
Resource Information Aggregation in Hierarchical Grid Networks

P. Kokkinos, E. A. Varvarigos
Computer Engineering and Informatics Department, University of Patras, Greece

Research Academic Computer and Technology Institute, Patras, Greece
manos@ceid.upatras.gr

Abstract

We propose information aggregation as a method for
summarizing the resource-related information, used by the
task scheduler. Through this method the information of a
set of resources can be uniformly represented, reducing at
the same time the amount of information transferred in a
Grid network. A number of techniques are described for
aggregating the information of the resources belonging to
a hierarchical Grid domain. This information includes the
cpu and storage capacities at a site, the number of tasks
queued, and other resource-related parameters. The
quality of the aggregation scheme affects the efficiency of
the scheduler’s decisions. We use as a metric of
aggregation efficiency the Stretch Factor (SF), defined as
the ratio of the task delay when the task is scheduled using
complete resource information over the task delay when
an aggregation scheme is used. The simulation
experiments performed show that the proposed
aggregation schemes achieve large information reduction,
while enabling good task scheduling decisions as
indicated by the SF achieved.

1 Introduction
In Grid Networks, a scheduler receives requests for the use
of resources and assigns the tasks so as to optimize some
objective function. The scheduler makes its decisions
based on information about the resources, such as their
computational or storage capacity, their availability, etc,
which are usually collected by information services called
monitoring systems [1],[3].
In this work we propose a number of information
aggregation techniques for summarizing the resource-
related information, used by the task scheduler. With the
emergence of a number of Grid services (e.g., Amazon
EC2 and S3, Microsoft Azure) it will soon become
necessary of summarizing their resource related
information with a unified manner. This way it will be
possible for a task scheduler to use efficiently the
resources of the one or the other service, without at the
same time being necessary for the corresponding service
to publish in detail its resources characteristics. Moreover
the proposed techniques can reduce the amount of
resource-related information that is transferred, stored and
processed. We expect that in the near future, as more
resources of various types (clusters, PCs, mobile phones,
etc) participate in Grids, the amount of information that

will have to be transferred and processed will be quite
large. This can lead to network congestion and overuse of
the resources.

We assume that resources/sites are grouped into
hierarchical domains and the information related to the
sites in each domain, is aggregated before being sent to a
higher level. Each site is assigned a vector of cost
parameters that records its computation or storage
capacity, its availability, and other parameters. Next, the
cost vectors of the sites belonging to a given domain are
aggregated into a single cost vector for the entire domain,
by performing appropriate associative operations to the
cost parameters. We also introduce so-called domination
relations that reduce the number of vectors aggregated and
stored. When a task request arrives, the scheduler selects
the domain where the task will be executed, by applying
an optimization function to the collected and aggregated
cost vectors.

A drawback of information aggregation is that the
efficiency of a scheduler using such information may be
negatively affected. This introduces a trade-off between
the amount of information exchanged (and used by the
scheduler) and the efficiency of the scheduling decisions.
We propose information aggregation schemes that produce
aggregated information of different quality, improving or
deteriorating the scheduling decisions. These techniques
are presented in a general way, permitting their
combination and the creation of new ones. We perform a
large number of experiments to evaluate the proposed
aggregation techniques. We use as a metric the Stretch
Factor (SF), defined as the ratio of the task delay when the
task is scheduled using complete resource information
over the task delay when an aggregation scheme is used.
Our simulation results show that the proposed schemes
achieve large information reduction, while maintaining
good scheduling quality, in comparison to the case where
no aggregation is performed. The amount of information is
measured with the number of cost vectors used by the task
scheduler in order to make its decisions.

The remainder of the paper is organized as follows. In
Section 2 we report on previous work. In Section 3 we
formulate the problem. In Section 4 we introduce the
proposed aggregation techniques. In Section 5 we
experimentally evaluate the proposed techniques. Finally,
in Section 6 we conclude the paper.

