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Abstract 

 

We propose information aggregation as a method for 
summarizing the resource-related information, used by the 
task scheduler. Through this method the information of a 
set of resources can be uniformly represented, reducing at 
the same time the amount of information transferred in a 
Grid network. A number of techniques are described for 
aggregating the information of the resources belonging to 
a hierarchical Grid domain. This information includes the 
cpu and storage capacities at a site, the number of tasks 
queued, and other resource-related parameters. The 
quality of the aggregation scheme affects the efficiency of 
the scheduler’s decisions. We use as a metric of 
aggregation efficiency the Stretch Factor (SF), defined as 
the ratio of the task delay when the task is scheduled using 
complete resource information over the task delay when 
an aggregation scheme is used. The simulation 
experiments performed show that the proposed 
aggregation schemes achieve large information reduction, 
while enabling good task scheduling decisions as 
indicated by the SF achieved. 
 
1 Introduction 
In Grid Networks, a scheduler receives requests for the use 
of resources and assigns the tasks so as to optimize some 
objective function. The scheduler makes its decisions 
based on information about the resources, such as their 
computational or storage capacity, their availability, etc, 
which are usually collected by information services called 
monitoring systems [1],[3].  
In this work we propose a number of information 
aggregation techniques for summarizing the resource-
related information, used by the task scheduler. With the 
emergence of a number of Grid services (e.g., Amazon 
EC2 and S3, Microsoft Azure) it will soon become 
necessary of summarizing their resource related 
information with a unified manner. This way it will be 
possible for a task scheduler to use efficiently the 
resources of the one or the other service, without at the 
same time being necessary for the corresponding service 
to publish in detail its resources characteristics. Moreover 
the proposed techniques can reduce the amount of 
resource-related information that is transferred, stored and 
processed. We expect that in the near future, as more 
resources of various types (clusters, PCs, mobile phones, 
etc) participate in Grids, the amount of information that 

will have to be transferred and processed will be quite 
large. This can lead to network congestion and overuse of 
the resources. 

We assume that resources/sites are grouped into 
hierarchical domains and the information related to the 
sites in each domain, is aggregated before being sent to a 
higher level. Each site is assigned a vector of cost 
parameters that records its computation or storage 
capacity, its availability, and other parameters. Next, the 
cost vectors of the sites belonging to a given domain are 
aggregated into a single cost vector for the entire domain, 
by performing appropriate associative operations to the 
cost parameters. We also introduce so-called domination 
relations that reduce the number of vectors aggregated and 
stored. When a task request arrives, the scheduler selects 
the domain where the task will be executed, by applying 
an optimization function to the collected and aggregated 
cost vectors.  

A drawback of information aggregation is that the 
efficiency of a scheduler using such information may be 
negatively affected. This introduces a trade-off between 
the amount of information exchanged (and used by the 
scheduler) and the efficiency of the scheduling decisions. 
We propose information aggregation schemes that produce 
aggregated information of different quality, improving or 
deteriorating the scheduling decisions. These techniques 
are presented in a general way, permitting their 
combination and the creation of new ones. We perform a 
large number of experiments to evaluate the proposed 
aggregation techniques. We use as a metric the Stretch 
Factor (SF), defined as the ratio of the task delay when the 
task is scheduled using complete resource information 
over the task delay when an aggregation scheme is used. 
Our simulation results show that the proposed schemes 
achieve large information reduction, while maintaining 
good scheduling quality, in comparison to the case where 
no aggregation is performed. The amount of information is 
measured with the number of cost vectors used by the task 
scheduler in order to make its decisions.  

The remainder of the paper is organized as follows. In 
Section 2 we report on previous work. In Section 3 we 
formulate the problem. In Section 4 we introduce the 
proposed aggregation techniques. In Section 5 we 
experimentally evaluate the proposed techniques. Finally, 
in Section 6 we conclude the paper. 
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2 Previous Work 
In Grid Networks, information collection is performed by 
the monitoring systems. In [1] a number of monitoring 
systems are presented and categorized. These systems are 
often organized in a hierarchical structure, which is 
consistent with the structure of the Grids and the Data 
Networks. In these networks, sites are organized in 
domains that build up to hierarchical structures. 
Hierarchical routing plays a major role in Data Networks, 
as a way to minimize the routing tables required for the 
very large topologies encountered in Internet’s 
infrastructure. [4] is one of the first works investigating 
hierarchical routing.  

