
Developing scheduling policies in gLite middleware

A. Kretsis, P. Kokkinos, E. A. Varvarigos
Computer Engineering and Informatics Department, University of Patras, Greece

Research Academic Computer and Technology Institute, Patras, Greece
{akretsis, kokkinop, manos@ceid.upatras.gr}

Abstract

We describe our experiences from implementing and

integrating a new job scheduling algorithm in the gLite
Grid middleware and present experimental results that
compare it to the existing gLite scheduling algorithms. It
is the first time that gLite scheduling algorithms are put
under test and compared with a new algorithm under the
same conditions. We describe the problems that were
encountered and solved, going from theory and
simulations to practice and the actual implementation of
our scheduling algorithm. In this work we also describe
the steps one needs to follow in order to develop and test a
new scheduling algorithm in gLite. We present the
methodology followed and the testbed that was set up for
the comparisons. Our research sheds light on some of the
problems of the existing gLite scheduling algorithms and
makes clear the need for the development of new.

1 Introduction
The emergence of high speed networks is making the
vision of Grids a reality. Grids consist of geographically
distributed and heterogeneous computational and storage
resources that may belong to different administrative
domains, but can be shared among users by establishing a
global resource management architecture, called Grid
middleware. A Grid middleware is a software package
providing a number of fundamental Grid services, such as
information services, resource discovery and monitoring,
job submission and management, brokering, data
management and resource management.

A number of production Grid middlewares exist today,
such as gLite [11], the Globus Toolkit 4 (GT4) [13] and
UNICORE [14]. The gLite is the result of the
collaborative efforts of different academic and industrial
research centers as part of the Enabling Grids for E-
sciencE (EGEE) project [12]. The EGEE infrastructure
processes jobs from various scientific domains, including
High Energy Physics (HEP), Biomedicine, Earth Sciences
and others.

An important part of gLite and of any Grid middleware
is job scheduling. Scheduling is a key to the success of
Grid Networks, since it determines the efficiency in the
use of the resources and the Quality of Service (QoS)
provided to the users. The scheduling of jobs to resources
has been considered, among others works, in [1],[2],[3],

where several centralized, hierarchical or distributed
scheduling schemes are presented. Other works
incorporate economic models in Grid scheduling, as in
[4], which proposes scheduling algorithms that take into
account deadline and budget constraints. Fair scheduling
in Grid networks has also been addressed in [5],[6]. Most
of these scheduling algorithms, have been evaluated
through simulations. A taxonomy of the existing Grid
resource schedulers is presented in [7],[8].

The gLite’s development is performed by a close group
of researchers and as a result little information exists on
how to extend or change its functionality. Furthermore,
since gLite is a production Grid middleware, it consists of
a large number of components, whose installation and
configuration can be quite difficult. We believe that one of
the main contributions of this work is that it gives some
insight on how gLite code is structured and especially the
code of gLite’s scheduling component. So, our work can
be a starting point for anyone interested in extending the
gLite middleware. Furthermore, it is, to the best of our
knowledge, the first time that gLite scheduling algorithms
are put under test and compared with a new algorithm
under the same conditions, revealing some of their
weaknesses.

In our work we implement in gLite the Simple Fair
Execution Time Estimation (SFETE) [9] algorithm, which
is a good approximation of Fair Execution Time
Estimation (FETE) algorithm. FETE assigns a job to the
resource that minimizes what we call its fair execution
time estimation. The fair execution time of a job at a
resource is obtained assuming that the job gets a fair share
of the resource’s computational power. Though space-
shared scheduling is used in the actual system, the
estimates of the fair execution times are found assuming
time-sharing (processor sharing) is used. The main
difference between FETE and SFETE is that the second
algorithm does not require a-priori knowledge (or
estimates) of the job workloads, which would be an
important requirement when implementing a scheduling
algorithm in a real Grid middleware. In [9] we performed
an extensive set of simulation experiments, comparing
FETE and SFETE. The results showed that the FETE and
the SFETE algorithms give similar results, while both
outperforming a number of known scheduling algorithms.
In this work we implemented SFETE algorithm in the
gLite middleware and evaluated its performance in a self-
contained testbed against the existing gLite scheduling