9th IEEE/ACM International Symposium on Cluster Computing and the Grid

978-0-7695-3622-4/09 $25.00 © 2009 IEEE

DOI 10.1109/CCGRID.2009.63

268

2 Previous Work
In Grid Networks, information collection is performed by
the monitoring systems. In [1] a number of monitoring
systems are presented and categorized. These systems are
often organized in a hierarchical structure, which is
consistent with the structure of the Grids and the Data
Networks. In these networks, sites are organized in
domains that build up to hierarchical structures.
Hierarchical routing plays a major role in Data Networks,
as a way to minimize the routing tables required for the
very large topologies encountered in Internet’s
infrastructure. [4] is one of the first works investigating
hierarchical routing.

A central issue in hierarchical routing is topology
information aggregation [5],[6], which tries to summarize
and compress the topology information advertised at
higher levels. In order to perform routing efficiently, the
aggregated information should adequately represent the
topology and the other characteristics of the network, such
as the delay and bandwidth. In [7] a topology aggregation
scheme subject to multi-criteria (delay and bandwidth)
constraints is presented.

Generally, most scheduling algorithms presented to date
[8],[9],[10],[11],[12] make their decisions using exact
resource information, which may, however, be outdated by
the time it is used due network delays. In contrast, in this
work the scheduler makes its decisions using the
aggregated resource information and we examine the
trade-off between the amount of information exchanged
(and used by the scheduler) and the quality of these
decisions.

Most previous works [5],[6],[7] consider the
aggregation of network-related information and the effects
of this aggregation on the routing process. Also, the idea
of information aggregation has appeared in P2P [17] and
in sensor networks [18]. In the current work, we consider
the aggregation of Grid resource-related information and
investigate the effects of this aggregation on the
scheduling process. To the best of our knowledge this is
the first time grid information aggregation techniques are
investigated and evaluated based on such a criterion.
Scheduling using incomplete information has also been
considered in [15], where, a technique is presented for
monitoring large Grid Networks that selects a statistically
valid sample and measures the behavior of the sample
members, instead of monitoring each individual system.

3 Problem Formulation
We consider a Grid consisting of N sites, partitioned
according to a hierarchical structure in a total of L
domains Dj, j=1,2,…,L. Each site i, i=1,2,…,N, has
computational and storage capacity Ci and Si, respectively,
and belongs to one of the L domains. Site i publishes its
resource information as a vector Vi, that may contain
various parameters:

Vi = (Ci, Si, …).

These vectors are collected per domain Dj and are
published to a higher level of the hierarchy, in the form of
a matrix of vectors:

1 1 1

2 2 2

(, , ...)

(, , ...)

(, , ...)
j jj

j

D DD

V C S

V C S
M

C SV

= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

,

where |·| denotes the cardinality of a set and 1,2, …,|Dj| are
the sites contained in domain Dj. By performing
appropriate operations on the parameters of the
information vectors contained in the information matrix
Mj, Mj is transformed into the aggregated information

matrix ^
jM .

The Grid scheduling problem is usually viewed as a
hierarchical problem that has two levels. At the higher
level a central scheduler decides the domain Dj a task will
be assigned to, and at the lower level a domain scheduler
DSj, decides the exact site in the domain where the task
will be executed (Figure 1). The information collection
and aggregation is performed, similarly, by a two level
monitoring system, consisting of a central monitor CM
and the domain monitors DMj, j=1,2,…,L. Our work can
also apply in the case of a multi-level Grid system with
distributed scheduling and monitoring entities. A user
located at some site generates tasks Tm, m=1,2,…, with
computational workload Wm.

Figure 1. A two-level monitoring and scheduling system.
Each domain Dj has a domain scheduler DSj and domain
monitor DMj. There is also a central scheduler CS and a
central monitor CM.

269

4 Information Aggregation

4.1 The Proposed Scheme
The proposed scheme consists of an information
aggregation algorithm together with a task scheduling
algorithm that uses this information. In Algorithm 1 we
present the pseudocode for the information collection and
aggregation scheme.

Algorithm 1 Resource Information Collection and
Aggregation

1 Each site i, i=1,2,…,N, belonging to some domain Dj
periodically or reactively (when information
changes) publishes its information vector Vi to the
domain monitor DMj.

