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Abstract 

 
We describe our experiences from implementing and 

integrating a new job scheduling algorithm in the gLite 
Grid middleware and present experimental results that 
compare it to the existing gLite scheduling algorithms. It 
is the first time that gLite scheduling algorithms are put 
under test and compared with a new algorithm under the 
same conditions. We describe the problems that were 
encountered and solved, going from theory and 
simulations to practice and the actual implementation of 
our scheduling algorithm. In this work we also describe 
the steps one needs to follow in order to develop and test a 
new scheduling algorithm in gLite. We present the 
methodology followed and the testbed that was set up for 
the comparisons. Our research sheds light on some of the 
problems of the existing gLite scheduling algorithms and 
makes clear the need for the development of new. 

1 Introduction 
The emergence of high speed networks is making the 
vision of Grids a reality. Grids consist of geographically 
distributed and heterogeneous computational and storage 
resources that may belong to different administrative 
domains, but can be shared among users by establishing a 
global resource management architecture, called Grid 
middleware. A Grid middleware is a software package 
providing a number of fundamental Grid services, such as 
information services, resource discovery and monitoring, 
job submission and management, brokering, data 
management and resource management. 

A number of production Grid middlewares exist today, 
such as gLite [11], the Globus Toolkit 4 (GT4) [13] and 
UNICORE [14]. The gLite is the result of the 
collaborative efforts of different academic and industrial 
research centers as part of the Enabling Grids for E-
sciencE (EGEE) project [12]. The EGEE infrastructure 
processes jobs from various scientific domains, including 
High Energy Physics (HEP), Biomedicine, Earth Sciences 
and others.  

An important part of gLite and of any Grid middleware 
is job scheduling. Scheduling is a key to the success of 
Grid Networks, since it determines the efficiency in the 
use of the resources and the Quality of Service (QoS) 
provided to the users. The scheduling of jobs to resources 
has been considered, among others works, in [1],[2],[3], 

where several centralized, hierarchical or distributed 
scheduling schemes are presented. Other works 
incorporate economic models in Grid scheduling, as in 
[4], which proposes scheduling algorithms that take into 
account deadline and budget constraints. Fair scheduling 
in Grid networks has also been addressed in [5],[6]. Most 
of these scheduling algorithms, have been evaluated 
through simulations. A taxonomy of the existing Grid 
resource schedulers is presented in [7],[8]. 

The gLite’s development is performed by a close group 
of researchers and as a result little information exists on 
how to extend or change its functionality. Furthermore, 
since gLite is a production Grid middleware, it consists of 
a large number of components, whose installation and 
configuration can be quite difficult. We believe that one of 
the main contributions of this work is that it gives some 
insight on how gLite code is structured and especially the 
code of gLite’s scheduling component. So, our work can 
be a starting point for anyone interested in extending the 
gLite middleware. Furthermore, it is, to the best of our 
knowledge, the first time that gLite scheduling algorithms 
are put under test and compared with a new algorithm 
under the same conditions, revealing some of their 
weaknesses. 