9th IEEE/ACM International Symposium on Cluster Computing and the Grid

978-0-7695-3622-4/09 $25.00 © 2009 IEEE

DOI 10.1109/CCGRID.2009.54

20

algorithms. gLite implements two scheduling algorithms,
which we call Max Rank and Fuzzy Rank. Our results
show that SFETE performs better than the other two
scheduling algorithms, by achieving smaller job execution
delay and better distribution of the jobs to the available
computational resources. A key point for the correct
operation of SFETE is the accurate knowledge of the
number of jobs that are already assigned for execution at
each computation resource. gLite’s information service is
updated at periodic intervals and as a result it does not
always have an accurate view of the number of jobs at
each resource. We will show that this is an important
drawback, hindering the performance of the existing
algorithms. To address this drawback, we implemented a
mechanism in SFETE that provides a good estimate of
this value. Though this work is specific to gLite
middleware, we believe that it may be useful for anyone
developing and comparing scheduling algorithms in a
production Grid middleware. Issues like testbed set up,
experimental methodology, metrics measured and the
need for an accurate information service are common in
any kind of Grid middleware. The description we give on
the implementation steps followed may also be useful to
researchers that want to introduce and test other job
scheduling algorithms in gLite, something that we also
plan to do in our future work.

The remainder of the paper is organized as follows. In
Section 2 we present a summary of the architecture of the
gLite middleware. In Section 3 we describe the SFETE
scheduling algorithm. In Section 4 we describe our
implementation of SFETE in gLite. In Section 5 we
present the experiments performed and the corresponding
results. Finally, in Section 6 we conclude the paper.

2 The gLite Middleware
2.1 General
The gLite middleware provides high level services for
scheduling and running computational jobs, for accessing
and moving data and for obtaining information on the
Grid infrastructure and the Grid applications, all these
embedded into a consistent and secure framework. The
gLite middleware runs over the Scientific Linux [15]
platform and it is written mainly in C++. The gLite Grid
services, which follow a Service Oriented Architecture
(SOA), can be grouped into five service groups: Access
Services, Security Services, Information and Monitoring
Services, Data Services and Job Management Services.

A user can access the functionalities offered by the
gLite middleware through the User Interface (UI) [19].
Security services [19] include the Authentication,
Authorization, and Auditing operations. The users of the
Grid infrastructure are divided into Virtual Organizations
(VOs), which are abstract entities that group together
users, institutions and resources into administrative
domains. Information and Monitoring Services [19]
provide a mechanism to publish and consume information
on the Grid resources and their status. This information,

used also for monitoring and accounting purposes, is
essential for the operation of the whole Grid. In gLite
there are two information systems: the Globus Monitoring
and Discovery Service (MDS) [16], used for resource
discovery and for publishing the resource status, and the
Relational Grid Monitoring Architecture (RGMA) [17],
used for accounting, monitoring and publication of user-
level information. The three main services that relate to
data are the Storage Element, the File & Replica Catalog
Service and the Data Management [19]. The Storage
Element (SE) provides the virtualization of a storage
resource, which can vary from simple disk servers to
complex hierarchical tape storage systems. Finally, the
main Job Management Services [19] are the Computing
Elements (CE) and the Workload Management System
(WMS). The CE provides the virtualization of a
computation resource (e.g., cluster, supercomputers or
individual workstations). A CE provides information on
the underlying resource and offers a common interface for
submitting and managing jobs on the resource. Also, a CE
has a collection of Worker Nodes (WNs), which are the
nodes where the jobs actually run on. The Local Resource
Management System (LRMS) is an important component
of each CE that schedules the jobs assigned to the CE to
the available WNs. gLite supports the following LRMS:
OpenPBS/PBSPro, LSF, Maui/Torque, BQS and Condor.
The Workload Management System (WMS) is a Grid
level meta-scheduler that schedules jobs on the available
CEs according to user preferences and several policies
(see Section 2.3). It also keeps track of the jobs it manages
in a consistent way, via the Logging and Bookkeeping
(LB) service.

2.2 Monitoring and Discovery Service (MDS)
Figure 1 shows the Monitoring and Discovery Service
(MDS) architecture. Computing and storage resources at a
site run a piece of software called Information Provider,
which generates the resource-related information (both
static, such as the type of SE, and dynamic, such as the
used space in a SE). This information is published via an
LDAP server, called Grid Resource Information Server
(GRIS) that normally runs on the resource itself. At each
site, the Berkeley Database Information Index (BDII) is
used to store and publish data from the local GRISes. In
the gLite context, by the term site we mean a collection of
CEs and SEs located at the same place. At the top level of
the information hierarchy there are also BDIIs that collect
information from the site BDIIs. Therefore the top level
BDIIs contain all the available information on the Grid
sites they look at. Nevertheless, it is always possible to get
information about specific resources by directly
contacting the GRISes.