2 Each domain monitor DMj, j=1,2,…,L, puts together
these vectors to form the information matrix Mj.

3 Domain monitor DMj, j=1,2,…,L, periodically or
reactively (when information changes) computes its

aggregated information matrix
^

jM and publishes it
to the central monitor CM.

4 The CM collects the aggregated information
matrices.

In Algorithm 2 we present the scheduling scheme that

uses the aggregated information.

Algorithm 2 Task Scheduling

1 Upon the arrival of a task Tm,, the central
scheduler CS looks at the domain matrices
provided by the central monitor CM.

2 The central scheduler CS applies an optimization
function to the vectors contained in the domain
matrices and selects the information vector V
that produces the largest value.

3 The CS assigns the task Tm to the domain Dj,
where the vector V originated from, and forwards
the task to the domain scheduler DSj.

4 The domain scheduler DSj receives the task and
selects the exact site the task will be scheduled
on, using exact resource information.

4.2 Information Parameters and Aggregation

Operators
We present the resource information parameters of interest
in this work, and the operators used for their aggregation.
For every parameter, different operators can also be used
(e.g. min, max, sum, average), depending on the needs of
the applications and the scheduling algorithms used. Next,
we list some of these parameters and operators, giving a
brief explanation of their usage:

• The computational capacities Ci of the sites,
measured in Millions Instructions per Second
(MIPS), in a domain Dj can be aggregated by
performing a minimum representative operation or an
additive operation:

^ min
j

j ii D
C C

∈
= or

^

j

j i
i D

C C
∈

= ∑ .

Using the minimum representative operator we
obtain the minimum capacity of any site in the
domain Dj, which would be useful for conservative
task scheduling. Using the additive operator we
obtain the total computational capacity in the
domain, which would be useful for scheduling when
a task’s workload is divisible, and can be assigned to
different resources simultaneously.

• The storage capacities Si of the sites, measured in
MB, in a domain Dj can be aggregated as following:

^

j

j i
i D

S S
∈

= ∑ or
^ max

j
j i

i D
S S

∈
= .

The first definition is useful when the data of a task
can be stored in a distributed way across the domain,
while the second when the data have to be stored at a
single site.

• The number of tasks Ni assigned to the sites can be
aggregated over a domain Dj as following:

^

j

j i
i D

N N
∈

= ∑ .

• The estimated time FTi in the future at which a
computational resource belonging to site i will be
freed can be aggregated over all sites of domain Dj
by using a minimum representative operator:

^ min
j

j ii D
FT FT

∈
= .

 Using this aggregated value the scheduler will know
the earliest time at which some site in domain Dj will
be free to execute a new task.

• The Start times (ST) and End times (ET) of the tasks
assigned to sites of a domain can be aggregated by
finding the time periods where all sites in the domain
are executing a task. This means that during the
remaining time periods, there is at least one resource
that is idle and available for scheduling new tasks.
This information may be useful for schedulers
performing timed and advance resource reservations
[13],[14].

4.3 Aggregation Schemes
4.3.1 Single Point Aggregation Scheme
In the single point aggregation scheme the information
vectors of the sites in each domain are aggregated into a
single information vector by applying various associative

270

operators. We show an example of the application of the
single point aggregation technique, where the size of the
information matrix Mj is reduced from |Dj| to 1:

1 1 1

^
^ ^ ^2 2 2

8 8 8

(, , ...)

(, , ...)
(, , ...)

(, , ...)

j j

V C S

V C S
M M V C S

V C S

= = = =⇒

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

The information transferred to the higher levels is
greatly reduced using this aggregation technique, at the
cost, however, of degraded quality of the aggregated
information.

4.3.2 Intra-Domain Clustering Aggregation Scheme
In the intra-domain clustering aggregation technique, the
sites of each domain Dj j=1,2,…,L, are partitioned into

j jh D≤ intra-domain clusters. For the sites belonging

to each cluster l, l=1,2,…,hj, the aggregated vector
^

lV is
calculated and sent to domain monitor DMj. The

aggregated information matrix
^

jM that contains the

aggregated information vectors of the clusters
^

lV ,
l=1,2,…,hj, is sent to the higher levels.