A central issue in hierarchical routing is topology 
information aggregation [5],[6], which tries to summarize 
and compress the topology information advertised at 
higher levels. In order to perform routing efficiently, the 
aggregated information should adequately represent the 
topology and the other characteristics of the network, such 
as the delay and bandwidth. In [7] a topology aggregation 
scheme subject to multi-criteria (delay and bandwidth) 
constraints is presented.  

Generally, most scheduling algorithms presented to date 
[8],[9],[10],[11],[12] make their decisions using exact 
resource information, which may, however, be outdated by 
the time it is used due network delays. In contrast, in this 
work the scheduler makes its decisions using the 
aggregated resource information and we examine the 
trade-off between the amount of information exchanged 
(and used by the scheduler) and the quality of these 
decisions. 

Most previous works [5],[6],[7] consider the 
aggregation of network-related information and the effects 
of this aggregation on the routing process. Also, the idea 
of information aggregation has appeared in P2P [17] and 
in sensor networks [18]. In the current work, we consider 
the aggregation of Grid resource-related information and 
investigate the effects of this aggregation on the 
scheduling process. To the best of our knowledge this is 
the first time grid information aggregation techniques are 
investigated and evaluated based on such a criterion. 
Scheduling using incomplete information has also been 
considered in [15], where, a technique is presented for 
monitoring large Grid Networks that selects a statistically 
valid sample and measures the behavior of the sample 
members, instead of monitoring each individual system. 

 
3 Problem Formulation 
We consider a Grid consisting of N sites, partitioned 
according to a hierarchical structure in a total of L 
domains Dj, j=1,2,…,L. Each site i, i=1,2,…,N, has 
computational and storage capacity Ci and Si, respectively, 
and belongs to one of the L domains. Site i publishes its 
resource information as a vector Vi, that may contain 
various parameters: 

Vi = (Ci, Si, …). 

These vectors are collected per domain Dj and are 
published to a higher level of the hierarchy, in the form of 
a matrix of vectors: 

1 1 1
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, 

 

where |·| denotes the cardinality of a set and 1,2, …,|Dj| are 
the sites contained in domain Dj. By performing 
appropriate operations on the parameters of the 
information vectors contained in the information matrix 
Mj, Mj is transformed into the aggregated information 

matrix ^
jM . 

The Grid scheduling problem is usually viewed as a 
hierarchical problem that has two levels. At the higher 
level a central scheduler decides the domain Dj a task will 
be assigned to, and at the lower level a domain scheduler 
DSj, decides the exact site in the domain where the task 
will be executed (Figure 1). The information collection 
and aggregation is performed, similarly, by a two level 
monitoring system, consisting of a central monitor CM 
and the domain monitors DMj,  j=1,2,…,L. Our work can 
also apply in the case of a multi-level Grid system with 
distributed scheduling and monitoring entities. A user 
located at some site generates tasks Tm, m=1,2,…, with 
computational workload Wm. 

 
 

Figure 1. A two-level monitoring and scheduling system. 
Each domain Dj has a domain scheduler DSj and domain 
monitor DMj. There is also a central scheduler CS and a 
central monitor CM. 
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4 Information Aggregation 
 

4.1 The Proposed Scheme 
The proposed scheme consists of an information 
aggregation algorithm together with a task scheduling 
algorithm that uses this information. In Algorithm 1 we 
present the pseudocode for the information collection and 
aggregation scheme. 
 
Algorithm 1 Resource Information Collection and 
Aggregation 
 

1 Each site i, i=1,2,…,N, belonging to some domain Dj 
periodically or reactively (when information 
changes) publishes its information vector Vi to the 
domain monitor DMj. 

2 Each domain monitor DMj, j=1,2,…,L, puts together 
these vectors to form the information matrix Mj. 

3 Domain monitor DMj, j=1,2,…,L, periodically or 
reactively (when information changes) computes its 

aggregated information matrix 
^

jM  and publishes it 
to the central monitor CM. 

