downloaded on January 28, 2009 at 13:56 from IEEE Xplore.  Restrictions apply.



 

Thus, the proposed polynomial time AWMC-T algorithm 
yields delay performance that is very close to that of the 
optimal multicost algorithm, while maintaining the number of 
searched paths and required operations at low levels. 

In future we plan to examine the performance of the 
proposed algorithms for uneven and heterogeneous resources 
and more complicated topologies. 

 

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7
Arrival rate λ (tasks/sec)

A
ve

ra
ge

 N
um

be
r o

f S
ea

rc
he

d 
Pa

th
s AWMC-T

MC-T

 

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

0 1 2 3 4 5 6 7
Arrival rate λ (tasks/sec)

A
ve

ra
ge

 N
um

be
r o

f o
pe

ra
tio

ns

AWMC-T

MC-T

 
Fig. 6. Algorithms complexity: (a) average number of searched 
paths, and (b) average number of operations. 
 
8. Conclusions 

 
We presented a multicost algorithm for the joint selection 

of the communication and computation resources to be used 
by a task. We initially presented an optimal scheme of non-
polynomial complexity and by appropriately pruning the set 
of candidate paths we also obtained a heuristic algorithm of 
polynomial complexity. We showed that in a Grid network 
where the tasks are CPU- and data-intensive important 
performance benefits, in terms of average total execution 
delay, can be obtained by jointly optimizing the use of the 
communication and computation resources as our proposed 
algorithms do. The proposed heuristic algorithm was shown 
to combine the strength of the optimal multicost algorithm 
with a low computation complexity. 
 
Acknowledgments 
 

This work has been supported by the European 
Commission through the Phosphorus project (http://www.ist-
phosphorus.eu) and by the Greek General Secretariat for 
Research and Technology through the GRID-APP project. 
 
 
 

References 
 
[1] I. Foster, C. Kesselman, “The Grid 2: Blueprint for a New 
Computing Infrastructure”, Morgan Kaufmann, 2003. 
[2] R. Yahyapour, Ph. Wieder, “Grid Scheduling Use Cases”, 
Grid Scheduling Architecture Research Group (GSA-RG), Open 
Grid Forum (OGF), 2006. 
[3] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A. 
Roy, “A Distributed Resource Management Architecture that 
Supports Advance Reservations and Co-Allocation”, Intl. 
Workshop on Quality of Service (IWQoS), 1999.  
[4] R. Ali, K. Amin, G. Laszewski, O. Rana, D. Walker, M. 
Hategan, N. Zaluzec, “Analysis and provision of QoS for 
distributed grid applications”, J. of Grid Computing, vol 2(2), 2004. 
[5] W. Smith, I. Foster, V. Taylor, “Scheduling with advanced 
reservations”, Intl. Parallel and Distributed Processing Symposium 
(IPDPS), pp 127-132, 2000. 
[6] R. Buyya, D. Abramson, J. Giddy, “Nimrod/G: An 
architecture for a resource management and scheduling system in a 
Global computational Grid”, HPC Asia, 2000 
[7] G. Hoo, W. Johnston, I. Foster, A. Roy, “QoS as Middleware: 
Bandwidth Reservation System Design”, Intl. Symposium on High-
Performance Distributed Computing (HPDC), pp. 345-346, 1999. 
[8] K. Ranganathan, I. Foster. “Decoupling computation and data 
scheduling in distributed data-intensive applications”, Intl. Symp. 
on High-Performance Distributed Computing (HPDC), 2002. 
[9] S. Venugopal, R. Buyya, L. Winton, “A Grid Service Broker 
for Scheduling Distributed Data-Oriented Applications on Global 
Grids”, Intl. Workshop on Middleware for Grid Computing, 2004. 
[10] K. Nahrstedt, H. Chu, S. Narayan, “QoS-aware resource 
management for distributed multimedia applications”, J. High 
Speed Networks, vol. 7, no 3-4, pp. 229-257,1998 
[11] R. Guérin, A. Orda, “Networks with Advance Reservations: 
The Routing Perspective”, Infocom, 2000. 
[12] Z. Wang, J. Crowcroft, “Quality-of-service routing for 
supporting multi-media applications”, J. Selected Areas in 
Communications, vol. 14, no. 7, Sept. 1996. 
[13] P. Van Mieghem, F. Kuipers, “Concepts of Exact QoS 
Routing Algorithms”, Transactions on Networking, 2004. 
[14] E. Varvarigos, V. Sharma, “An efficient reservation 
connection control protocol for gigabit networks”, Computer 
Networks and ISDN Systems, vol. 30, no 12, pp. 1135–1156, 1998. 
[15] C. Qiao, M. Yoo, “Optical burst switching (OBS)–a new 
paradigm for an optical Internet,” J. High Speed Networks, 1999. 
[16] Grid Optical Burst Switched Networks: www.ogf.org/Public_ 
Comment_Docs/Documents/Jan2007/OGF_GHPN_GOBS_final.pdf 
[17] L. Burchard, “Analysis of Data Structures for Admission 
Control of Advance Reservation Requests”, Transactions on 
Knowledge and Data Engineering, vol 17, no 3, pp. 413–424, 2005. 
[18] C. Barz, T. Eickermann, M. Pilz, O. Wäldrich, L. Westphal, 
W. Ziegler, “Co-Allocating Compute and Network Resources-
Bandwidth on Demand in the VIOLA Testbed”, Springer, 
CoreGRID Series, Towards Next Generation Grids, 2007. 
[19] Job Submission Description Language specification: 
www.ogf.org/documents/GFD.56.pdf. 
[20] E. Varvarigos, V. Sourlas, K. Christodoulopoulos, “Routing 
and Scheduling Connections in Networks that Support Advance 
Reservations”, pending 2nd review at Computer Networks. 
[21] F. Gutierrez, E. Varvarigos, S. Vassiliadis, "Multicost Routing 
in Max-Min Fair Networks", Allerton Conference, 2000. 
[22] K. Manousakis, V. Sourlas, K. Christodoulopoulos,  E. 
Varvarigos, K. Vlachos, “A Bandwidth monitoring mechanism: 
Enhancing SNMP to record Timed Resource Reservations”, J. 
Network and Systems Management, pp. 583-597, 2006. 
[23] The Network Simulator (ns2): www.isi.udu/nsnam/ns 

24

Authorized licensed use limited to: University of Patras. Downloaded on January 28, 2009 at 13:56 from IEEE Xplore.  Restrictions apply.