In our work we implement in gLite the Simple Fair 
Execution Time Estimation (SFETE) [9] algorithm, which 
is a good approximation of Fair Execution Time 
Estimation (FETE) algorithm. FETE assigns a job to the 
resource that minimizes what we call its fair execution 
time estimation. The fair execution time of a job at a 
resource is obtained assuming that the job gets a fair share 
of the resource’s computational power. Though space-
shared scheduling is used in the actual system, the 
estimates of the fair execution times are found assuming 
time-sharing (processor sharing) is used. The main 
difference between FETE and SFETE is that the second 
algorithm does not require a-priori knowledge (or 
estimates) of the job workloads, which would be an 
important requirement when implementing a scheduling 
algorithm in a real Grid middleware. In [9] we performed 
an extensive set of simulation experiments, comparing 
FETE and SFETE. The results showed that the FETE and 
the SFETE algorithms give similar results, while both 
outperforming a number of known scheduling algorithms. 
In this work we implemented SFETE algorithm in the 
gLite middleware and evaluated its performance in a self-
contained testbed against the existing gLite scheduling 
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algorithms. gLite implements two scheduling algorithms, 
which we call Max Rank and Fuzzy Rank. Our results 
show that SFETE performs better than the other two 
scheduling algorithms, by achieving smaller job execution 
delay and better distribution of the jobs to the available 
computational resources. A key point for the correct 
operation of SFETE is the accurate knowledge of the 
number of jobs that are already assigned for execution at 
each computation resource. gLite’s information service is 
updated at periodic intervals and as a result it does not 
always have an accurate view of the number of jobs at 
each resource. We will show that this is an important 
drawback, hindering the performance of the existing 
algorithms. To address this drawback, we implemented a 
mechanism in SFETE that provides a good estimate of 
this value. Though this work is specific to gLite 
middleware, we believe that it may be useful for anyone 
developing and comparing scheduling algorithms in a 
production Grid middleware. Issues like testbed set up, 
experimental methodology, metrics measured and the 
need for an accurate information service are common in 
any kind of Grid middleware. The description we give on 
the implementation steps followed may also be useful to 
researchers that want to introduce and test other job 
scheduling algorithms in gLite, something that we also 
plan to do in our future work. 

The remainder of the paper is organized as follows. In 
Section 2 we present a summary of the architecture of the 
gLite middleware. In Section 3 we describe the SFETE 
scheduling algorithm. In Section 4 we describe our 
implementation of SFETE in gLite. In Section 5 we 
present the experiments performed and the corresponding 
results. Finally, in Section 6 we conclude the paper. 

2 The gLite Middleware 
2.1 General 
The gLite middleware provides high level services for 
scheduling and running computational jobs, for accessing 
and moving data and for obtaining information on the 
Grid infrastructure and the Grid applications, all these 
embedded into a consistent and secure framework. The 
gLite middleware runs over the Scientific Linux [15] 
platform and it is written mainly in C++. The gLite Grid 
services, which follow a Service Oriented Architecture 
(SOA), can be grouped into five service groups: Access 
Services, Security Services, Information and Monitoring 
Services, Data Services and Job Management Services. 

A user can access the functionalities offered by the 
gLite middleware through the User Interface (UI) [19]. 
Security services [19] include the Authentication, 
Authorization, and Auditing operations. The users of the 
Grid infrastructure are divided into Virtual Organizations 
(VOs), which are abstract entities that group together 
users, institutions and resources into administrative 
domains. Information and Monitoring Services [19] 
provide a mechanism to publish and consume information 
on the Grid resources and their status. This information, 

used also for monitoring and accounting purposes, is 
essential for the operation of the whole Grid. In gLite 
there are two information systems: the Globus Monitoring 
and Discovery Service (MDS) [16], used for resource 
discovery and for publishing the resource status, and the 
Relational Grid Monitoring Architecture (RGMA) [17], 
used for accounting, monitoring and publication of user-
level information. The three main services that relate to 
data are the Storage Element, the File & Replica Catalog 
Service and the Data Management [19]. The Storage 
Element (SE) provides the virtualization of a storage 
resource, which can vary from simple disk servers to 
complex hierarchical tape storage systems. Finally, the 
main Job Management Services [19] are the Computing 
Elements (CE) and the Workload Management System 
(WMS). The CE provides the virtualization of a 
computation resource (e.g., cluster, supercomputers or 
individual workstations). A CE provides information on 
the underlying resource and offers a common interface for 
submitting and managing jobs on the resource. Also, a CE 
has a collection of Worker Nodes (WNs), which are the 
nodes where the jobs actually run on. The Local Resource 
Management System (LRMS) is an important component 
of each CE that schedules the jobs assigned to the CE to 
the available WNs. gLite supports the following LRMS: 
OpenPBS/PBSPro, LSF, Maui/Torque, BQS and Condor. 
The Workload Management System (WMS) is a Grid 
level meta-scheduler that schedules jobs on the available 
CEs according to user preferences and several policies 
(see Section 2.3). It also keeps track of the jobs it manages 
in a consistent way, via the Logging and Bookkeeping 
(LB) service.  