4 The CM collects the aggregated information 
matrices. 

 

 
In Algorithm 2 we present the scheduling scheme that 

uses the aggregated information.  
 

Algorithm 2 Task Scheduling 
 

1 Upon the arrival of a task Tm,, the central 
scheduler CS looks at the domain matrices 
provided by the central monitor CM. 

2 The central scheduler CS applies an optimization 
function to the vectors contained in the domain 
matrices and selects the information vector V  
that produces the largest value. 

3 The CS assigns the task Tm to the domain Dj, 
where the vector V originated from, and forwards 
the task to the domain scheduler DSj. 

4 The domain scheduler DSj receives the task and 
selects the exact site the task will be scheduled 
on, using exact resource information. 

 

 
4.2 Information Parameters and Aggregation 

Operators 
We present the resource information parameters of interest 
in this work, and the operators used for their aggregation. 
For every parameter, different operators can also be used 
(e.g. min, max, sum, average), depending on the needs of 
the applications and the scheduling algorithms used. Next, 
we list some of these parameters and operators, giving a 
brief explanation of their usage: 
  

• The computational capacities Ci of the sites, 
measured in Millions Instructions per Second 
(MIPS), in a domain Dj can be aggregated by 
performing a minimum representative operation or an 
additive operation: 

^ min
j

j ii D
C C

∈
=    or  

^

j

j i
i D

C C
∈

= ∑ . 

Using the minimum representative operator we 
obtain the minimum capacity of any site in the 
domain Dj, which would be useful for conservative 
task scheduling. Using the additive operator we 
obtain the total computational capacity in the 
domain, which would be useful for scheduling when 
a task’s workload is divisible, and can be assigned to 
different resources simultaneously. 

• The storage capacities Si of the sites, measured in 
MB, in a domain Dj can be aggregated  as following: 

^

j

j i
i D

S S
∈

= ∑   or  
^ max

j
j i

i D
S S

∈
= . 

The first definition is useful when the data of a task 
can be stored in a distributed way across the domain, 
while the second when the data have to be stored at a 
single site. 

• The number of tasks Ni assigned to the sites can be 
aggregated over a domain Dj as following: 

^

j

j i
i D

N N
∈

= ∑ . 

• The estimated time FTi in the future at which a 
computational resource belonging to site i will be 
freed can be aggregated over all sites of domain Dj 
by using a minimum representative operator: 

^ min
j

j ii D
FT FT

∈
= . 

 Using this aggregated value the scheduler will know 
the earliest time at which some site in domain Dj will 
be free to execute a new task. 

• The Start times (ST) and End times (ET) of the tasks 
assigned to sites of a domain can be aggregated by 
finding the time periods where all sites in the domain 
are executing a task. This means that during the 
remaining time periods, there is at least one resource 
that is idle and available for scheduling new tasks. 
This information may be useful for schedulers 
performing timed and advance resource reservations 
[13],[14]. 

 

4.3 Aggregation Schemes 
4.3.1 Single Point Aggregation Scheme 
In the single point aggregation scheme the information 
vectors of the sites in each domain are aggregated into a 
single information vector by applying various associative 
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operators. We show an example of the application of the 
single point aggregation technique, where the size of the 
information matrix Mj is reduced from |Dj| to 1: 

1 1 1

^
^ ^ ^2 2 2

8 8 8

( , , ...)

( , , ...)
( , , ...)

( , , ...)

j j

V C S

V C S
M M V C S

V C S

= = = =⇒

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

The information transferred to the higher levels is 
greatly reduced using this aggregation technique, at the 
cost, however, of degraded quality of the aggregated 
information. 
 

4.3.2 Intra-Domain Clustering Aggregation Scheme 
In the intra-domain clustering aggregation technique, the 
sites of each domain Dj j=1,2,…,L, are partitioned into 

j jh D≤   intra-domain clusters. For the sites belonging 

to each cluster l, l=1,2,…,hj, the aggregated vector 
^

lV  is 
calculated and sent to domain monitor DMj. The 

aggregated information matrix 
^

jM that contains the 

aggregated information vectors of the clusters 
^

lV , 
l=1,2,…,hj, is sent to the higher levels. 

