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SUMMARY

Grid scheduling algorithms are usually implemented in a simulation environment using tools that hide the
complexity of the Grid and assumptions that are not always realistic. In our work, we describe the steps
followed, the difficulties encountered and the solutions provided to develop and evaluate a scheduling pol-
icy, initially implemented in a simulation environment, in the gLite Grid middleware. Our focus is on a
scheduling algorithm that allocates in a fair way the available resources among the requested users or jobs.
During the actual implementation of this algorithm in gLite, we observed that the validity of the information
used by the scheduler for its decisions affects greatly its performance. To improve the accuracy of this infor-
mation, we developed an internal feedback mechanism that operates along with the scheduling algorithm.
Also, a Grid computation resource cannot be shared concurrently between different users or jobs, making it
difficult to provide actual fairness. For this reason we investigated the use of virtualization technology in the
gLite middleware. We did a proof-of-concept implementation and performed an experimental evaluation of
our scheduling algorithm in a small gLite testbed that proves the validity and applicability of our solutions.
Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The emergence of high speed networks is making the vision of Grids a reality. A number of appli-
cations in science, engineering, and commerce can benefit from the use of Grid networks. Grids
consist of geographically distributed and heterogeneous computational and storage resources that
may belong to different administrative domains, but can be shared among users by establishing a
global resource management architecture, called Grid middleware. A Grid middleware is a software
package providing a number of fundamental Grid services, such as resource discovery and moni-
toring, job, data, and resource management. An important issue in Grids is the management of the
resources and the scheduling of the jobs. Grids are quite dynamic, with resource availability and
load varying rapidly with time, while user jobs have very different characteristics and requirements.
The extent to which resource management and scheduling are able to cope with this unpredictable
environment is key to the success of Grid networks, because it determines the efficiency in the use
of the resources and the QoS provided to the users.

Until now most of the scheduling algorithms proposed for Grids are implemented and evaluated
in simulation environments. In general, simulation environments are acceptable scientific tools as
can be confirmed by the great majority of scientific papers in Grid and distributed computing related
conferences and journals, and are justifiable for a variety of reasons. For example, the evaluation of
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scheduling algorithms requires a flexible environment where parameters, for example, the number
of resources, can be easily altered and scaled. In addition, the burden of actual administrating and
implementing a scheduling algorithm in an existing Grid middleware may distract the scientist from
his/her main goal that is to develop efficient scheduling policies. Also, usually neither the researcher
nor even the authorized personnel is permitted to alter the mechanisms of a production Grid mid-
dleware for experimental purposes, because this would distract the service provided to thousands
of users. These reasons make simulation environments important tools for the evolution of Grid
computing. On the other hand, the simulation environments usually hide the complexity of the Grid
and the corresponding algorithms are built using assumptions that are not always realistic. Such
an assumption is the a priori knowledge of the job workload, or the assumption that the job is
divisible in smaller workloads. Also, many of these algorithms do not take into account communi-
cation or middleware delays that may hinder the scheduling algorithm’s performance. As a result,
simulations may not always reveal the problems that are encountered in real Grid environments. In
addition, production middleware like gLite are to a large extent complex systems, developed by a
closed group of researchers and, consequently, relatively little information exists on the drawbacks
of the existing mechanisms, while the understanding of their behavior is limited. As a result, valu-
able feedback on the operation of real Grid systems is not available to the scientists who propose
scheduling algorithms for these systems. Also, the requirements of Grid systems are too many, forc-
ing the development teams to focus mainly on the most important ones, such as security, scalability,
reliability, handling of heterogeneous resources, leaving the scheduling performance and related
issues mostly unattended.

Our work attempts to bridge, at least to some extent, the gap between developing scheduling
algorithms in simulation environments and actually building the Grid systems. For this purpose, we
describe the steps, the difficulties encountered and the solutions provided to develop and evaluate
a scheduling policy, initially implemented in a simulation environment, in a production Grid mid-
dleware, namely gLite (http://glite.cern.ch/). In particular, we implement in gLite the simple fair
execution time estimation (SFETE) algorithm, which is a good approximation of the fair execu-
tion time estimation (FETE) algorithm [1]. SFETE attempts to allocate in a fair way the available
resources among the requested jobs. An important issue we faced during the implementation was the
accuracy of the information provided by the gLite’s monitoring system. Accurate knowledge of the
number of jobs already assigned for execution at each computational resource is key to the correct
operation of SFETE and of other algorithms that base their decisions on the values of dynamically
changing parameters. gLite’s information service is updated at periodic intervals and, consequently,
it does not always have an accurate view of the number of jobs at each resource. To address this
drawback, we implemented a feedback mechanism that keeps track of the scheduler’s decisions.

Another important issue we addressed is that a computation resource cannot be shared concur-
rently between the different users or jobs. For example, it is not possible for a job to get 30% of a
resource’s computational capacity and for a second one to get at the same time the remaining 70%
of this capacity. Normally, jobs are executed one after the other (using the ‘first come first serve’ or
any other ordering discipline) and each job gets 100% of the computation capacity of the resource
where it is executed. This makes fairness, in the utilization of the available resources by the users,
difficult to provide. For this purpose we exploit the virtualization technology and extend the gLite
middleware to create and efficiently manage virtual worker nodes (WNs) that run transparently in
actual nodes in the Grid infrastructure. The virtualization technology, usually implemented through
software called virtual machines (VMs), makes it possible for entire ‘machines’ running a variety of
operating systems and software to be stored on disk files, migrated over the network, and instanti-
ated on arbitrary physical machines. VMs provide a powerful new layer of abstraction in distributed
computing environments and they can increase the efficiency with which task are scheduled to the
distributed resources.