2.2 Monitoring and Discovery Service (MDS) 
Figure 1 shows the Monitoring and Discovery Service 
(MDS) architecture. Computing and storage resources at a 
site run a piece of software called Information Provider, 
which generates the resource-related information (both 
static, such as the type of SE, and dynamic, such as the 
used space in a SE). This information is published via an 
LDAP server, called Grid Resource Information Server 
(GRIS) that normally runs on the resource itself. At each 
site, the Berkeley Database Information Index (BDII) is 
used to store and publish data from the local GRISes. In 
the gLite context, by the term site we mean a collection of  
CEs and SEs located at the same place. At the top level of 
the information hierarchy there are also BDIIs that collect 
information from the site BDIIs. Therefore the top level 
BDIIs contain all the available information on the Grid 
sites they look at. Nevertheless, it is always possible to get 
information about specific resources by directly 
contacting the GRISes. 
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Figure 1. The architecture of the Monitoring and 
Discovery Service. 

R-GMA is an implementation of the Grid Monitoring 
Architecture (GMA) [17] proposed by the Global Grid 
Forum (GGF) [18]. In R-GMA, information is presented 
as though it is stored in a global distributed relational 
database. This model is more powerful than the LDAP-
based one, since relational databases support more and 
more advanced query operations. 

2.3 Workload Management System (WMS) 

2.3.1 WMS Architecture 
A user can access the job management services, provided 
by the WMS, through the Workload Manager Proxy 
(WMProxy), using a set of tools called WMS-UI tools. 
The Workload Manager (WM) is the core component of 
the WMS and is responsible for selecting the most 
appropriate CE for the job’s execution, taking into 
account the job’s requirements and preferences. The 
decision on the resources to be used is the outcome of a 
matchmaking process between the job request and the 
available resources., Three main components of the WMS 
service are involved in the operation of WM: the 
Matchmaker (MM), the Information Super Market (ISM) 
and the Task Queue (TQ). The Matchmaker (MM) or 
Resource Broker (RB), provides a matchmaking service, 
which selects the resources that best match the job’s 
requirements. The Information Super Market (ISM) is a 
repository of resources information that is updated at 
periodic intervals. In particular, each CE informs 
periodically the corresponding BDII and the BDII informs 
periodically the ISM. The exact duration of these intervals 
can be defined by the administrator. The third 
fundamental component of the WM is the Task Queue 
(TQ) that queues a job request if no resources that match 
the job requirements are immediately available. The 
remaining of the WMS components handle the jobs during 
the rest of their lifetime, after the WMS has found suitable 
CEs for their execution. 

2.3.2 Job Description File 
When a user submits a job to the Grid through gLite, she 
also creates a job description file containing the job’s 
characteristics and requirements. This file’s syntax is 
defined through the Job Description Language (JDL). In 
the JDL file, a set of predefined attributes have a special 

meaning for the WMS. These attributes are usually 
decomposed in three categories:  

• Job attributes: through which the job’s specific 
characteristics are specified. 

• Data attributes: through which the job’s input 
data and SE related information are specified. 

• Requirements and Rank: through which the 
job’s CE requirements and preferences are 
specified.  

2.3.3 WMS scheduling algorithms  
The Workload Manager (WM) takes as input the job’s 
JDL file and performs two operations: 

• the filtering operation, through which a set of 
candidate CEs is created, based on the job’s 
requirements as these are defined from the 
Requirements attribute of the JDL file.  

• the selection (or matchmaking) operation, where 
the “best” CE is selected, among the CEs in the 
previously created set. By “best” we mean the 
CE that optimizes a metric of interest that is 
defined in the Rank attribute of the JDL file. 

 
Looking in the code of gLite we identified two 

matchmaking algorithms, which we call the Max Rank 
and the Fuzzy Rank. The Max Rank algorithm chooses the 
CE whose current state maximizes the expression at the 
Rank attribute. When there are more than one CEs that 
have the same maximum value for the Rank attribute, the 
algorithm selects randomly one of them. 