Various approaches can be used for clustering the sites
of a domain:

• Sites can be clustered randomly.
• A clustering function can be applied to each site’s

information vector and the sites that yield closer
values are grouped together. This way the intra-
domain clusters obtained consist of sites with similar
characteristics and the aggregated information vector
better represents the sites in the intra-domain cluster.

• The clustering can be performed so as to maximize
the time periods during which the sites belonging to a
given cluster are unavailable (as indicated by their

ST and FT ’s). This way the start (
^

ST) and finish

times (^FT) of an aggregated vector will better
describe the availability of the sites in a cluster. In
[16] a resource selection method is presented that
increases the time overlapping of the tasks assigned
to different sites and decreases it for tasks belonging
to the same site. We can use a similar method for
performing the clustering of the sites.

We show an example of the application of the intra-

domain clustering aggregation technique, where the size of
the information matrix Mj is reduced from |Dj|=8 vectors
to hj=3 vectors.

1 1 1 ^ ^^

1 1 1

2 2 2
^ ^

^^

2 2 2

^ ^
^

7 7 7
3 33

8 8 8

(, , ...)
(, , ...)

(, , ...)

(, , ...)

(, , ...)
(, , ...)

(, , ...)

j
j

V C S
V C S

V C S

M M V C S

V C S
C SV

V C S

= = = =⇒

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 The number of intra-domain clusters per domain
influences the amount of information passed to higher
levels and the efficiency of the scheduler’s decision.

4.3.3 Reducing Aggregated Information using
Domination Relations

Using the concept of dominated resources, we can further
prune the number of information vectors processed by the
domain monitors or the number of aggregated information
vectors processed by the central monitor. Specifically, we
will say that information vector V1 dominates information
vector V2, if V1 is better than V2 with respect to all the cost
parameters.

For example, consider the information vectors

1 1 1 1(, ,)V C S FT= and 2 2 2 2(, ,)V C S FT= . We say that V1
dominated V2 if the following conditions hold:

1 2C C> , 1 2S S> and 1 2FT FT<

The V2 information vector can then be discarded from
further consideration, since the site (or domain)
characterized by V2 is inferior to the site (or domain)
characterized by V1 with respect to all parameters of
interest.

4.4 Domain Selection Cost Functions
When a new task arrives the CS performs the following
operations in order to select the appropriate domain for the
task’s execution:

• It discards all the aggregated information vectors that
do not satisfy the task requirements (e.g. storage
requirements).

• An optimization function is applied to the remaining
vectors and the domain giving the largest value is
selected.

5 Performance Evaluation

5.1 Simulation Environment
We consider a number of sites that are randomly grouped
into domains, each of an approximately equal number of
sites. Site i is characterized by its computational capacity
Ci, measured in MIPS and number of tasks Ni under
execution or in its queues. Unless stated otherwise, the
capacities of the sites are chosen from a uniform
distribution between 1000 and 10000 MIPS. The number
of tasks at each site is also chosen from a uniform
distribution between 5 and 200 tasks. One could argue that
the assumption of a uniform distribution of tasks per site is

271

not so realistic, since a good scheduling algorithm would
result in a more balanced and correlated distribution.
However, we are not interested in a specific scheduling
algorithm, but in examining the quality of the information
provided by the aggregation schemes for performing
scheduling decisions. In our simulations we also examine
other distributions of tasks to the sites. Each new task has
workload uniformly distributed between 1000 and 10000
MI and no data dependencies, so no data transfers occur.
Moreover, network related issues are not considered in this
work.

5.2 Aggregation Schemes Evaluated
We implemented and evaluated the following schemes:

• FlatCpuFreeStart: This scheme assumes a-priori
knowledge of the task workloads. Site i calculates
and publishes an information vector { , }i i iV C FT=

containing its computational capacity Ci and the
estimated future time FTi when all the queued tasks
will have completed their execution. The scheduler
has complete knowledge of the information vectors
of all the sites based on which it assigns a new task
Tm to the site i that will execute the task sooner:

min{ }m
ii

i

W
FT

C
+ .