We implement and evaluate the proposed mechanisms (SFETE, feedback mechanism, virtual
WN mechanism) in a self-contained fully-operational testbed. Our interest is to provide a proof-
of-concept implementation of these mechanisms in an existing Grid system, and show how other
scheduling algorithms previously proposed in theory and evaluated through simulations, can be
implemented in real Grid systems. Because the focus of our evaluation is to show experimentally the
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feasibility and the benefits of the implemented mechanisms, we do not compare the implemented
in gLite SFETE with other known from the literature algorithms but only with gLite’s existing
baseline scheduling policies. We believe that the implementation solutions provided can be easily
applied to any other scheduling algorithm and especially to those that require up to date knowledge
of dynamic information or to those that are based on reserving a percentage of the computing cycles
of a resource, as SFETE does. Our experimental results show that SFETE, together with the imple-
mented additional information update mechanism, performs better than gLite’s existing scheduling
algorithms, by achieving smaller job execution delay and better distribution of the jobs to the avail-
able resources. In addition, we evaluate the usage of virtual WNs along with the SFETE algorithm.
Our results show that the creation of virtual WNs can enhance the performance of the Grid, by
reducing the job’s queuing delays. This is, to the best of our knowledge, the first time an experi-
mental study of scheduling algorithms in gLite is performed, revealing some of gLite’s weaknesses
and also proposing solutions. Even though this work is specific to the gLite middleware, we believe
that it may be useful to anyone interested in developing and comparing scheduling algorithms in a
production Grid middleware.

The remainder of the paper is organized as follows: In Section 2 we report on previous work.
In Section 3 we present a summary of the architecture of the gLite middleware. In Section 4 we
describe in summary the SFETE scheduling algorithm and present the feedback mechanism imple-
mented. In Section 5 we present the usage of virtual WNs in the gLite middleware. In Section 6 we
present the experiments performed and the corresponding results. Finally, in Section 7 we conclude
the paper.

2. PREVIOUS WORK

A large number of scheduling algorithms has been proposed in the Grid related literature. A
taxonomy of the various scheduling algorithms is presented in [2, 3]. Job scheduling is usually
performed at two levels [4]; at the higher level, a central scheduler decides the site or domain a job
will be executed on, while at the lower level a local scheduler selects the exact machine where
the job will be processed. In [4–6] centralized, hierarchical, or distributed scheduling schemes
were presented. The proposed scheduling algorithms usually try to minimize the total average
job delay [6] or maximize resource utilization, even though other performance metrics can also
be used. The authors in [7] incorporated Grid economic models in scheduling algorithms that
support deadline and budget constraints. Even though most Grid scheduling algorithms provide
a best effort service, there are also works that try to provide hard QoS guarantees to the submit-
ted jobs [8]. The main mechanism used for providing QoS guarantees to the Grid users is the
reservation of the resources (communication, computational or storage) [9–11]. Also, fairness is
not a new concept for scheduling in general, and especially for scheduling in data networks. Fair-
ness in Grid networks has been investigated in a number works [1, 12–14]. In [12] the authors
proposed a resource allocation scheme based on fair resource sharing in hierarchical virtual orga-
nizations (VOs). In [13] three different fair scheduling algorithms were proposed, called the simple
fair job order policy, the adjusted fair job order policy, and the max–min fair share schedul-
ing policy. In [14] game theory was used to prove that strong community control is required to
achieve acceptable performance in Grid, by comparing centralized and distributed fair schedul-
ing algorithms. Most of these scheduling algorithms have been evaluated through simulations,
using various simulators such as Gridsim (http://www.cloudbus.org/gridsim/) [15, 16] OptorSim
(http://edg-wp2.web.cern.ch/edg-wp2/optimization/optorsim.html) [17] and others.

Scheduling is also an important issue in production Grid middleware, such as gLite [18],
Globus (http://www.globus.org/) [19], UNICORE (http://www.unicore.eu/) [20], and advanced
resource connector [21]. gLite is the result of the collaborative efforts of different academic and
industrial research centers as part of the Enabling Grids for E-sciencE (EGEE) project [22].
EGEE brings together more than 140 institutions to produce a reliable and scalable computing
resource available to the European and global research community. The EGEE infrastructure pro-
cesses jobs from various scientific domains including biomedicine, high energy physics, earth
sciences, astroparticle physics, computational chemistry, drug discovery, hydrology, and cosmology.
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The gLite middleware provides high level services for scheduling and running computational
jobs, for accessing and moving data, and for obtaining information on the Grid infrastructure
and the Grid applications, all these functions embedded into a consistent and secure frame-
work. The gLite related literature is relatively small in comparison to the literature regarding
Grid in general and in particular scheduling in Grid networks. Most works present the function-
ality of the existing gLite components [23, 24], describe applications running on EGEE [25],
or handle interoperability issues with other Grid middleware [26]. There are also works that
attempt to model various Grid related processes, like the job arrival process and the delay intro-
duced at different stages of job processing, using traces from gLite/EGEE and other production
Grid networks [27]. These studies are important for the improved understanding of the Grid
computing process.