The Fuzzy Rank algorithm is a stochastic variation of 
the basic Max Rank algorithm. For each CE in the set 
formed by the filtering operation, Fuzzy computes the 
Rank expression from the JDL file. However, in this 
algorithm the values of the Rank expression associated to 
each CE represent (after some kind of normalization) the 
probability that each CE will be selected as the “best” CE 
for the job’s execution. The selection probability for a CE 
is higher for higher ranking values. Based on these 
probabilities the algorithm selects randomly a CE. It is 
evident that the Fuzzy algorithm may select a different CE 
each time it is executed even if the user requirements and 
the state of the resources remain the same. 

3 Simple Fair Execution Time Estimation 
scheduling algorithm  

The SFETE algorithm that we implemented and integrated 
in gLite, assigns job i to the resource j that provides the 

minimum simple fair execution time ijX
∧

. The simple fair 
execution time is an estimation of the time by which job i 
will be executed on resource j, assuming it gets a fair 
share of the resource’s computational power, without, 
however, taking into account the fair execution times of 
the other jobs assigned to the resource.  
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The simple fair execution time ijX
∧

 of the job i on 
resource j is defined as  

( +1)j

ij

j

N
X

C

∧

=  

where Cj is the computational capacity of resource j, and 
Nj is the number of jobs in the resource’s queue, including 
the one being processed at the time. It is important to note 
that the calculation of the simple fair execution time 

ijX
∧

of job i on resource j is only an estimate. New jobs 
may be sent to resource j, or existing jobs may complete 
their execution. This way the fair share of the computation 
capacity of the jobs assigned to the resource changes, but 
their simple fair execution time estimations are not re-
estimated. Note that the FETE algorithm introduced in [9] 
takes new arrivals and job completions into account in 
estimating job fair execution times, but is considerably 
more complicated than SFETE without having 
appreciably better performance, as simulation results 
indicated. Therefore, SFETE can be viewed as a good 
approximation to FETE, which obtains most of its 
performance and fairness benefits, at a fraction of its 
implementation cost. More importantly, SFETE has no 
need for the a-priori knowledge of the job workloads, as 
FETE does. 

4 Implementation 
4.1 The ETICS system 
In order for a developer to be able to extend and build the 
components of gLite, the ETICS system [20] is needed. 
ETICS, which stands for eInfrastructure for Testing, 
Integration and Configuration of Software, is an on-line 
collaborative service for managing software projects by 
managing their configuration, enforcing quality standards, 
building packages and testing them in environments as 
close as possible to real-world infrastructures. Through 
ETICS the developer can download (etics-checkout 
command) the necessary modules, files, libraries, 
configuration files needed to build the component of 
interest (e.g., the WMS). Once the code and a suitable 
configuration have been checked out, the developer can 
use the ETICS client to generate software packages and 
reports (etics-build).  

4.2 Max and Fuzzy implementation at gLite 
To implement SFETE in gLite, we first studied the code 
structure of the Workload Management System (WMS) 
and especially the way Max and Fuzzy Rank are 
implemented. The implementation of the main process of 
the WMS, that is of the Workload Manager (WM), is 
located in directory org.glite.wms.manager/src /daemons. 
The WM reads the configuration files, initializes various 
WMS services (e.g., the Helper, the Task Queue, the ISM) 
and starts a number of concurrent threads for serving 
multiple job requests. The Helper service, located in the 

directory org.glite.wms.helper/src/, is the interface of the 
WM with the various components of the WMS, though 
which the management of the job’s execution cycle is 
performed. The most important file of the Helper service 
is the org.glite.wms.helper/src/broker/ Helper_ism.cpp. In 
this file the Helper service informs the WM for the 
filtering and selection strategies the user defined in the 
job’s JDL file. For example, when the user thinks that a 
job has increased data transfer requirements, then she can 
define a filtering strategy, which selects the CEs that are 
closer to the required SEs. This way the data transfers in 
the network are reduced. Moreover, if the expression 
“FuzzyRank=true”  is used, the Helper informs the WM 
that it must use the Fuzzy Rank selection strategy. 