21

Figure 1. The architecture of the Monitoring and
Discovery Service.

R-GMA is an implementation of the Grid Monitoring
Architecture (GMA) [17] proposed by the Global Grid
Forum (GGF) [18]. In R-GMA, information is presented
as though it is stored in a global distributed relational
database. This model is more powerful than the LDAP-
based one, since relational databases support more and
more advanced query operations.

2.3 Workload Management System (WMS)

2.3.1 WMS Architecture
A user can access the job management services, provided
by the WMS, through the Workload Manager Proxy
(WMProxy), using a set of tools called WMS-UI tools.
The Workload Manager (WM) is the core component of
the WMS and is responsible for selecting the most
appropriate CE for the job’s execution, taking into
account the job’s requirements and preferences. The
decision on the resources to be used is the outcome of a
matchmaking process between the job request and the
available resources., Three main components of the WMS
service are involved in the operation of WM: the
Matchmaker (MM), the Information Super Market (ISM)
and the Task Queue (TQ). The Matchmaker (MM) or
Resource Broker (RB), provides a matchmaking service,
which selects the resources that best match the job’s
requirements. The Information Super Market (ISM) is a
repository of resources information that is updated at
periodic intervals. In particular, each CE informs
periodically the corresponding BDII and the BDII informs
periodically the ISM. The exact duration of these intervals
can be defined by the administrator. The third
fundamental component of the WM is the Task Queue
(TQ) that queues a job request if no resources that match
the job requirements are immediately available. The
remaining of the WMS components handle the jobs during
the rest of their lifetime, after the WMS has found suitable
CEs for their execution.

2.3.2 Job Description File
When a user submits a job to the Grid through gLite, she
also creates a job description file containing the job’s
characteristics and requirements. This file’s syntax is
defined through the Job Description Language (JDL). In
the JDL file, a set of predefined attributes have a special

meaning for the WMS. These attributes are usually
decomposed in three categories:

• Job attributes: through which the job’s specific
characteristics are specified.

• Data attributes: through which the job’s input
data and SE related information are specified.

• Requirements and Rank: through which the
job’s CE requirements and preferences are
specified.

2.3.3 WMS scheduling algorithms
The Workload Manager (WM) takes as input the job’s
JDL file and performs two operations:

• the filtering operation, through which a set of
candidate CEs is created, based on the job’s
requirements as these are defined from the
Requirements attribute of the JDL file.

• the selection (or matchmaking) operation, where
the “best” CE is selected, among the CEs in the
previously created set. By “best” we mean the
CE that optimizes a metric of interest that is
defined in the Rank attribute of the JDL file.

Looking in the code of gLite we identified two

matchmaking algorithms, which we call the Max Rank
and the Fuzzy Rank. The Max Rank algorithm chooses the
CE whose current state maximizes the expression at the
Rank attribute. When there are more than one CEs that
have the same maximum value for the Rank attribute, the
algorithm selects randomly one of them.

The Fuzzy Rank algorithm is a stochastic variation of
the basic Max Rank algorithm. For each CE in the set
formed by the filtering operation, Fuzzy computes the
Rank expression from the JDL file. However, in this
algorithm the values of the Rank expression associated to
each CE represent (after some kind of normalization) the
probability that each CE will be selected as the “best” CE
for the job’s execution. The selection probability for a CE
is higher for higher ranking values. Based on these
probabilities the algorithm selects randomly a CE. It is
evident that the Fuzzy algorithm may select a different CE
each time it is executed even if the user requirements and
the state of the resources remain the same.

3 Simple Fair Execution Time Estimation
scheduling algorithm

The SFETE algorithm that we implemented and integrated
in gLite, assigns job i to the resource j that provides the

minimum simple fair execution time ijX
∧

. The simple fair
execution time is an estimation of the time by which job i
will be executed on resource j, assuming it gets a fair
share of the resource’s computational power, without,
however, taking into account the fair execution times of
the other jobs assigned to the resource.