Virtualization acquired popularity recently as a way to reduce cost of ownership and
increase resources utilization. Different solutions are available to manage VMs, including Xen,
VMware [28], and Kernel-based Virtual Machine (KVM). Solutions to dynamically connect vir-
tual machines and create virtual clusters over physical resources have also appeared in the market,
either in the form of services, namely Cloud computing service (e.g., Amazon Elastic Computing
Cloud — EC2 [29]) or as Cloud computing toolkits (e.g., OpenNebula [30] and Nimbus [31]). The
former provides resizable compute capacity as a service, while the latter allows an administrator to
turn his/her cluster, data or computer center into a virtual infrastructure that provides Cloud com-
puting services. Cloud computing is a style of computing in which dynamically scalable and often
virtualized resources are provided as a service over the Internet. Cloud and Grids have a lot in com-
mon, but there are also differences, the most important being that Grids are typically used as batch
job execution oriented infrastructures, while Clouds are more often used to provide long-time ser-
vices to the end users. A comprehensive comparison between Grids (mainly focused on the EGEE
infrastructure) and Clouds is presented by Conseil Européen pour la Recherche Nucléaire (French)
or European Council for Nuclear Research (CERN) [32]. A number of works attempt to combine
concepts and ideas from the Cloud and Grid areas, mainly through the virtualization technology,
to enhance the services provided. One of the first works integrating Grid and virtualization is the
Virtual Workspace [33], based on Globus, which provides a Grid execution environment that can be
customized according to the users’ requirements.

3. THE GLITE MIDDLEWARE

3.1. General

The gLite middleware [18] is a collection of interoperating services that cover all functionality
required to provide Grid services. A typical gLite deployment involves many hosts distributed and
communicating over a WAN. gLite users and resources are grouped into VOs that define both com-
munities of users sharing a common goal and an authorization delineation of the resources accessible
to each user group.

The gLite Grid services, which follow an SOA, can be grouped into five categories: access ser-
vices, security services, information and monitoring services, data services, and job management
services. Information and monitoring services provide a mechanism to publish and consume infor-
mation on the Grid resources and their status. This information, used for scheduling, monitoring,
and other purposes, is essential for the operation of the whole Grid. gLite’s information system is
based on the Berkeley Database Information Index (BDII). The three main services that relate to
data are the storage element (SE), the file and replica catalog service, and the data management.
The SE provides the corresponding of a storage resource, which can vary from simple disk servers
to complex hierarchical tape storage systems. Finally, the main job management services are the
computing elements (CE) and the workload management system (WMS). The CE provides the cor-
responding of a computation resource (e.g., cluster, supercomputers or individual workstations). A
CE provides information on the underlying resources and offers a common interface for submitting
and managing jobs on them. A CE has a collection of WNs, which are the nodes where the jobs
actually run on. The local resource management system (LRMS) is an important component of each
CE that schedules the jobs assigned to the CE on the available WNs. gLite supports the following
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LRMSs: OpenPBS/PBSPro, Platform LSF, Maui/Torque, Batch Queueing System (BQS) and Con-
dor. The WMS is a Grid level meta-scheduler that schedules jobs on the available CEs according to
user preferences and several policies (see Section 0). It also keeps track of the jobs it manages in a
consistent way, via the logging and bookkeeping (LB) service.

3.2. Workload management system

The WMS [23, 24] accepts job submission requests from users and searches for the appropri-
ate resources where these requests should be assigned. This way the WMS hides from users the
complexity of managing the Grid resources. The users simply describe the characteristics and
requirements of their job requests using a high-level language, the job description language (JDL),
and they submit their requests through the provided interfaces. It is then the responsibility of the
WMS to match these resource requirements with the resources the users have access permissions
on. The WMS also provides additional functionalities for job request management and control, such
as cancellation, output retrieval, and job files perusal.

Figure 1 shows the gLite WMS architecture and the internal synergy of the WMS components.
A user can access the job management services, provided by the WMS, through the workload man-
ager proxy, using a set of tools called WMS-UI tools. The workload manager is the core component
of the WMS and is responsible for selecting the most appropriate CE for the job’s execution. Two
main components of the WMS service are involved in the operation of WM: the matchmaker and
the information super market (ISM). The matchmaker or resource broker, provides a matchmaking
service, which selects the resources that best match the job’s requirements. The ISM is a repository
of resources information that is updated at periodic intervals and is available in read only mode to
the matchmaking engine. In particular, each CE informs periodically the corresponding BDII, and
the BDII informs periodically the ISM. The exact duration of these intervals can be defined by the
administrator. The remainder of the WMS components handle the jobs during the rest of their life-
time. As shown in Figure 1, the WMS interacts with other basic services of the gLite middleware,
such as the LB service that provides job monitoring support.

The WM, after receiving the job’s requirements (that is, the JDL file), performs two operations:

� The filtering operation, through which a set of candidate CEs is created, based on the job’s
requirements as defined in the requirements attribute of the JDL file.
� The selection (or matchmaking) operation, where the ‘best’ CE is selected among the CEs in

the previously created set. By ‘best’ we mean the CE that optimizes a metric of interest that is
defined in the Rank attribute of the JDL file.

Figure 1. The gLite WMS architecture and the internal synergy of the WMS components.
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The WMS has been designed based on the push-model philosophy where the user jobs are
assigned to some specific CE early at the match-making time and then remain to the LRMS queue
of the selected CE until their execution. This approach offers design scalability, minimum adminis-
tration effort, and allows only ‘real’ jobs to be assigned to the resources (no waste of CPU cycles
for other operations), which are significant advantages for a dynamic environment such as the Grid.
However, the WMS operation relies on the information system for service discovery and for retriev-
ing dynamic attributes, which leads to some disadvantages as well. Specifically, the values of the
dynamic parameters are not always accurate, because there are several latencies as a result of the
update rates or the information caching at the various involved levels. Furthermore, there is no sup-
port for changing the assignment of a job to some CE for execution. This is a critical issue that
may lead to poor performance when, for example, there are too many jobs waiting in CE’s queues
for execution, given the weakness of the information system to monitor adequately dynamic param-
eters. This makes evident the importance of a scheduling mechanism that assigns the jobs to the
available resources in a way that maximizes the resource utilization while at the same time prevents
job submission to CEs that already have a lot of jobs to their queues.