Various approaches can be used for clustering the sites 
of a domain: 

• Sites can be clustered randomly. 
• A clustering function can be applied to each site’s 

information vector and the sites that yield closer 
values are grouped together. This way the intra-
domain clusters obtained consist of sites with similar 
characteristics and the aggregated information vector 
better represents the sites in the intra-domain cluster.  

• The clustering can be performed so as to maximize 
the time periods during which the sites belonging to a 
given cluster are unavailable (as indicated by their 

ST  and FT ’s). This way the start (
^

ST ) and finish 

times ( ^FT ) of an aggregated vector will better 
describe the availability of the sites in a cluster. In 
[16] a resource selection method is presented that 
increases the time overlapping of the tasks assigned 
to different sites and decreases it for tasks belonging 
to the same site. We can use a similar method for 
performing the clustering of the sites. 

 
We show an example of the application of the intra-

domain clustering aggregation technique, where the size of 
the information matrix Mj is reduced from |Dj|=8 vectors 
to hj=3 vectors.  

1 1 1 ^ ^^

1 1 1

2 2 2
^ ^

^^

2 2 2

^ ^
^

7 7 7
3 33

8 8 8

( , , ...)
( , , ...)

( , , ...)

( , , ...)

( , , ...)
( , , ...)

( , , ...)

j
j

V C S
V C S

V C S

M M V C S

V C S
C SV

V C S

= = = =⇒

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

   The number of intra-domain clusters per domain 
influences the amount of information passed to higher 
levels and the efficiency of the scheduler’s decision.  
 

4.3.3 Reducing Aggregated Information using 
Domination Relations 

Using the concept of dominated resources, we can further 
prune the number of information vectors processed by the 
domain monitors or the number of aggregated information 
vectors processed by the central monitor. Specifically, we 
will say that information vector V1 dominates information 
vector V2, if V1 is better than V2 with respect to all the cost 
parameters. 

For example, consider the information vectors 

1 1 1 1( , , )V C S FT=  and 2 2 2 2( , , )V C S FT= . We say that V1 
dominated V2 if the following conditions hold: 

1 2C C> , 1 2S S> and 1 2FT FT<  

The V2 information vector can then be discarded from 
further consideration, since the site (or domain) 
characterized by V2 is inferior to the site (or domain) 
characterized by V1 with respect to all parameters of 
interest. 
 

4.4 Domain Selection Cost Functions 
When a new task arrives the CS performs the following 
operations in order to select the appropriate domain for the 
task’s execution: 

• It discards all the aggregated information vectors that 
do not satisfy the task requirements (e.g. storage 
requirements).  

• An optimization function is applied to the remaining 
vectors and the domain giving the largest value is 
selected.  

 
5 Performance Evaluation 
 

5.1 Simulation Environment 
We consider a number of sites that are randomly grouped 
into domains, each of an approximately equal number of 
sites. Site i is characterized by its computational capacity 
Ci, measured in MIPS and number of tasks Ni under 
execution or in its queues. Unless stated otherwise, the 
capacities of the sites are chosen from a uniform 
distribution between 1000 and 10000 MIPS. The number 
of tasks at each site is also chosen from a uniform 
distribution between 5 and 200 tasks. One could argue that 
the assumption of a uniform distribution of tasks per site is 
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not so realistic, since a good scheduling algorithm would 
result in a more balanced and correlated distribution. 
However, we are not interested in a specific scheduling 
algorithm, but in examining the quality of the information 
provided by the aggregation schemes for performing 
scheduling decisions. In our simulations we also examine 
other distributions of tasks to the sites. Each new task has 
workload uniformly distributed between 1000 and 10000 
MI and no data dependencies, so no data transfers occur. 
Moreover, network related issues are not considered in this 
work. 
 

5.2 Aggregation Schemes Evaluated 
We implemented and evaluated the following schemes: 

• FlatCpuFreeStart: This scheme assumes a-priori 
knowledge of the task workloads. Site i calculates 
and publishes an information vector { , }i i iV C FT=   

containing its computational capacity Ci and the 
estimated future time FTi when all the queued tasks 
will have completed their execution. The scheduler 
has complete knowledge of the information vectors 
of all the sites based on which it assigns a new task 
Tm to the site i that will execute the task sooner: 

min{ }m
ii

i

W
FT

C
+ . 