22

The simple fair execution time ijX
∧

 of the job i on
resource j is defined as

(+1)j

ij

j

N
X

C

∧

=

where Cj is the computational capacity of resource j, and
Nj is the number of jobs in the resource’s queue, including
the one being processed at the time. It is important to note
that the calculation of the simple fair execution time

ijX
∧

of job i on resource j is only an estimate. New jobs
may be sent to resource j, or existing jobs may complete
their execution. This way the fair share of the computation
capacity of the jobs assigned to the resource changes, but
their simple fair execution time estimations are not re-
estimated. Note that the FETE algorithm introduced in [9]
takes new arrivals and job completions into account in
estimating job fair execution times, but is considerably
more complicated than SFETE without having
appreciably better performance, as simulation results
indicated. Therefore, SFETE can be viewed as a good
approximation to FETE, which obtains most of its
performance and fairness benefits, at a fraction of its
implementation cost. More importantly, SFETE has no
need for the a-priori knowledge of the job workloads, as
FETE does.

4 Implementation
4.1 The ETICS system
In order for a developer to be able to extend and build the
components of gLite, the ETICS system [20] is needed.
ETICS, which stands for eInfrastructure for Testing,
Integration and Configuration of Software, is an on-line
collaborative service for managing software projects by
managing their configuration, enforcing quality standards,
building packages and testing them in environments as
close as possible to real-world infrastructures. Through
ETICS the developer can download (etics-checkout
command) the necessary modules, files, libraries,
configuration files needed to build the component of
interest (e.g., the WMS). Once the code and a suitable
configuration have been checked out, the developer can
use the ETICS client to generate software packages and
reports (etics-build).

4.2 Max and Fuzzy implementation at gLite
To implement SFETE in gLite, we first studied the code
structure of the Workload Management System (WMS)
and especially the way Max and Fuzzy Rank are
implemented. The implementation of the main process of
the WMS, that is of the Workload Manager (WM), is
located in directory org.glite.wms.manager/src /daemons.
The WM reads the configuration files, initializes various
WMS services (e.g., the Helper, the Task Queue, the ISM)
and starts a number of concurrent threads for serving
multiple job requests. The Helper service, located in the

directory org.glite.wms.helper/src/, is the interface of the
WM with the various components of the WMS, though
which the management of the job’s execution cycle is
performed. The most important file of the Helper service
is the org.glite.wms.helper/src/broker/ Helper_ism.cpp. In
this file the Helper service informs the WM for the
filtering and selection strategies the user defined in the
job’s JDL file. For example, when the user thinks that a
job has increased data transfer requirements, then she can
define a filtering strategy, which selects the CEs that are
closer to the required SEs. This way the data transfers in
the network are reduced. Moreover, if the expression
“FuzzyRank=true” is used, the Helper informs the WM
that it must use the Fuzzy Rank selection strategy.

The implemented filtering strategies are located in the
org.glite.wms.broker/src directory, while the selection
strategies are in the org.glite.wms.broker/src/selector
directory. The default filtering strategy is implemented in
the RBSimpleISMImpl.cpp file. The selection strategies
are first defined in the RBSelectionSchema.cpp file and
then implemented in separate files. As already mentioned,
gLite implements the Max Rank (maxRankSelector.cpp)
and the Fuzzy Rank (stochasticRankSelector.cpp)
selection strategies. Both the filtering and the selection
strategies use the functions of the Matchmaker (MM),
which is another part of the WMS. The implementation of
the ΜΜ is located in the matchmakerISMImpl.cpp file
under the directory org.glite.wms.matchmaking/src. MM
performs the matching between the user requirements and
the available CEs, using the job’s JDL file and the
information provided by the ISM service. Also, the MM
calculates the Rank expression of each CE in the set of
CEs created by the filtering strategy. Figure 2 summarizes
the structure of the gLite’s directories where the WMS
code is located.

Figure 2. The structure of the gLite’s directories where
the WMS code is located.

4.3 SFETE implementation in gLite
middleware

SFETE uses the two-phase procedure (filtering and
selection) described above, in order to select the
appropriate CE for a given job. For the filtering phase,
SFETE uses the same strategies as the Max and the Fuzzy
Rank algorithms. For the selection phase, SFETE
computes the simple fair execution time estimation for a
given job at each filtered CE, and assigns the job to the

23

CE that gives the minimum value. So, in SFETE the
ranking is not based on the user preferences as they are
expressed by the Rank attribute of the JDL file, but on the
minimum simple fair execution time estimation. If there
are more than one computation resources that yield the
same simple fair execution time estimation, the job is
assigned randomly to one of them. In order for a user to
be able to use SFETE algorithm, we defined a new
boolean JDL attribute, called FeteRank (Figure 3).