Looking in the code of gLite we identified two matchmaking algorithms, which we call the Max
Rank and the Fuzzy Rank algorithms. The Max Rank algorithm chooses the CE whose current state
maximizes the expression at the Rank attribute. When there are more than one CEs with the same
maximum Rank value, the algorithm selects randomly one of them. The Fuzzy Rank algorithm is a
stochastic variation of the basic Max Rank algorithm. For each CE in the set formed by the filtering
operation, Fuzzy computes the Rank expression from the JDL file. However, in this algorithm the
values of the Rank expression associated to each CE represent (after normalization) the probability
that each CE will be selected as the ‘best’ CE for the job’s execution. The selection probability
for a CE is therefore higher for higher ranking values. It is evident that the Fuzzy algorithm may
select a different CE each time it is executed even if the user requirements and the state of the
resources remain the same. Generally, the scheduling algorithm used determines to a large extent
the performance of the whole Grid infrastructure, and this is why its logic and functionality are of
high importance.

4. THE FEEDBACK MECHANISM

One of the most important factors affecting the performance of a Grid scheduling algorithm is the
validity and the accuracy of the information provided to the algorithm for its decisions. Such infor-
mation includes the computational and storage capacities of the resources, the number of the jobs
assigned to the various resources, the CPU load, and others. The validity of the information becomes
particularly difficult to guarantee if it changes dynamically with time, as is the case with the number
of jobs running on each resource.

In Grid systems such information is provided to the scheduling algorithm by an information mon-
itoring system. In gLite in particular, the scheduling algorithm asks the ISM service. This service,
as mentioned in the previous section, is updated at periodic intervals by the BDII and, consequently,
it does not always have an accurate view of the number of jobs at each resource. For information
that is static, such as the computational capacity of the resources, this is not an issue, because this
information does not (usually) change. The number of jobs assigned to a CE, however, is a quite
dynamic parameter that changes with time, and in the time period between two ISM updates, ISM
may publish outdated information for this parameter. The SFETE algorithm that we implemented
in gLite, requires for its efficient operation the accurate knowledge of the number of jobs running
on each resource. To handle the inaccuracies introduced by the periodic operation of the informa-
tion service, we have embedded in the SFETE implementation a mechanism that provides a better
estimate of the number of jobs in each CE.

4.1. Simple fair execution time estimation scheduling algorithm

We implemented from the start a new scheduling algorithm, called SFETE, in gLite, trying at
the same time to identify issues that are not very visible to a theoretician designing scheduling
algorithms. SFETE assigns job i to resource j that provides the minimum simple fair execution
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time OXij . The simple fair execution time OXij is an estimation of the time by which job i will be
executed on resource j , assuming it gets a fair share of the resource’s computational power, without
taking into account the fair execution times of the other jobs assigned to the resource.

The simple fair execution time OXij of job i on resource j is defined as

OXij D wi �
.Nj C 1/

Cj
(1)

where wi is the workload of job i ,Cj is the computational capacity of resource j , and Nj is the
number of jobs in the resource’s queue, including the one being processed at the time. It is impor-
tant to note that the calculation of the simple fair execution time OXij of job i on resource j is only
an estimate. New jobs may be sent to resource j , or existing jobs may complete their execution,
changing the number of pending jobs and, consequently, the fair share of the computation capacity
the jobs already assigned to the resource should take; however, in SFETE the simple fair execution
time estimations of the jobs are not reestimated when such changes occur. Also, we should note that
the a priori knowledge of workload wi is not needed for SFETE, because the optimization in (1) is
made over j (the resource where job i should be sent to). The pseudocode of the SFETE algorithm
is presented in Algorithm 1.

4.2. Implementation

In this section we describe the steps we followed to implement SFETE in the gLite Grid middleware.
In order for a developer to be able to extend and build the components of gLite, the ETICS system
is required. ETICS, which stands for eInfrastructure for Testing, Integration and Configuration of
Software, is an online collaborative service for managing software projects by managing their con-
figuration, enforcing quality standards, building packages and testing them in environments as close
as possible to real-world infrastructures. Through ETICS the developer can download the modules,
files, libraries, and configuration files needed to build the component of interest (e.g., the WMS).
Once the code and a suitable configuration have been downloaded, the developer can use the ETICS
client to generate software packages and reports. For our development purposes we downloaded the
WMS code using the etics-checkout command with the appropriate parameters:

etics-checkout - -platform slc4_ia32_gcc346 �c gli te-wms_R_3_2_1_20 org.gli te.wms
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After downloading the code we were able to compile and build it locally, in our development
machine, using the command etics-build:

etics-build - c gli te-wms_R_3_2_1_20 org.gli te.wms

This command produces several files containing information about the results of the compilation.
Also, the compilation creates RPM Package Manager installation files for every functional compo-
nent in a separate folder. These RPM files can be used for updating an existing installation of the
gLite middleware with the implemented changes. This way the user is alleviated of the burden of
caring about the various code interdependencies that may exist. We also followed this approach by
updating the WMS/LB node of our testbed with the RPMs we created.

Simple fair execution time estimation uses the two-phase procedure (filtering and selection)
described previously (Section 3.2), to select the appropriate CE for a given job. For the filtering
phase, SFETE uses the same strategies as the Max and the Fuzzy Rank algorithms. For the selection
phase, SFETE computes the simple fair execution time estimation for a given job at each filtered
CE, and assigns the job to the CE that gives the minimum value. Therefore, in SFETE the ranking
is not based on the user preferences as they are expressed by the Rank attribute of the JDL file,
but on the minimum simple fair execution time estimation. If there are more than one computation
resources that yield the same simple fair execution time estimation, the job is assigned randomly
to one of them. For a user to be able to use the SFETE algorithm, we defined a new boolean JDL
attribute, called FeteRank.