• HierCpuFreeStart: In this scheme the information
vectors of the sites belonging to the same domain are
aggregated. The aggregation of the site
computational capacities and finish times is
performed using the minimum representative

operator:
^ min ii

C C= and
^ min ii

FT FT= . The

central scheduler CS assigns task Tm to the domain Dj
that will complete the task sooner, using only the
aggregated information vectors of the domains:

^

^
min{ }m

j
j

j

W
FT

C
+ .

 The selected domain’s scheduler DSj then assigns the
task to a domain site, having complete knowledge of
the information vectors of all the sites in the domain.
The assignment again is performed based on the
minimum completion time criterion:

min{ }
j

m
ii D

i

W
FT

C∈
+ .

• FlatCpuTasks: This scheme is similar to
FlatCpuFreeStart, except that there is no a-priori
knowledge of the task workloads. The information
vector { , }i i iV C N= of site i contains its
computational capacity Ci and the number of tasks Ni
queued at it. A new task Tm is assigned to the site i
that minimizes the optimization function (Section
4.4):

min{ }i

i
i

C
N

.

• HierCpuTasks: In this scheme the information
vectors of the sites belonging to the same domain are
aggregated using the minimum representative and the

additive operators, respectively:
^ min ii

C C= and

^

i
i

N N=∑ . The central scheduler CS initially

assigns, using only the aggregated information
vectors of the domains, a task Tm to the domain Dj
that minimizes the optimization function:

^

^
min{ }j

j
j

C

N
.

 The selected domain’s scheduler, DSj, receives the
task and assigns it to a domain site, having complete
knowledge of the information vectors of all the sites
in the domain. The assignment again is performed
based on the same optimization function:

min{ }
j

i

i D
i

C
N∈

.

• HierDominanceCpuTasks: This scheme is similar to
the HierCpuTasks, except that domination relations
are applied to the vectors of the sites in a domain,
before they are aggregated.

• HierICCpuTasks: This scheme is similar to the
HierCpuTasks, except that the intra-domain
clustering method is used, where sites are randomly
clustered into intra-domain clusters.

• HierDominanceICCpuTasks: This scheme combines
the HierDominanceCpuTasks and HierICCpuTasks
schemes, where domination relations are applied to
the vectors of the sites belonging to the same intra-
domain cluster, before their aggregation.

5.3 Simulation Metrics
We are interested in the quality of the information
produced by the aggregation schemes when making
scheduling decisions. In our experiments we use the
Stretch Factor (SF) metric, defined as the ratio of the task
delay TD when scheduling is performed using complete
resource information (FlatCpuFreeStart, FlatCpuTasks)
over the task delay when an aggregation scheme is used
(HierCpuFreeStart, HierCpuTasks, HierICCpuTasks,
HierDominanceICCpuTasks). The task delay is the time
that elapses from the task’s creation until the completion
of its execution. The SF is also encountered in the
hierarchical networks related literature, where it is defined
as the ratio of the average number of hops from a source to
a destination when flat routing is used, over the
corresponding value when hierarchical routing is used. In
our work we define the following stretch factor metrics:

272

• FlatCpuFreeStart

HierCpuFreeStart

TD
SFCpuFreeStart =

TD

• FlatCpuTaks

HierCpuTasks

TD
SFCpuTasks =

TD

• FlatCpuTaks

HierCpuTasksDominance

TD
SFCpuTasksDominance =

TD

• FlatCpuTaks

HierICCpuTasks

TD
SFICCpuTasks =

TD

• FlatCpuTaks

HierICCpuTasksDominance

TD
SFICCpuTasksDominance =

TD

In all cases SF≤1, since when a scheduler has complete
knowledge of the resources information, it can make better
decisions than when this information is aggregated. An
aggregation technique is efficient when its corresponding
SF is close to 1. An additional metric for evaluating the
schemes is the amount of information (number of
information vectors) produced and used by the central
scheduler in making its decisions.