• HierCpuFreeStart: In this scheme the information 
vectors of the sites belonging to the same domain are 
aggregated. The aggregation of the site 
computational capacities and finish times is 
performed using the minimum representative 

operator: 
^ min ii

C C=  and 
^ min ii

FT FT= . The 

central scheduler CS assigns task Tm to the domain Dj 
that will complete the task sooner, using only the 
aggregated information vectors of the domains: 

^

^
min{ }m

j
j

j

W
FT

C
+ . 

 The selected domain’s scheduler DSj  then assigns the 
task to a domain site, having complete knowledge of 
the information vectors of all the sites in the domain. 
The assignment again is performed based on the 
minimum completion time criterion: 

min{ }
j

m
ii D

i

W
FT

C∈
+ . 

• FlatCpuTasks: This scheme is similar to 
FlatCpuFreeStart, except that there is no a-priori 
knowledge of the task workloads. The information 
vector { , }i i iV C N=  of site i contains its 
computational capacity Ci  and the number of tasks Ni 
queued at it. A new task Tm is assigned to the site i 
that minimizes the optimization function (Section 
4.4): 

min{ }i

i
i

C
N

. 

• HierCpuTasks: In this scheme the information 
vectors of the sites belonging to the same domain are 
aggregated using the minimum representative and the 

additive operators, respectively: 
^ min ii

C C=  and 

^

i
i

N N=∑ . The central scheduler CS initially 

assigns, using only the aggregated information 
vectors of the domains, a task Tm to the domain Dj 
that minimizes the optimization function: 

^

^
min{ }j

j
j

C

N
. 

 The selected domain’s scheduler, DSj, receives the 
task and assigns it to a domain site, having complete 
knowledge of the information vectors of all the sites 
in the domain. The assignment again is performed 
based on the same optimization function: 

min{ }
j

i

i D
i

C
N∈

. 

• HierDominanceCpuTasks: This scheme is similar to 
the HierCpuTasks, except that domination relations 
are applied to the vectors of the sites in a domain, 
before they are aggregated. 

• HierICCpuTasks: This scheme is similar to the 
HierCpuTasks, except that the intra-domain 
clustering method is used, where sites are randomly 
clustered into intra-domain clusters.  

• HierDominanceICCpuTasks: This scheme combines 
the HierDominanceCpuTasks and HierICCpuTasks 
schemes, where domination relations are applied to 
the vectors of the sites belonging to the same intra-
domain cluster, before their aggregation.  

 

5.3 Simulation Metrics 
We are interested in the quality of the information 
produced by the aggregation schemes when making 
scheduling decisions. In our experiments we use the 
Stretch Factor (SF) metric, defined as the ratio of the task 
delay TD when scheduling is performed using complete 
resource information (FlatCpuFreeStart, FlatCpuTasks) 
over the task delay when an aggregation scheme is used 
(HierCpuFreeStart, HierCpuTasks, HierICCpuTasks, 
HierDominanceICCpuTasks). The task delay is the time 
that elapses from the task’s creation until the completion 
of its execution. The SF is also encountered in the 
hierarchical networks related literature, where it is defined 
as the ratio of the average number of hops from a source to 
a destination when flat routing is used, over the 
corresponding value when hierarchical routing is used. In 
our work we define the following stretch factor metrics: 
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• FlatCpuFreeStart 

HierCpuFreeStart 

TD
SFCpuFreeStart =

TD
 

• FlatCpuTaks 

HierCpuTasks 

TD
SFCpuTasks =

TD
 

• FlatCpuTaks 

HierCpuTasksDominance 

TD
SFCpuTasksDominance =

TD
 

• FlatCpuTaks 

HierICCpuTasks 

TD
SFICCpuTasks =

TD
 

• FlatCpuTaks 

HierICCpuTasksDominance 

TD
SFICCpuTasksDominance =

TD
 

In all cases SF≤1, since when a scheduler has complete 
knowledge of the resources information, it can make better 
decisions than when this information is aggregated. An 
aggregation technique is efficient when its corresponding 
SF is close to 1. An additional metric for evaluating the 
schemes is the amount of information (number of 
information vectors) produced and used by the central 
scheduler in making its decisions.  