The implemented filtering strategies are located in the 
org.glite.wms.broker/src directory, while the selection 
strategies are in the org.glite.wms.broker/src/selector 
directory. The default filtering strategy is implemented in 
the RBSimpleISMImpl.cpp file. The selection strategies 
are first defined in the RBSelectionSchema.cpp file and 
then implemented in separate files. As already mentioned, 
gLite implements the Max Rank (maxRankSelector.cpp) 
and the Fuzzy Rank (stochasticRankSelector.cpp) 
selection strategies. Both the filtering and the selection 
strategies use the functions of the Matchmaker (MM), 
which is another part of the WMS. The implementation of 
the ΜΜ is located in the matchmakerISMImpl.cpp file 
under the directory  org.glite.wms.matchmaking/src. MM 
performs the matching between the user requirements and 
the available CEs, using the job’s JDL file and the 
information provided by the ISM service. Also, the MM 
calculates the Rank expression of each CE in the set of 
CEs created by the filtering strategy. Figure 2 summarizes 
the structure of the gLite’s directories where the WMS 
code is located. 

 

 
 
Figure 2. The structure of the gLite’s directories where 
the WMS code is located.  

4.3 SFETE implementation in gLite 
middleware 

SFETE uses the two-phase procedure (filtering and 
selection) described above, in order to select the 
appropriate CE for a given job. For the filtering phase, 
SFETE uses the same strategies as the Max and the Fuzzy 
Rank algorithms. For the selection phase, SFETE 
computes the simple fair execution time estimation for a 
given job at each filtered CE, and assigns the job to the 
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CE that gives the minimum value. So, in SFETE the 
ranking is not based on the user preferences as they are 
expressed by the Rank attribute of the JDL file, but on the 
minimum simple fair execution time estimation. If there 
are more than one computation resources that yield the 
same simple fair execution time estimation, the job is 
assigned randomly to one of them. In order for a user to 
be able to use SFETE algorithm, we defined a new 
boolean JDL attribute, called FeteRank (Figure 3). 
 

[ 
  Type="Job"; 
  JobType="Normal"; 
  Executable="fibonacci.sh"; 
  StdOutput="fibonacci.out"; 
  StdError="fibonacci.err"; 
  InputSandbox={"./fibonacci.sh","./Fibonacci.py"}; 
  OutputSandbox={"fibonacci.out", "fibonacci.err"}; 
  Requirements=other.GlueCEStateWaitingJobs<100; 
  FeteRank=true; 
]  
Figure 3. A job’s JDL file requesting the use of the 
SFETE selection strategy. The Rank attribute is not 
needed. 

An important part of the SFETE implementation is the 
calculation of  the simple fair execution time. For this 
calculation SFETE must know for each filtered CE, its 
computation capacity and the number of the jobs assigned 
to it. In order to obtain the computation capacity 
information, SFETE asks the Information Super Market 
(ISM) service. Each resource in the Grid publishes various 
information, including its total number of CPUs and their 
clock speed, and also information on the speed rating of 
each CPU based on the nominal SpecInt2000 benchmark. 
Each of these CPU characteristics can be used for 
expressing the computational capacity of the resource. On 
the other hand, the number of jobs assigned to a CE is a 
dynamic property, which changes with time. The 
Monitoring and Discovery Service (MDS) service updates 
this information in the ISM at periodic intervals. As a 
result, in the time period between two updates the ISM 
may publish outdated information for the number of jobs 
in a CE (and for other dynamic information). However, in 
order for the SFETE algorithm to operate efficiently, it 
must know with some accuracy this information. For this 
reason we have embedded in the SFETE implementation a 
mechanism that provides a better estimate of the number 
of jobs in a CE. The basic idea of the mechanism is the 
use of a local counter for each CE, which is updated from 
the WM every time a job is assigned for execution to the 
corresponding CE. This value is of course only an 
estimate, since the local counters are informed only for the 
jobs that are assigned to each computation resource and 
not for the jobs that complete their execution. For this 
reason in every ISM update, the local counters are updated 
with the data published from the ISM. 