5.4 Simulation Results
In our experiments each site’s characteristics are chosen
among a finite set of values. For example, a site’s
computational capacity is an integer value between 1000
MIPS and 10000 MIPS, while the number of queued tasks
is between 5 and 200 tasks. Thus, as the number of sites
increases the probability that sites in different domains
have similar information vectors also increases, and so
does the probability that more than one “best” sites or sites
similar to the “best” site exist in different domains. We
represent this probability as Pmultiple-best, and as our results
will indicate it strongly affects the stretch factor. By “best”
we mean the site that optimizes the metric of interest (task
delay, or some other optimization function).

Figure 2 shows the measured stretch factors when 10000
Grid sites are clustered in a variable number of domains.
The HierICCpuTasks and HierDominanceICCpuTasks
aggregation schemes use h=5 intra-clusters in each
domain. The stretch factor metrics behave similarly, that
is, their value first decreases up to some point, after which
they start increasing towards 1. This is because when the
number of domains is small, then the number of sites per
domain is quite high (e.g., 200) increasing the Pmultiple-best
probability. As the number of domains increases, Pmultiple-

best decreases and the stretch factors also decrease. After
some point, as the number of domains increases and the
number of sites per domain decreases, the quality of
information produced by the aggregation schemes
improves. This is because when there are few sites per
domain, the aggregated information better represents the
characteristics of its sites.

0

0.2

0.4

0.6

0.8

1

50 70 90 20
0

40
0

60
0

80
0

10
00

30
00

50
00

70
00

Number of Domains

St
re

tc
h

Fa
ct

or

SFCpuFreeStart

SFCpuTasks

 (a)

0

0.2

0.4

0.6

0.8

1

50 70 90 20
0

40
0

60
0

80
0

10
00

30
00

50
00

70
00

Number of Domains

S
tr

et
ch

 F
ac

to
r

SFCpuTasks
SFCpuTasksDominance
SFICCpuTasks
SFICCpuTasksDominance

 (b)

Figure 2. (a) The SFCpuFreeStart and the SFCpuTasks (b)
the SFCpuTasks, SFCpuTasksDominance, SFICCpuTasks
and the SFICCpuTasksDominance stretch factors, when
10000 Grid sites are clustered in a variable number of
domains.

SFCpuFreeStart is generally larger than SFCpuTasks
(Figure 2.a), indicating that different parameters in the
information vectors and different operators used for their
aggregation result in different quality for the information
provided to the scheduler. We also observe that
SFCpuTasks and SFICCpuTasks (Figure 2.b) take similar
values; however, when 2000 domains are used the
SFICCpuTasks metric reaches 1. This is because in this
case each domain has 5 sites and 5 intra-domain cluster,
and the aggregation scheme that produces 5 information
vectors per domain, describes exactly the resources’
information (in fact, no aggregation is performed in that
case). We also observe that the HierDominanceCpuTasks
and HierDominanceICCpuTasks aggregation schemes
produce the best results. This indicates that the dominance
operation, which discards dominated information vectors,
improves the quality of the information provided to the
scheduler. This is also confirmed when comparing the
HierDominanceICCpuTasks and the HierICCpuTasks
aggregation schemes. We should also note that the number
of domains and sites used in our simulations, may be seem
quite large in comparison to the usual values in existing
Grid Networks. We took this decision in order to examine
the full dynamics of the proposed aggregation techniques.

273

Moreover, the HierDominanceICCpuTasks scheme
yields results that are very close to those obtained by the
FlatCpuTasks scheme, while providing less information
vectors to the central scheduler. Reducing the number of
intra-domain clusters, reduces the number of information
vectors produced, but also reduces the quality of the
information provided, as measured by the corresponding
stretch factor. Table 1 shows the number of information
vectors provided by each scheme when 10000 sites are
clustered in 100 domains. Also, it is not only the amount
of resource information transferred that it is reduced, but
also the number of control messages exchanged, the
computational overhead for processing the information
and the storage overhead for storing it.