5.4 Simulation Results 
In our experiments each site’s characteristics are chosen 
among a finite set of values. For example, a site’s 
computational capacity is an integer value between 1000 
MIPS and 10000 MIPS, while the number of queued tasks 
is between 5 and 200 tasks. Thus, as the number of sites 
increases the probability that sites in different domains 
have similar information vectors also increases, and so 
does the probability that more than one “best” sites or sites 
similar to the “best” site exist in different domains. We 
represent this probability as Pmultiple-best, and as our results 
will indicate it strongly affects the stretch factor. By “best” 
we mean the site that optimizes the metric of interest (task 
delay, or some other optimization function). 

Figure 2 shows the measured stretch factors when 10000 
Grid sites are clustered in a variable number of domains. 
The HierICCpuTasks and HierDominanceICCpuTasks 
aggregation schemes use h=5 intra-clusters in each 
domain. The stretch factor metrics behave similarly, that 
is, their value first decreases up to some point, after which 
they start increasing towards 1. This is because when the 
number of domains is small, then the number of sites per 
domain is quite high (e.g., 200) increasing the Pmultiple-best 
probability. As the number of domains increases, Pmultiple-

best decreases and the stretch factors also decrease. After 
some point, as the number of domains increases and the 
number of sites per domain decreases, the quality of 
information produced by the aggregation schemes 
improves. This is because when there are few sites per 
domain, the aggregated information better represents the 
characteristics of its sites.   
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Figure 2. (a) The SFCpuFreeStart and the SFCpuTasks (b) 
the SFCpuTasks, SFCpuTasksDominance, SFICCpuTasks 
and the SFICCpuTasksDominance stretch factors, when 
10000 Grid sites are clustered in a variable number of 
domains.  

SFCpuFreeStart is generally larger than SFCpuTasks 
(Figure 2.a), indicating that different parameters in the 
information vectors and different operators used for their 
aggregation result in different quality for the information 
provided to the scheduler. We also observe that 
SFCpuTasks and SFICCpuTasks (Figure 2.b) take similar 
values; however, when 2000 domains are used the 
SFICCpuTasks metric reaches 1. This is because in this 
case each domain has 5 sites and 5 intra-domain cluster, 
and the aggregation scheme that produces 5 information 
vectors per domain, describes exactly the resources’ 
information (in fact, no aggregation is performed in that 
case). We also observe that the HierDominanceCpuTasks 
and HierDominanceICCpuTasks aggregation schemes 
produce the best results. This indicates that the dominance 
operation, which discards dominated information vectors, 
improves the quality of the information provided to the 
scheduler. This is also confirmed when comparing the 
HierDominanceICCpuTasks and the HierICCpuTasks 
aggregation schemes. We should also note that the number 
of domains and sites used in our simulations, may be seem 
quite large in comparison to the usual values in existing 
Grid Networks. We took this decision in order to examine 
the full dynamics of the proposed aggregation techniques. 
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Moreover, the HierDominanceICCpuTasks scheme 
yields results that are very close to those obtained by the 
FlatCpuTasks scheme, while providing less information 
vectors to the central scheduler. Reducing the number of 
intra-domain clusters, reduces the number of information 
vectors produced, but also reduces the quality of the 
information provided, as measured by the corresponding 
stretch factor. Table 1 shows the number of information 
vectors provided by each scheme when 10000 sites are 
clustered in 100 domains. Also, it is not only the amount 
of resource information transferred that it is reduced, but 
also the number of control messages exchanged, the 
computational overhead for processing the information 
and the storage overhead for storing it. 
 

Aggregation Scheme # of 
information 
vectors 

FlatCpuFreeStart N = 10000 
HierCpuFreeStart L = 100 
FlatCpuTasks N = 10000 
HierCpuTasks L = 100 
HierDominanceCpuTasks L = 100 
HierICCpuTasks (h=5 inter-
domain clusters) L h⋅ = 500 

HierDominanceICCpuTasks 
(h=5) L h⋅ = 500 

Table 1: The number of information vectors produced by 
each aggregation scheme, when N = 10000 sites are clustered 
in L = 100 domains. 