In summary, for the implementation of SFETE in gLite 
we performed the following changes in the code: 

• org.glite.wms.broker: In the src/selectors/RB-
SelectionSchema.cpp file we defined the existence of 
the SFETE selection strategy. In the same directory 
we created the SFETE related files 
(SFeteRankSelector.h and SFeteRankSelector.cc). 

• org.glite.wms.matchmaking: In the file 
matchmakerISMImpl.cpp we implemented the 
SFeteRank() function. 

• org.glite.wms.helper: In the src/broker/Helper_ 
ism.cpp file and in the flatten_requirements() 
function, we use the SFeteRankSelector in the case 
where the SFeteRank attribute is set in the JDL file. 

• org.glite.wms.ism: In the ism.cpp and in the 
purchaser/ldap-utils.cpp files we implemented the 
internal mechanism that keeps track of the jobs that 
have been assigned to the available CEs.  

5 Performance Results 
5.1 Testbed 
In order to evaluate the performance of the SFETE 
scheduling algorithm we set up a small Grid infrastructure 
based on the gLite middleware. This way we were able to 
evaluate SFETE in a realistic instead of a simulation 
environment and compare it against the scheduling 
algorithms that gLite middleware provides by default to 
its users. Figure 4 shows the Grid infrastructure we set up, 
which was based both on gLite 3.0 and gLite 3.1 
middleware, since at the time of we set it up, the gLite 3.1 
was not fully released yet.  

Our testbed has three CEs, each of which has its own 
WN (Table 1), for executing the jobs. The CEs use as 
LRMS the Torque/PBS system. The R-GMA is 
responsible for publishing information about the available 
computation and storage resources and the SE provides 
access to the data storage resources. The LFC catalog 
service stores the location or locations of the files and 
their replicas. The R-GMA, the SE and the LFC 
components where not utilized in our experiments. The 
Site-BDII informs the ISM component of the WMS about 
the status of the various CEs. The WMS we use is 
modified as we have added to it the SFETE scheduling 
algorithm. VOMS provides information such as VO 
membership, group membership and the roles of each 
user. In our experiments we use a single VO that gets 
100% of each CE’s computational capacity. Finally, 
through the User Interface (UI) each user can be 
authenticated and authorized to use the Grid resources. In 
order for authentication to work within gLite all users and 
services need to have a certificate issued from a trusted 
Certificate Authority (CA). Since the CA is the heart of 
the gLite authentication system, we established for 
simplicity our own trusted CA in our Grid testbed.  
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Figure 4. The gLite testbed used in our experiments. 
 

Resource Type Details 
SE  Pentium 4 1.6 GHz  Hard Disk 60GB 

CE/WN 1 Ram  512 MB  Pentium 4 1.8 GHz 

CE/WN 2 Ram  512 MB  Pentium 4 3.0 GHz 

CE/WN 3 Ram  512 MB  Intel Core 2 DUO 3.0 
GHz 

Table 1: The characteristics of the storage and 
computational resources of our testbed. 

5.2 Experiment Parameters 
In order to evaluate the performance of the SFETE against 
the default gLite scheduling algorithms, we performed a 
number of experiments. In our experiments we have five 
users, with the same rights, who submit jobs to the Grid 
testbed. The user’s job submission process is assumed to 
be Poisson with the following average arrival rates: 5, 10, 
15, 20, 25 and 30 jobs/min. Based on the work we 
performed in [10], we observed that in the EGEE 
infrastructure job inter-arrival times follow an exponential 
distribution and therefore Poisson is a good approximation 
of the arrival process. We do not use larger arrival rates 
since our Grid testbed has limited computation resources 
and larger rates would overload the testbed. Users 
generate jobs of different mean durations: 5, 6.5, 8.5, 10.5 
and 12.5 minutes. To be more precise, this is the duration 
of the corresponding job when it is executed at the highest 
computational capacity resource, without competing with 
any other jobs for the resource. The jobs created do not 
have any data dependencies, since this would complicate 
our study.  