An important part of the SFETE implementation is the calculation of the simple fair execution
time. For this calculation SFETE must know for each filtered CE, its computation capacity and the
number of jobs assigned to it. To obtain the computation capacity information, SFETE asks the ISM
service. Each resource in the Grid publishes various information, including its total number of CPUs
and their clock speed, and also information on the speed rating of each CPU based on the nominal
SpecInt2000 (http://www.spec.org/cpu2000/) benchmark. Each of these CPU characteristics can be
used for expressing the computational capacity of the resource. On the other hand, the number of
jobs assigned to a CE is a dynamic property, which changes with time. As a result, in the time
period between two updates the ISM may publish outdated information for the number of jobs in
a CE (and for other dynamic information). However, in order for the SFETE algorithm to operate
efficiently, it must know with some accuracy this information. For this reason we have embedded
in the SFETE implementation a mechanism that provides a better estimate of the number of jobs in
a CE, addressing in this way the intrinsic weakness of the information system to provide accurate
information for dynamic parameters. The basic idea of the mechanism is the use of a local counter
for each CE, which is updated from the workload manager every time a job is assigned for execution
to the corresponding CE. This value is of course only an estimate, because the local counters are
informed only for the jobs that are assigned to each computation resource and not for the jobs that
complete their execution in the time period between two ISM updates. For this reason in every ISM
update, the local counters are updated with the data published from the ISM service.

In summary, for the implementation of SFETE in gLite we performed the following changes in
the code:

� org.glite.wms.broker: In the src/selectors/RB-SelectionSchema.cpp file we defined the exis-
tence of the SFETE selection strategy. In the same directory we created the SFETE related files
(SFeteRankSelector.h and SFeteRankSelector.cpp).
� org.glite.wms.matchmaking: In the file matchmakerISMImpl.cpp we implemented the

SFeteRank() function.
� org.glite.wms.helper: In the src/broker/Helper_ ism.cpp file and in the flatten_requirements()

function, we call the SFeteRankSelector function in the case where the SFeteRank attribute is
set in the JDL file.
� org.glite.wms.ism: In the ism.cpp and in the purchaser/ldap-utils.cpp files we implemented

the internal feedback mechanism that keeps track of the jobs that have been assigned to the
available CEs.
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5. VIRTUAL WORKER NODES MECHANISM

In most current Grid middleware, including gLite, a resource cannot be shared concurrently between
different users or jobs, mainly because of the capabilities of the underlying operating systems. This
means that a job uses 100% of a resource until its execution is completed, while it is not possible
for two jobs to use concurrently, for example 60% and 40%, respectively, of a resource’s computa-
tional capacity for the whole duration of their execution. As a result, advanced scheduling policies
proposed and evaluated in simulation environments cannot find direct application in the existing
Grid middleware. In our work we examine how this drawback can be handled in gLite by using the
virtualization technology to increase the Grid network’s resource availability and performance.

In particular, we extended the gLite middleware to create and efficiently manage virtual WNs
that run on actual nodes of the Grid infrastructure and seem and behave as actual WNs to the other
gLite services. The virtual WNs are in fact VMs that have specific characteristics (operating system,
CPU capacity, memory size, disk size). The virtual WNs are transparent to all the gLite services, to
the end users, to the administrators, and to the applications, except for the WMS and the local CE
scheduler that are responsible for their dynamic creation, destruction, and reallocation of available
computational capacity, as new jobs arrive or jobs complete their execution. The same approach can
also be used to provide services such as resource fault tolerance, job migration, and others, which
however were not considered or implemented in this work. Moreover, as a result of recent progress
in VM technology, these described functionalities no longer come at a performance cost to either
the application or the hosting resource; systems such as Xen demonstrate that they can be used with
little or no performance degradation.

Although we build the proposed virtual WN mechanism in a generic way as to be used by any
scheduling policy, we focus on how it can enhance the functionality of the SFETE fair scheduling
algorithm presented earlier (Section 4.1). Our purpose is to take advantage of existing technolo-
gies/mechanisms implemented in gLite, incorporating our virtual WN mechanism in a way that is
as transparent as possible to the other services.

5.1. Simple fair execution time estimation enhancements

Simple fair execution time estimation is extended through the virtual WN functionality as follows.
For each new job i requesting service the scheduler calculates its fair execution timeXij if executed
on resource j , for all j , and assigns it to the resource that gives the minimum fair execution time.
Next, the scheduler orders the components of the virtual WN mechanism, residing in the chosen
resource, to start a new virtual WN in this resource with computational capacity equal to

Cj

Nj .t/C 10

whereCj , is the computational capacity of the resource andNj .t/ is the total number of jobs already
assigned to it, at the time t the assignment decision is made. In addition, our virtual WN mecha-
nism readjusts (decreases) the computational capacities of all the virtual WNs already running in the
resource accordingly. This means that in practice all the virtual WNs in a resource get an equal share
of the resource’s computational capacity. This readjusting procedure also occurs when a job com-
pletes its execution, in which case its virtual WN is closed and the computational capacities of all the
other virtual WNs are again readjusted (increased). Therefore, through the virtualization technology
it becomes possible to run concurrently more than one job on the same physical machine and also
to adjust on demand the percentage of CPU each virtual WM takes, making time sharing possible.