Aggregation Scheme # of
information
vectors

FlatCpuFreeStart N = 10000
HierCpuFreeStart L = 100
FlatCpuTasks N = 10000
HierCpuTasks L = 100
HierDominanceCpuTasks L = 100
HierICCpuTasks (h=5 inter-
domain clusters) L h⋅ = 500

HierDominanceICCpuTasks
(h=5) L h⋅ = 500

Table 1: The number of information vectors produced by
each aggregation scheme, when N = 10000 sites are clustered
in L = 100 domains.

Figure 3 shows the SFCpuTasks,
SFCpuTasksDominance, SFICCpuTasksDominance, and
SFICCpuTasks stretch factors, when a variable number of
sites are clustered in 20 domains. The SFs initially
decrease and then, as the number of sites increases further,
start increasing towards 1. This is because, initially,
having more sites per domain reduces the quality of
information provided by the schemes to the central
scheduler. The exact amount of this reduction depends on
the aggregation operators applied and the aggregation
scheme used. For this reason we observe that the
HierDominanceCpuTasks and HierDominance-
ICCpuTasks schemes outperform the HierCpuTasks and
HierICCpuTasks schemes. However, after a point, when
the number of sites in each domain becomes large, the
probability Pmultiple-best that there is a site in the selected
domain that can execute a task as fast as the “best” site,
becomes large and the SFs increase towards 1. This is also
related to the number of different values resource
characteristics can take. Figure 4 gives a better insight into
this.

0

0.2

0.4

0.6

0.8

1

10
0

40
0

70
0

10
00

40
00

70
00

10
00

0
13

00
0

16
00

0
19

00
0

40
00

0
70

00
0

10
00

00

Number of Sites

S
tre

tc
h

Fa
ct

or

SFCpuTasks
SFCpuTasksDominance
SFICCpuTasks
SFICCpuTasksDominance

Figure 3. The SFCpuTasks, SFCpuTasksDominance,
SFICCpuTasks, and the SFICCpuTasksDominance SFs, when
a variable number of sites are clustered in 20 domains.

 Figure 4 shows the results obtained for the SFs when
changing the upper and lower limits of the uniform
distributions assumed for the computational capacities and
the number of tasks at the sites. The scenarios/probabilistic
distributions used are presented in Table 2. In Figure 4 we
illustrate the SFCpuTasks stretch factors obtained for the
case where a variable number of sites are partitioned into
20 domains. Note that the number of different information
vectors that the UD03 scenario can produce is larger than
the ones produced by the UD02 scenario and even larger
than those produced by the UD01 scenario. We observe
that the SFCpuTasks values decrease as the number of
distinct values the sites’ characteristics can take increase.
This is because a large number of possible and different
information vectors reduce the probability Pmultiple-best that
more domains will have sites with information vectors
similar to the “best” site. Corresponding experiments were
performed for all the proposed aggregation schemes,
producing similar results.

Table 2: Scenarios UD01 UD02 and UD03 correspond to
different choices for the upper/ lower limits of the uniform
distributions assumed for the computational capacities and
the number of tasks at the sites.

Finally, we should note that the number of different
information vectors produced by the aggregation schemes
depends on the aggregation operators used. Specifically, as
stated in [2], when two additive parameters are used, the
number of possible information vectors produced is
exponential, while when two restrictive operators are used
(as in the information vectors we use), the number of
different information vectors is polynomial. This
illustrates the importance of the resource parameters and
the aggregation operators on the efficiency of the
aggregation schemes.

Scenario Computational
Capacity (max/min)

Number of
Tasks (max/min)

UD01 10000/1000 200/5
UD02 100000/100 2000/5
UD03 1000000/10 20000/5

274

0

0.2

0.4

0.6

0.8

1

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Number of Sites

St
re

tc
h

Fa
ct

or

SFCpuTasks_UD01
SFCpuTasks_UD02
SFCpuTasks_UD03

Figure 4. The SFCpuTasks SFs for the UD01, UD02 and
UD03 scenarios (Table 2), when a variable number of sites
are clustered in 20 domains.