[
 Type="Job";
 JobType="Normal";
 Executable="fibonacci.sh";
 StdOutput="fibonacci.out";
 StdError="fibonacci.err";
 InputSandbox={"./fibonacci.sh","./Fibonacci.py"};
 OutputSandbox={"fibonacci.out", "fibonacci.err"};
 Requirements=other.GlueCEStateWaitingJobs<100;
 FeteRank=true;
]
Figure 3. A job’s JDL file requesting the use of the
SFETE selection strategy. The Rank attribute is not
needed.

An important part of the SFETE implementation is the
calculation of the simple fair execution time. For this
calculation SFETE must know for each filtered CE, its
computation capacity and the number of the jobs assigned
to it. In order to obtain the computation capacity
information, SFETE asks the Information Super Market
(ISM) service. Each resource in the Grid publishes various
information, including its total number of CPUs and their
clock speed, and also information on the speed rating of
each CPU based on the nominal SpecInt2000 benchmark.
Each of these CPU characteristics can be used for
expressing the computational capacity of the resource. On
the other hand, the number of jobs assigned to a CE is a
dynamic property, which changes with time. The
Monitoring and Discovery Service (MDS) service updates
this information in the ISM at periodic intervals. As a
result, in the time period between two updates the ISM
may publish outdated information for the number of jobs
in a CE (and for other dynamic information). However, in
order for the SFETE algorithm to operate efficiently, it
must know with some accuracy this information. For this
reason we have embedded in the SFETE implementation a
mechanism that provides a better estimate of the number
of jobs in a CE. The basic idea of the mechanism is the
use of a local counter for each CE, which is updated from
the WM every time a job is assigned for execution to the
corresponding CE. This value is of course only an
estimate, since the local counters are informed only for the
jobs that are assigned to each computation resource and
not for the jobs that complete their execution. For this
reason in every ISM update, the local counters are updated
with the data published from the ISM.

In summary, for the implementation of SFETE in gLite
we performed the following changes in the code:

• org.glite.wms.broker: In the src/selectors/RB-
SelectionSchema.cpp file we defined the existence of
the SFETE selection strategy. In the same directory
we created the SFETE related files
(SFeteRankSelector.h and SFeteRankSelector.cc).

• org.glite.wms.matchmaking: In the file
matchmakerISMImpl.cpp we implemented the
SFeteRank() function.

• org.glite.wms.helper: In the src/broker/Helper_
ism.cpp file and in the flatten_requirements()
function, we use the SFeteRankSelector in the case
where the SFeteRank attribute is set in the JDL file.

• org.glite.wms.ism: In the ism.cpp and in the
purchaser/ldap-utils.cpp files we implemented the
internal mechanism that keeps track of the jobs that
have been assigned to the available CEs.

5 Performance Results
5.1 Testbed
In order to evaluate the performance of the SFETE
scheduling algorithm we set up a small Grid infrastructure
based on the gLite middleware. This way we were able to
evaluate SFETE in a realistic instead of a simulation
environment and compare it against the scheduling
algorithms that gLite middleware provides by default to
its users. Figure 4 shows the Grid infrastructure we set up,
which was based both on gLite 3.0 and gLite 3.1
middleware, since at the time of we set it up, the gLite 3.1
was not fully released yet.

Our testbed has three CEs, each of which has its own
WN (Table 1), for executing the jobs. The CEs use as
LRMS the Torque/PBS system. The R-GMA is
responsible for publishing information about the available
computation and storage resources and the SE provides
access to the data storage resources. The LFC catalog
service stores the location or locations of the files and
their replicas. The R-GMA, the SE and the LFC
components where not utilized in our experiments. The
Site-BDII informs the ISM component of the WMS about
the status of the various CEs. The WMS we use is
modified as we have added to it the SFETE scheduling
algorithm. VOMS provides information such as VO
membership, group membership and the roles of each
user. In our experiments we use a single VO that gets
100% of each CE’s computational capacity. Finally,
through the User Interface (UI) each user can be
authenticated and authorized to use the Grid resources. In
order for authentication to work within gLite all users and
services need to have a certificate issued from a trusted
Certificate Authority (CA). Since the CA is the heart of
the gLite authentication system, we established for
simplicity our own trusted CA in our Grid testbed.