Figure 2 shows the way virtual WNs are created and closed and the way their computational
capacity is allocated and reallocated as new jobs arrive at the resource or existing jobs complete
their execution. Task 1 is the first task arriving at the resource and the corresponding virtual WN
created has the maximum possible computation capacity, equal (theoretically at least) to that of the
underlying physical machine. At time instance t1, a new task arrives (Task 2) and a new virtual WN
is created for serving it. In this case, the computation capacity of the first virtual WN is reduced
to 50% of the resource’s maximum capacity, while the second virtual WN receives the remaining

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe



A. KRETSIS, P. KOKKINOS AND E. A. VARVARIGOS

Figure 2. The virtual WNs and their computational capacities as new jobs arrive in the resource or complete
their execution.

50%. At time instance t2, a third task arrives (Task 3), resulting in the creation of another virtual
WN and in the adjustment of the computational capacities of all the existing virtual WNs to be equal
to 33% of the resource’s maximum capacity. At time instance t3, Task 1 completes its execution,
its virtual WN is closed and its computational capacity is reallocated equally among the remaining
virtual WNs. At time instance t4, Task 3 also completes its execution, leaving in the system only
one virtual WN with maximum computational capacity. In the end, Task 2 also completes and all
the virtual WNs are closed.

We should stress that the reestimation of the fair execution times when new tasks arrive or exist-
ing tasks complete their execution at a resource is easily implemented in a simulation environment,
but not in a production Grid middleware, like gLite. This is also the case for any scheduling algo-
rithm using a dynamically varying ranking metric for selecting the resource where a task should be
assigned. This is because the reestimation of a metric (e.g., fair execution time) may change the rela-
tive priorities of the tasks, and may lead to the need of stopping some tasks in favor of others, or even
moving some tasks to other resources. However, this functionality is not available today, at least in
gLite, using the existing WMS. The virtual WNs mechanism we propose handles the reestimation
of the tasks’ fair execution times required when task arrivals or departures occur, by readjusting the
virtual WNs’ computational capacities. However, more extensions (not considered in this work) are
required, such as adding the capability to the WMS to pause the execution of tasks, to move them to
other machines, etc. These extensions are made possible by the virtual WNs mechanism presented
in this work, because it is easier to move a virtual machine between physical machines, instead of
moving a task with its intermediate states.

5.2. Implementation

The virtual WN mechanism consists of several dedicated middleware components/services that are
spread over all the levels of the gLite hierarchy (Figure 3). Through this mechanism, the virtual WNs
at the various resources/sites are initiated and managed dynamically. The users simply describe the
characteristics and requirements of their job requests as usually, using JDL, and submit their requests
through the provided gLite interfaces. Then it is the responsibility of the WMS and of the virtual
WN mechanism to determine which resource each job will be assigned to, which virtual WN will be
initiated and with what computational capacity. Also, the virtual WN mechanism is responsible for
terminating virtual WNs when the corresponding jobs complete their execution and for reallocating
the available capacity to the remaining virtual WNs at a resource.

More particularly, the implemented mechanism consists of the following components/services
(Figure 3):

� WMS level services: interact with some of the core services of the WMS. Through this
interaction our mechanism is able to manage the creation of the virtual WNs at the CE.
� CE level services: their primary purpose is to manage the life-cycle of the virtual WNs that

belong to a particular CE. These services receive operational commands from the WMS level
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Figure 3. Virtual WN mechanism’s components and their interaction.

and act accordingly. Furthermore, they orchestrate the operation and interaction between the
other components of gLite or of our mechanism, such as the LRMS, and the Image Repository.
� Node services: these services receive operational commands by the CE level and act accord-

ingly upon the running virtual WNs.
� Image Repository: holds preconfigured images that are used as virtual WNs.

6. PERFORMANCE RESULTS

6.1. Simulation results

Initially, we compare SFETE scheduling algorithm against some well-known algorithms (Table I),
using the GridSim [15] simulator. The scheduling algorithms were implemented in a centralized
and ‘offline’ manner, where all (waiting to be scheduled) tasks are first ordered and then assigned to
the appropriate resource. In the earliest deadline first (EDF) ordering policy the task with the most
imminent deadline is scheduled first, while in the least length first (LLF) ordering policy, the task
with the smallest workload is given priority. The earliest completion time (ECT) assignment policy,
assigns a task to the resource where the task will finish its execution earlier. Also, the SFETE algo-
rithm uses the first come first serve (FCFS) ordering policy, where tasks are processed (assigned to
resources) in the order they arrive at the scheduler.

Table I. The scheduling algorithms compared with the SFETE.

Algorithm Ordering policy Assignment policy

FCFS/ECT FCFS Earliest completion time (ECT)
EDF/ECT EDF Earliest completion time (ECT)
LLF/ECT LLF Earliest completion time (ECT)
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All the scheduling algorithms were evaluated in a nonuniform resource scenario, in which the
resources have different characteristics. The total computational capacity of the resources in both
scenarios was the same. The tasks characteristics are defined probabilistically and the users’ task
submission rate follows an exponential distribution, whose mean takes the following values: 12,
20, 25, 33, 40, 50, 55, 60, 65, 70 tasks/s. Also, in our simulations we assume that the communi-
cation delays are negligible compared with the execution time of the tasks, which is the case in
computational Grids.

We used the following metrics:

� Average task delay: The average of the delays of the tasks (task Delay D task Finish time –
task Creation time).
� Average excess time: The average time by which a task misses its noncritical deadline (task

Excess timeD task Finish time – task Deadline expiration).
� Deadlines missed: The number of tasks that miss their noncritical deadlines.