In our experiments we use a default filtering strategy, by 
setting the Requirement attribute to “Production”, where 
all the CEs are selected. For the selection strategy the Max 
and Fuzzy Rank algorithms select a CE based on a 
dynamic expression at the Rank attribute of the JDL file, 
where a job is submitted to the computation resource that 
has the fewest jobs in its queues. On the other hand 
SFETE selects the CE with the minimum fair execution 
time estimation. This way the dynamic ranking used 
affects only the decisions of the Max and Fuzzy 
algorithms, and not those of SFETE. In our experiments 
we used the following metrics:  

• the average job total delay at the Grid, measured 
from the time a job is created until the time it 
completes its execution at a CE.  

• the average time a job remains queued at a CE 
before its execution. 

• the distribution of jobs at the available CEs. 

5.3 Results 
Figure 5 shows the average job total delay as a function of 
the job submission rate. For all the scheduling algorithms 
examined when the job submission rate increases the 
average job total delay increases. SFETE achieves smaller 
average total delay than the Max and Fuzzy Rank 
algorithms for all the submission rates examined, as 
indicated by the results presented in Figure 6. 
 

 
Figure 5. The average job total delay for the Max 
Rank, the Fuzzy Rank and the SFETE algorithms, for 
various job submission rates. 
 

Figure 6 shows that the SFETE scheduling algorithm 
results in constant distribution of the jobs to the available 
computational resources, independently of the job 
submission rate. SFETE assigns each job to the 
computational resource that provides, at the time of the 
submission, the minimum simple fair execution time 
estimation. The result of this process is independent from 
the job submission rate, since SFETE assigns to each 
available resource a percentage of the total jobs, 
proportional to its computational capacity. In the Max and 
Fuzzy Rank algorithms the distribution of the jobs 
changes randomly with the job submission rate and there 
is a chance that a resource is overloaded, becoming a 
bottleneck for the whole system.  

These results are mainly due to the fact that both the 
Max and the Fuzzy Rank algorithms use the information 
provided by the ISM in order to evaluate the Rank 
expression at the job’s JDL file. However, as already 
mentioned, the information that ISM publishes is updated 
at periodic intervals. In the time period between two 
updates the ISM and consequently the scheduling 
algorithms are not aware of new jobs arriving at the 
resources for execution. For example, it is possible that in 
this time period a large number of jobs may be assigned to 
a previously light-loaded resource, overloading it, without 
the ISM acknowledging that. As a result, the decisions 
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that the Max and Fuzzy Rank take are based on outdated 
information and they may be incorrect. The effects of 
outdated information become even more pronounced as 
the job submission rate increases. On the other hand, the 
mechanism we implemented in SFETE provides a better 
estimate of the number of jobs at the resource queues. As 
a result, the SFETE scheduling algorithm always 
maintains a good distribution of jobs at the available 
computation resources, independently of the job 
submission rate.  
 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 6. The job percentage distributions at the 
available CEs that (a) Max Rank, (b) Fuzzy Rank and 
(c) SFETE achieve, for various job submission rates. 
 

Figure 7 shows the average time a job remains at the 
LRMS queues of the CEs as a function of the job 
submission rate. This time is proportional to the total 

number of jobs that use the same CE and affects the 
average execution time of a job. Again SFETE 
outperforms the Max and the Fuzzy Rank algorithms, 
since it better distributes the jobs at the available 
resources. 
 

 
Figure 7.  The average time jobs remain at the queues 
of the CEs for the Max Rank, the Fuzzy Rank and the 
SFETE algorithms, for various job submission rates. 
 