6 Conclusions
We proposed several techniques for aggregating the
resource information of the sites in hierarchical Grid
domains and performing task scheduling using this
information. We performed a number of simulation using
the Stretch Factor (SF) as the main metric for measuring
aggregation efficiency. The SF is defined as the ratio of
the task delay when the task is scheduled using complete
resource information over the task delay when an
aggregation scheme is used. We observed that in many
cases the proposed schemes achieve large information
reduction, while enabling good task scheduling decisions
as indicated by the SF achieved. We studied the trade-off
between the amount of information exchanged (and used
by the scheduler) and the scheduling efficiency. We also
introduced domination relations and showed that they can
increase the quality of the aggregated information. Finally,
we observed that the uniformity of the sites’
characteristics significantly affects the SFs achieved.

Acknowledgment
This work has been supported by the European
Commission through the IP Phosphorus project.

7 References
[1] S. Zanikolas, R. Sakellariou, A taxonomy of grid
monitoring systems, FGCS, Vol. 21, pp. 163-188, 2005.
[2] Z. Wang, J. Crowcroft, Quality-of-Service Routing
for Supporting Multimedia Applications, JSAC, Vol. 14,
No. 7, pp. 1228-1234, 1996.
[3] R.Wolski, N. Spring, J. Hayes, The network weather
service: a distributed resource performance forecasting
service for metacomputing, FGCS, Vol. 15 , pp. 757-768,
1999.
[4] L. Kleinrock, F. Kamoun, Hierarchical routing for
large networks. Performance evaluation and optimization,
Computer Networks, Vol. 1, No. 3, pp. 155-174, 1977.

[5] W. C. Lee, Topology aggregation for hierarchical
routing in ATM networks, ComCom Review, Vol. 25, No.
2, pp 82-92, 1995.
[6] P. Van Mieghem, Topology information condensation
in hierarchical networks, Journal of Computer and
Telecommunications, Vol. 31, No. 20, pp. 2115–2137,
1999.
[7] D. Bauer, J. Daigle, I. Iliadis, P. Scotton, Topology
aggregation for combined additive and restrictive metrics,
ComNet, Vol. 50, No. 17, pp. 3284-3299, 2006.
[8] I. Ahmad, Y.-K. Kwok, M.-Y. Wu, K. Li,
Experimental Performance Evaluation of Job Scheduling
and Processor Allocation Algorithms for Grid Computing
on Metacomputers, IPDPS, US, pp. 170-177, 2004.
[9] T. Braun et al , A Comparison of Eleven Static
Heuristics for Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems, JPDC,
Vol. 61, No. 6, pp. 810-837, 2001.
[10] S. Zhuk et al, Comparison of Scheduling Heuristics
for Grid Resource Broker, Mexican International
Conference in Computer Science, pp. 388-392, 2004.
[11] Y. Cardinale, H. Casanova, An evaluation of Job
Scheduling Strategies for Divisible Loads on Grid
Platforms, HPC&S, Germany, 2006.
[12] R. Buyya, et. al, Scheduling Parameter Sweep
Applications on Global Grids: A Deadline and Budget
Constrained Cost-Time Optimisation Algorithm, SPE,
Vol. 35, No. 5, pp. 491-512, 2005.
[13] W. Smith, I. Foster, V. Taylor, Scheduling with
advanced reservations, IPDPS, pp 127-132, 2000.
[14] K. Christodoulopoulos, N. Doulamis, E. Varvarigos,
Joint Communication and Computation Scheduling in
Grids, CCGrid, pp. 17-24, 2008.
[15] C. Mendes, D. Reed, Monitoring large systems via
statistical sampling,. High Performance Computing
Applications, Vol. 18, No. 2, pp. 267-277, 2004.
[16] N. Doulamis, P. Kokkinos, E. Varvarigos, Spectral
Clustering Scheduling Techniques for Tasks with Strict
QoS Requirements', Europar, pp. 478-488, 2008.
[17] R. Renesse, K. Birman, W. Vogels, Astrolabe: A
Robust and Scalable Technology for Distributed System
Monitoring, Management, and Data Mining, ACM Trans.
on Computer Systems, Vol. 21, No. 2, pp. 164-206, 2003.
[18] C. Intanagonwiwat, et. al, Directed diffusion for
wireless sensor networking. ToN, Vol. 11, pp. 2-16, 2003.

275