For all the scheduling algorithms examined the average task delay increases as a function of the
task submission rate (Figure 4). Specifically, for light load all the algorithms have similar behavior;
however, when the task submission rate increases the SFETE algorithm achieves smaller average
task delay. This happens because the proposed algorithm treats the tasks and utilizes the resources
in a more fair manner, something that becomes more evident as the task load increases. We also
observe that the SFETE algorithm results in smaller task delay standard deviation than the other
algorithms (Table I).

Figure 5 illustrates that the average excess time increases as a function of the task submission
rate; this increase is smaller when the SFETE algorithm is used, meaning that the times by which
the tasks miss their deadlines are also smaller.

Finally, our performance results showed (Figure 6) that fewer tasks miss their deadlines when
they are scheduled using the SFETE algorithm than when they are scheduled with other algorithms.

Figure 4. Average task delay versus task submission rate.

Figure 5. Average excess time versus task submission rate.
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Figure 6. Deadlines missed versus the task submission rate.

Figure 7. The gLite testbed used in our experiments.

This is due to the fact that resources are utilized more uniformly, something that becomes more
evident as the task load increases.

6.2. Testbed results

To evaluate the performance of the SFETE scheduling algorithm when it is implemented in a pro-
duction grid middleware, we set up a small Grid infrastructure based on the gLite middleware. This
way we were able to evaluate SFETE in a realistic instead of a simulation environment and compare
it against the scheduling algorithms that gLite middleware provides by default to its users. Figure 7
shows the Grid infrastructure we set up based on gLite 3.1 middleware.

It is beyond the scope of this work to present in detail the installation and configuration pro-
cess of the testbed nodes; in what follows, we highlight instead the basic steps we followed.
Initially, we decided the exact topology of our Grid infrastructure, because this information is nec-
essary during the configuration of the various gLite nodes. Next, we installed the Scientific Linux
(http://www.scientificlinux.org/) operating system to each node and time synchronized them using
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the Network Time Protocol (NTP) protocol. Moreover, for all gLite nodes, except the UI, WN, and
BDII nodes, we installed the necessary host certificate/key files. These files must be issued by a
trusted (for the gLite middleware) certification authority (CA). Next, we installed the gLite mid-
dleware software packages, by selecting the appropriate software repositories and downloading the
corresponding software. After the successful software installation we configured each node using
the yaim tool. To configure each node, we edited, when needed, several configuration files and then
executed the yaim tool. As mentioned, in order for the authentication to work, all users and services
need to have a certificate issued from a trusted CA. In our testbed we did not use a commercial
CA, but established our own trusted CA. In particular, we implemented our CA using the OpenSSL
command-line tool that provides all the functionalities required. This approach is recommended
only for small infrastructures that are not connected to the Internet.

Our testbed has only one site that has four CEs (Table II) for executing the jobs. The CEs use as
LRMS the Torque/PBS system. The BDII informs the ISM component of the WMS on the status of
the various CEs. The WMS we used was modified because we have added to it the SFETE schedul-
ing algorithm. Virtual Organization Membership Service (VOMS) provides information such as VO
membership, group membership, and the roles of each user. In our experiments we used a single
VO that gets 100% of each CE’s computational capacity. Finally, through the UI each user can be
authenticated and authorized to use the Grid resources.

6.2.1. Experiment parameters. We performed a number of experiments to evaluate the performance
of the SFETE algorithm and the proposed mechanisms against that of the default gLite scheduling
algorithms. In our experiments we have five users, with the same rights, who submit jobs to the Grid
testbed. The user’s job submission process is assumed to be Poisson with the following average
arrival rates: 5, 10, 15, 20, 25, and 30 jobs/min. On the basis of the work we performed in [27] we
observed that in the EGEE infrastructure job interarrival times follow an exponential distribution and
therefore Poisson is a good approximation for the job arrival process. We do not use larger arrival
rates because our Grid testbed has limited computation resources and larger rates would overload it.
Users generate jobs of different mean durations: 5, 6.5, 8.5, 10.5, and 12.5 min. To be more precise,
this is the duration of the corresponding job when it is executed at the highest computational capac-
ity resource, without competing with any other jobs for the resource. The jobs created did not have
any data dependencies, because this would complicate our study.

In our experiments we used a default filtering strategy, by setting the Requirement attribute of
the JDL file to ‘Production’, where all the CEs are selected. For the selection strategy the Max and
Fuzzy Rank algorithms select a CE based on a dynamic expression at the Rank attribute of the JDL
file, where a job is submitted to the computation resource that has the fewest jobs in its queues. On
the other hand SFETE selects the CE with the minimum fair execution time estimation. This way
the dynamic ranking used affects only the decisions of the Max and Fuzzy Rank algorithms, and not
those of SFETE. In our experiments we used the following metrics to compare the performance of
the Max, Fuzzy Rank, and SFETE scheduling policies:

� The average job total delay at the Grid, measured from the time a job is created until the time
it completes its execution at a CE.
� The makespan, the time interval between the submission of the first job at the Grid infrastruc-

ture and the time when the last job finishes its execution at some CE.

Table II. The characteristics of the storage and computational resources of
our testbed.

Resource type Details

SE Pentium 4 1.6 GHz Hard disk 60 GB
CE/WN 1 Ram 512 MB Pentium 4 1.8 GHz
CE/WN 2 RAM 512 MB Pentium 4 3.0 GHz
CE/WN 3 RAM 512 MB Intel Core 2 DUO 3.0 GHz
CE/WN 4 RAM 1 GB Intel Core 2 DUO 3.0 GHz
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� The average time a job remains queued at a CE before its execution.
� The distribution of jobs at the available CEs.