6 Conclusions 
We have investigated the gLite middleware architecture 
and especially the part related to the scheduling 
algorithms provided by default to its users. Moreover, we 
developed and integrated in gLite a new scheduling 
algorithm. The performance of this algorithm was 
evaluated experimentally in a small Grid testbed, and was 
shown to outperform the existing gLite scheduling 
algorithms. The main drawback of the current 
implementation of the Max and the Fuzzy Rank 
algorithms is the outdated information that the gLite’s 
information service publishes, for a number of dynamic 
characteristics, such as the number of jobs at the resource 
queues. Our results indicate that simple changes in the 
gLite’s scheduling procedures can yield significant 
performance gains. In the future we also plan to consider 
the case where each VO gets a percentage of the CE’s 
capacity. Finally, given the absence of any information on 
the web about the gLite’s architecture and code structure, 
we believe that this work is a good starting point for 
anyone interested in extending, improving and evaluating 
the gLite’s mechanisms. 
 
7 References 
[1] T. Braun et al,  A Comparison of Eleven Static 

Heuristics for Mapping a Class of Independent Tasks 
onto Heterogeneous Distributed Computing Systems, 
J. of Parallel and Distributed Computing, Vol. 61, 
No. 6, pp. 810-837, 2001. 

[2] H. Dail, H. Casanova and F. Berman, A Decoupled 
Scheduling Approach for Grid Application 
Development Environments, J. of Parallel and 
Distributed Computing, Vol. 63, pp. 505-524, 2002. 

26



[3] Y. Cardinale, H. Casanova, An evaluation of Job 
Scheduling Strategies for Divisible Loads on Grid 
Platforms, HPC&S, 2006.  

[4] R. Buyya, M. Murshed, D. Abramson, S. Venugopal, 
Scheduling Parameter Sweep Applications on Global 
Grids: A Deadline and Budget Constrained Cost-
Time Optimisation Algorithm, Intl J. of Software: 
Practice and Experience (SPE), Vol. 35, No. 5, pp. 
491-512, 2005. 

[5] K. H. Kim, R. Buyya, Fair Resource Sharing in 
Hierarchical Virtual Organizations for Global Grids, 
Intl Conf. on Grid Computing, 2007.  

[6] N. Doulamis, E. Varvarigos, T. Varvarigou, Fair 
Scheduling Algorithms in Grids, Tran. on Parallel 
and Distributed Systems, Vol. 18, No. 11, pp. 1630-
1648, 2007. 

[7] K. Krauter, R. Buyya, M. Maheswaran, A taxonomy 
and survey of grid resource management systems for 
distributed computing, Software: Practice and 
Experience, Vol. 32, No. 2, pp. 135-164, 2002. 

[8] A. Kertesz, P. Kacsuk, Distributed and Parallel 
Systems: A Taxonomy of Grid Resource Brokers, 
Springer, 2007. 

[9] H. Dafouli, P. Kokkinos, E. Varvarigos, Fair 
Execution Time Estimation Scheduling in 
Computational Grids, International Conference on 
Distributed and Parallel Systems (DAPSYS), pp. 93-
104, 2008.  

[10] K. Christodoulopoulos, V. Gkamas, E. Varvarigos,  
Statistical Analysis and Modeling of Jobs in a Grid 
Environment, Journal of Grid Computing, Vol. 6, 
No. 1, pp. 77-101, 2007. 

[11] www.glite.org  
[12] http://www.eu-egee.org/ 
[13] http://www.globus.org/ 
[14] http://www.unicore.eu/ 
[15] https://www.scientificlinux.org/ 
[16] MDS 2.2 Features in the Globus Toolkit 2.2 Release: 

http://www.globus.org/toolkit/mds/#mds gt2 
[17] R-GMA: Relational Grid Monitoring Architecture: 

http://www.r-gma.org/index.html 
[18] B. Tierney et al. , A Grid Monitoring Architecture, 

GGF , 2001 (revised 2002)  
[19] gLite 3.1 User Guide Manuals Series: 

https://edms.cern.ch/file/722398//gLite-3-
UserGuide.pdf 

[20] http://etics.web.cern.ch/etics/ 
 

27