24

Figure 4. The gLite testbed used in our experiments.

Resource Type Details
SE Pentium 4 1.6 GHz Hard Disk 60GB

CE/WN 1 Ram 512 MB Pentium 4 1.8 GHz

CE/WN 2 Ram 512 MB Pentium 4 3.0 GHz

CE/WN 3 Ram 512 MB Intel Core 2 DUO 3.0
GHz

Table 1: The characteristics of the storage and
computational resources of our testbed.

5.2 Experiment Parameters
In order to evaluate the performance of the SFETE against
the default gLite scheduling algorithms, we performed a
number of experiments. In our experiments we have five
users, with the same rights, who submit jobs to the Grid
testbed. The user’s job submission process is assumed to
be Poisson with the following average arrival rates: 5, 10,
15, 20, 25 and 30 jobs/min. Based on the work we
performed in [10], we observed that in the EGEE
infrastructure job inter-arrival times follow an exponential
distribution and therefore Poisson is a good approximation
of the arrival process. We do not use larger arrival rates
since our Grid testbed has limited computation resources
and larger rates would overload the testbed. Users
generate jobs of different mean durations: 5, 6.5, 8.5, 10.5
and 12.5 minutes. To be more precise, this is the duration
of the corresponding job when it is executed at the highest
computational capacity resource, without competing with
any other jobs for the resource. The jobs created do not
have any data dependencies, since this would complicate
our study.

In our experiments we use a default filtering strategy, by
setting the Requirement attribute to “Production”, where
all the CEs are selected. For the selection strategy the Max
and Fuzzy Rank algorithms select a CE based on a
dynamic expression at the Rank attribute of the JDL file,
where a job is submitted to the computation resource that
has the fewest jobs in its queues. On the other hand
SFETE selects the CE with the minimum fair execution
time estimation. This way the dynamic ranking used
affects only the decisions of the Max and Fuzzy
algorithms, and not those of SFETE. In our experiments
we used the following metrics:

• the average job total delay at the Grid, measured
from the time a job is created until the time it
completes its execution at a CE.

• the average time a job remains queued at a CE
before its execution.

• the distribution of jobs at the available CEs.

5.3 Results
Figure 5 shows the average job total delay as a function of
the job submission rate. For all the scheduling algorithms
examined when the job submission rate increases the
average job total delay increases. SFETE achieves smaller
average total delay than the Max and Fuzzy Rank
algorithms for all the submission rates examined, as
indicated by the results presented in Figure 6.

Figure 5. The average job total delay for the Max
Rank, the Fuzzy Rank and the SFETE algorithms, for
various job submission rates.

Figure 6 shows that the SFETE scheduling algorithm
results in constant distribution of the jobs to the available
computational resources, independently of the job
submission rate. SFETE assigns each job to the
computational resource that provides, at the time of the
submission, the minimum simple fair execution time
estimation. The result of this process is independent from
the job submission rate, since SFETE assigns to each
available resource a percentage of the total jobs,
proportional to its computational capacity. In the Max and
Fuzzy Rank algorithms the distribution of the jobs
changes randomly with the job submission rate and there
is a chance that a resource is overloaded, becoming a
bottleneck for the whole system.

These results are mainly due to the fact that both the
Max and the Fuzzy Rank algorithms use the information
provided by the ISM in order to evaluate the Rank
expression at the job’s JDL file. However, as already
mentioned, the information that ISM publishes is updated
at periodic intervals. In the time period between two
updates the ISM and consequently the scheduling
algorithms are not aware of new jobs arriving at the
resources for execution. For example, it is possible that in
this time period a large number of jobs may be assigned to
a previously light-loaded resource, overloading it, without
the ISM acknowledging that. As a result, the decisions

25

that the Max and Fuzzy Rank take are based on outdated
information and they may be incorrect. The effects of
outdated information become even more pronounced as
the job submission rate increases. On the other hand, the
mechanism we implemented in SFETE provides a better
estimate of the number of jobs at the resource queues. As
a result, the SFETE scheduling algorithm always
maintains a good distribution of jobs at the available
computation resources, independently of the job
submission rate.

(a)

(b)

(c)

Figure 6. The job percentage distributions at the
available CEs that (a) Max Rank, (b) Fuzzy Rank and
(c) SFETE achieve, for various job submission rates.