6.2.2. Results. Initially, we performed experiments evaluating SFETE along with the feedback
mechanism without the virtual WNs mechanism. Figure 8 shows the average job total delay as a
function of the job submission rate. For all the scheduling algorithms examined, the average job
total delay increases as the job submission rate increases because queuing delays increase. SFETE
achieves smaller average total delay than the Max and Fuzzy Rank algorithms for all the submission
rates examined, as indicated by the results presented in Figure 8(a). Figure 8(b) shows the makespan
for all the algorithms. This metric depends on the maximum job delay at the queues of the CEs and
the average job execution time. As we can see SFETE outperforms the other gLite algorithms.

Figure 9 shows that the SFETE scheduling algorithm results in a rather uniform distribution of
the jobs to the available computational resources, for all job submission rates. SFETE assigns a job
to the computational resource that provides, at the time of the submission, the minimum simple

Figure 8. (a) The average job total delay and (b) the makespan for the Max Rank, the Fuzzy Rank, and the
SFETE algorithms as a function of the job submission rate.

Figure 9. The job percentage distributions at the available CEs that (a) Max Rank, (b) Fuzzy Rank and (c)
SFETE achieve as a function of the job submission rate.
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fair execution time estimation. The result of this process is independent of the job submission rate,
because SFETE assigns to each available resource a percentage of the total number of jobs that is
proportional to its computational capacity. In the Max and Fuzzy Rank algorithms the distribution of
the jobs changes randomly with the job submission rate and there is always a chance that a resource
will be overloaded, becoming a bottleneck for the whole system.

These results are mainly due to the fact that both the Max and the Fuzzy Rank algorithms use
the information provided by the ISM to evaluate the Rank expression at the job’s JDL file. The
Rank expression for these algorithms favors resources (CEs) that have a small number of jobs in
their queues. However, as already mentioned, the information that ISM publishes is updated at peri-
odic intervals. In the time period between two updates the ISM and, consequently, the scheduling
algorithms are not aware of new jobs arriving at the resources for execution. For example, it is pos-
sible that in this time period a large number of jobs may be assigned to a previously light-loaded
resource, overloading it, without the ISM acknowledging that. As a result, the decisions that the
Max and Fuzzy Rank take are based on outdated information and may be incorrect. The effects of
outdated information become even more pronounced as the job submission rate increases. On the
other hand, the mechanism we implemented in SFETE provides a better estimate of the number of
jobs at the resource queues. As a result, the SFETE scheduling algorithm always maintains a good
distribution of jobs at the available computation resources, independently of the job submission rate.

Figure 10 shows the average time a job remains at the LRMS queues of the CEs as a function of
the job submission rate. This time is proportional to the total number of jobs that use the same CE
and affects the average execution time of a job. Again, SFETE outperforms the Max and the Fuzzy
Rank algorithms, because it better distributes the jobs over the available resources.

We also performed experiments evaluating the SFETE algorithm enhanced with the virtual WN
mechanism. During our evaluation we observed that if the number of virtual WNs created in each
resource were unlimited, then a huge number of virtual WNs were created at each resource. These
virtual WNs and in particular the corresponding VMs require a small portion of the resource’s com-
putational capacity for their operation, even when not executing any job. As a result, when too many
virtual WNs are created at a resource, the actual free computational capacity of the resource is
reduced to the extent that it becomes incapable of serving new jobs. For this reason, we performed
experiments by altering the maximum number of allowed virtual WNs per resource. When more
jobs are assigned to a resource than the resource’s maximum number of allowed virtual WNs, then
some of these jobs are assigned to the already created virtual WNs. From the experiments conducted
we observed that the average job queuing delay is reduced (Figure 11) as a function of the maximum
number of allowed virtual WNs. On the other hand the average job delay is not reduced and it even
increases slightly. This is because independently of whether the virtual WN mechanism is used or
not, the same number of jobs try to use the same amount of resources, while the used VMs also
use a small portion of the resource’s computational capacity. Therefore, what our proposed virtual
WN mechanism actually achieves is the flexible (fair in our case) use of the available resources (for
example, jobs can get execution cycles from the time they arrive at the resource). This flexibility
can become more visible when different computational capacities are assigned to the virtual WNs,

Figure 10. The average time jobs remain at the queues of the CEs for the Max Rank, the Fuzzy Rank and
the SFETE algorithms as a function of the job submission rate.
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Figure 11. The average time jobs remain at the queues of the CEs using the SFETE algorithm enhanced
with the virtual WN mechanism as a function of the maximum number of allowed virtual WNs per resource

and for job submission rate equal to 15 jobs/s.

or when a job’s execution in a virtual WN is allowed to pause to execute in another virtual WN a
job with a higher priority. In the present work, we did not study these cases, because they were not
in the same context as SFETE.

7. CONCLUSIONS

Incorporating a new scheduling algorithm in a production Grid middleware, such as gLite, may
not be as straightforward as in the case of developing it in a simulation environment, for example
GridSim. This is because assumptions and simplifications usually made in simulations do not hold
in reality. We identified two important such implementation issues, namely the inaccuracy of the
information provided to the scheduler by the information system, and the inflexibility in the sharing
of a resource among different jobs, and we developed corresponding mechanisms to address them.
Our results indicate that simple changes in the gLite’s scheduling procedures can yield significant
performance gains. We believe that the mechanisms implemented, together with other changes, will
make it easier to incorporate in gLite other scheduling algorithms previously proposed only in the-
ory. We also verified that the use of virtualization technology is very promising, because resources
can be shared in a more flexible way among the jobs. However, it should be used with care because
it cannot, of course, reduce the execution time of the jobs, while there is an overhead associated with
the creation of virtual WNs. Finally, we believe that this work is a good starting point for anyone
interested in extending, improving, and evaluating the gLite’s scheduling mechanisms.
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