Figure 3 shows the SFCpuTasks, 
SFCpuTasksDominance, SFICCpuTasksDominance, and 
SFICCpuTasks stretch factors, when a variable number of 
sites are clustered in 20 domains. The SFs initially 
decrease and then, as the number of sites increases further, 
start increasing towards 1. This is because, initially, 
having more sites per domain reduces the quality of 
information provided by the schemes to the central 
scheduler. The exact amount of this reduction depends on 
the aggregation operators applied and the aggregation 
scheme used. For this reason we observe that the 
HierDominanceCpuTasks and HierDominance-
ICCpuTasks schemes outperform the HierCpuTasks and 
HierICCpuTasks schemes. However, after a point, when 
the number of sites in each domain becomes large, the 
probability Pmultiple-best that there is a site in the selected 
domain that can execute a task as fast as the “best” site, 
becomes large and the SFs increase towards 1. This is also 
related to the number of different values resource 
characteristics can take. Figure 4 gives a better insight into 
this.  
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Figure 3. The SFCpuTasks, SFCpuTasksDominance, 
SFICCpuTasks, and the SFICCpuTasksDominance SFs, when 
a variable number of sites are clustered in 20 domains. 

     Figure 4 shows the results obtained for the SFs when 
changing the upper and lower limits of the uniform 
distributions assumed for the computational capacities and 
the number of tasks at the sites. The scenarios/probabilistic 
distributions used are presented in Table 2. In  Figure 4 we 
illustrate the SFCpuTasks stretch factors obtained for the 
case where a variable number of  sites are partitioned into 
20 domains. Note that the number of different information 
vectors that the UD03 scenario can produce is larger than 
the ones produced by the UD02 scenario and even larger 
than those produced by the UD01 scenario. We observe 
that the SFCpuTasks values decrease as the number of 
distinct values the sites’ characteristics can take increase.  
This is because a large number of possible and different 
information vectors reduce the probability Pmultiple-best that 
more domains will have sites with information vectors 
similar to the “best” site. Corresponding experiments were 
performed for all the proposed aggregation schemes, 
producing similar results. 

Table 2: Scenarios UD01 UD02 and UD03 correspond to 
different choices for the upper/ lower limits of the uniform 
distributions assumed for the computational capacities and 
the number of tasks at the sites. 

Finally, we should note that the number of different 
information vectors produced by the aggregation schemes 
depends on the aggregation operators used. Specifically, as 
stated in [2], when two additive parameters are used, the 
number of possible information vectors produced is 
exponential, while when two restrictive operators are used 
(as in the information vectors we use), the number of 
different information vectors is polynomial. This 
illustrates the importance of the resource parameters and 
the aggregation operators on the efficiency of the 
aggregation schemes.  

Scenario Computational 
Capacity (max/min) 

Number of 
Tasks (max/min) 

UD01 10000/1000 200/5 
UD02 100000/100 2000/5 
UD03 1000000/10 20000/5 
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Figure 4. The SFCpuTasks SFs for the UD01, UD02 and 
UD03 scenarios (Table 2), when a variable number of sites 
are clustered in 20 domains. 
 
6 Conclusions 
We proposed several techniques for aggregating the 
resource information of the sites in hierarchical Grid 
domains and performing task scheduling using this 
information. We performed a number of simulation using 
the Stretch Factor (SF) as the main metric for measuring 
aggregation efficiency. The SF is defined as the ratio of 
the task delay when the task is scheduled using complete 
resource information over the task delay when an 
aggregation scheme is used. We observed that in many 
cases the proposed schemes achieve large information 
reduction, while enabling good task scheduling decisions 
as indicated by the SF achieved. We studied the trade-off 
between the amount of information exchanged (and used 
by the scheduler) and the scheduling efficiency. We also 
introduced domination relations and showed that they can 
increase the quality of the aggregated information. Finally, 
we observed that the uniformity of the sites’ 
characteristics significantly affects the SFs achieved. 
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