Figure 7 shows the average time a job remains at the
LRMS queues of the CEs as a function of the job
submission rate. This time is proportional to the total

number of jobs that use the same CE and affects the
average execution time of a job. Again SFETE
outperforms the Max and the Fuzzy Rank algorithms,
since it better distributes the jobs at the available
resources.

Figure 7. The average time jobs remain at the queues
of the CEs for the Max Rank, the Fuzzy Rank and the
SFETE algorithms, for various job submission rates.

6 Conclusions
We have investigated the gLite middleware architecture
and especially the part related to the scheduling
algorithms provided by default to its users. Moreover, we
developed and integrated in gLite a new scheduling
algorithm. The performance of this algorithm was
evaluated experimentally in a small Grid testbed, and was
shown to outperform the existing gLite scheduling
algorithms. The main drawback of the current
implementation of the Max and the Fuzzy Rank
algorithms is the outdated information that the gLite’s
information service publishes, for a number of dynamic
characteristics, such as the number of jobs at the resource
queues. Our results indicate that simple changes in the
gLite’s scheduling procedures can yield significant
performance gains. In the future we also plan to consider
the case where each VO gets a percentage of the CE’s
capacity. Finally, given the absence of any information on
the web about the gLite’s architecture and code structure,
we believe that this work is a good starting point for
anyone interested in extending, improving and evaluating
the gLite’s mechanisms.

7 References
[1] T. Braun et al, A Comparison of Eleven Static

Heuristics for Mapping a Class of Independent Tasks
onto Heterogeneous Distributed Computing Systems,
J. of Parallel and Distributed Computing, Vol. 61,
No. 6, pp. 810-837, 2001.

[2] H. Dail, H. Casanova and F. Berman, A Decoupled
Scheduling Approach for Grid Application
Development Environments, J. of Parallel and
Distributed Computing, Vol. 63, pp. 505-524, 2002.

26

[3] Y. Cardinale, H. Casanova, An evaluation of Job
Scheduling Strategies for Divisible Loads on Grid
Platforms, HPC&S, 2006.

[4] R. Buyya, M. Murshed, D. Abramson, S. Venugopal,
Scheduling Parameter Sweep Applications on Global
Grids: A Deadline and Budget Constrained Cost-
Time Optimisation Algorithm, Intl J. of Software:
Practice and Experience (SPE), Vol. 35, No. 5, pp.
491-512, 2005.

[5] K. H. Kim, R. Buyya, Fair Resource Sharing in
Hierarchical Virtual Organizations for Global Grids,
Intl Conf. on Grid Computing, 2007.

[6] N. Doulamis, E. Varvarigos, T. Varvarigou, Fair
Scheduling Algorithms in Grids, Tran. on Parallel
and Distributed Systems, Vol. 18, No. 11, pp. 1630-
1648, 2007.

[7] K. Krauter, R. Buyya, M. Maheswaran, A taxonomy
and survey of grid resource management systems for
distributed computing, Software: Practice and
Experience, Vol. 32, No. 2, pp. 135-164, 2002.

[8] A. Kertesz, P. Kacsuk, Distributed and Parallel
Systems: A Taxonomy of Grid Resource Brokers,
Springer, 2007.

[9] H. Dafouli, P. Kokkinos, E. Varvarigos, Fair
Execution Time Estimation Scheduling in
Computational Grids, International Conference on
Distributed and Parallel Systems (DAPSYS), pp. 93-
104, 2008.

[10] K. Christodoulopoulos, V. Gkamas, E. Varvarigos,
Statistical Analysis and Modeling of Jobs in a Grid
Environment, Journal of Grid Computing, Vol. 6,
No. 1, pp. 77-101, 2007.

[11] www.glite.org
[12] http://www.eu-egee.org/
[13] http://www.globus.org/
[14] http://www.unicore.eu/
[15] https://www.scientificlinux.org/
[16] MDS 2.2 Features in the Globus Toolkit 2.2 Release:

http://www.globus.org/toolkit/mds/#mds gt2
[17] R-GMA: Relational Grid Monitoring Architecture:

http://www.r-gma.org/index.html
[18] B. Tierney et al. , A Grid Monitoring Architecture,

GGF , 2001 (revised 2002)
[19] gLite 3.1 User Guide Manuals Series:

https://edms.cern.ch/file/722398//gLite-3-
UserGuide.pdf

[20] http://etics.web.cern.ch/etics/

27

