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Abstract

Dynamic broadcast is a communication problem where
each node in a parallel computer generates packets to be
broadcast to all the other nodes according to a certain ran-
dom process. The lower bound on the average time required
by any oblivious dynamic broadcast algorithm in an n-
dimensional hypercube is Ω(n+ 1

1�ρ)when packets are gen-
erated according to a Poisson process, where ρ is the load
factor. The best previous algorithms, however, only achieve
Ω( n

1�ρ) time, which is suboptimal by a factor of Θ(n). In
this paper, we propose the priority broadcast scheme for
designing dynamic broadcast algorithms that require opti-
mal O(n + 1

1�ρ) time in an n-dimensional hypercube. We
apply the routing scheme to other network topologies, in-
cluding k-ary n-cubes, meshes, tori, star graphs, general-
ized hypercubes, as well as any symmetric network, for ef-
ficient dynamic broadcast. In particular, the algorithms for
star graphs, generalized hypercubes, and k-ary n-cubes with
k = O(1) are also asymptotically optimal. We also propose
a method for assigning priority classes to packets, called op-
timal priority assignment, which achieves the best possible
performance for dynamic multiple broadcast in any network
topology.

1. Introduction

Hypercubes and k-ary n-cubes are among the most pop-
ular network topologies for parallel processing. Many com-
mercial and experimental parallel computers are built based
on these networks. Star graphs [2, 3] and generalized hyper-
cubes [6] are also important networks that are receiving in-
creasing attention recently. Numerous algorithms have been
proposed for these networks [5, 8, 10, 13, 15, 18, 19].

Among the properties and algorithms investigated for
these networks, dynamic broadcast is a communication
problem where each node in a parallel computer generates
packets to be broadcast to all the other nodes according to a

certain random process. A necessary condition for the sta-
bility of dynamic broadcast in an n-dimensional hypercube
is that the load factor (or called throughput factor)

ρ de f
= λ

2n�1
n

< 1;

when the packets to be broadcast are generated according
to a Poisson process with rate λ [14]. The lower bounds
on the average broadcast delay and average reception de-
lay required by any oblivious dynamic broadcast algorithm
are Ω(n+ 1

1�ρ) when the packets to be broadcast are gen-
erated according to a Poisson process [14]. Stamoulis and
Tsitsiklis [14] proposed a direct scheme based on n com-
pletely unbalanced spanning trees and an indirect scheme
based on n edge-disjoint spanning trees for dynamic broad-
cast in hypercubes. Their direct scheme is stable when ρ< 1
and requires O( n

1�ρ) average broadcast delay and reception

delay; their indirect scheme is stable only when ρ < 2
3 and

requires O( n
2=3�ρ) average broadcast delay and reception

delay. Varvarigos and Bertsekas [20] proposed a dynamic
broadcasting scheme based on partial multinode broadcast
(PMNB) for dynamic broadcast in hypercubes. Varvari-
gos and Banerjee [21] also proposed a direct broadcasting
scheme and an indirect broadcasting scheme for dynamic
broadcast in arbitrary network topologies. None of these al-
gorithms can achieve optimal performance when the load
factor is large.

In this paper, we propose the priority broadcast scheme
for dynamic broadcast in an n-dimensional hypercube that
requires optimal O(n+ 1

1�ρ) average reception delay. Our
dynamic broadcast algorithm for hypercubes is optimal
within a factor approximately equal to 1 when the load factor
is close to 0 and is optimal within a small constant factor for
any other load factor. Our dynamic broadcast algorithms are
very easy to implement in parallel computers and are consid-
erably faster than the best previous algorithms for networks
investigated in this paper. In particular, our algorithms for n-
dimensional hypercubes improve on the broadcast time re-
quired by the direct scheme proposed in [14] by a factor of



Θ(n) when the load factor is large, and have similar perfor-
mance when the load factor is close to 0.

We apply the priority broadcast scheme to other net-
work topologies, including k-ary n-cubes, meshes, tori, star
graphs, generalized hypercubes, as well as any symmetric
network, for efficient dynamic broadcast. In particular, the
algorithms for k1 � k2 � �� � � kn meshes or tori with ki =
O(1), k-ary n-cubes with k = O(1), star graphs, and gener-
alized hypercubes are asymptotically optimal. We also gen-
eralize the priority broadcast scheme to product networks
[7, 27]. The proposed broadcast scheme can also be applied
to a variety of other network topologies for dynamic broad-
cast with high performance. We propose an efficient method
for assigning priority classes to packets, called the optimal
priority assignment method, which achieves the best possi-
ble performance for dynamic multiple broadcast in any net-
work topology.

In Section 2, we introduce a simple dynamic broadcast
algorithm for hypercubes, illustrate the central idea of the
priority broadcast scheme, and provide an analysis for the
broadcast time. In Section 3, we present a simple dynamic
broadcast algorithm for k-ary n-cubes, meshes, and tori.
In Section 4, we propose the optimal priority assignment
method for arbitrary network topologies. In Section 5, we
generalize the dynamic broadcast algorithms to any vertex
and edge symmetric network as well as any homogeneous
product network.

2. Optimal dynamic broadcast in hypercubes

In this section, we present a simple oblivious algorithm
for dynamic broadcast in hypercubes, illustrate the central
idea of our priority broadcast scheme, and analyze its per-
formance.

2.1. A simple oblivious broadcast algorithm for hy-
percubes

In what follows, we describe a simple routing example
of the priority broadcast scheme we propose. When a node
generates a packet to be broadcast, it randomly selects a di-
mension d and then partition the hypercube into two (n�
1)-dimensional subcubes across dimension-d links; that is,
nodes in a subcube have the same value for the dth bit of
their addresses. We then broadcast the packet with high pri-
ority within the subcube to which the source node belongs
and forward the packets from this subcube to the other sub-
cube along dimension-d links with low priority (see Fig. 1).
Note that a packet is forwarded to the other subcube as soon
as the associated dimension-d link is available. Then each of
the two classes of traffic is responsible for about 50% of the
total traffic. Therefore, the high-priority traffic becomes a
traffic load with throughput factor ρ0 smaller than 0:5 when
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Figure 1. Dynamic broadcast in a hypercube
based on the priority broadcast scheme.

the system is stable and, as a result, delivering these high-
priority packets with small delay becomes a trivial job.

A simple method for broadcasting in an n-cube under the
single-port communication model can be presented as fol-
lows:

� At time 1, the source node sends the packet to be
broadcast to its dimension-(d+1 mod n) neighbor.

� At time t, t = 2;3; : : :n, each node that has a packet
forwards the packet to its dimension-(d + t mod n)
neighbor.

We can easily modify this algorithm to obtain a nonidling
queueing version for dynamic broadcast under the all-port
communication model. More precisely, in this modified al-
gorithm all the packets are sent along exactly the same path
as the preceding simple algorithm, but a node forwards all its
packets as soon as the associated links are available. For ex-
ample, the source node will send the packet to all its n neigh-
bors at time 1 if all its outgoing links are available. Note that
there may be other broadcast or routing tasks in the network,
so some links may be busy. Therefore, when an associated
link is not available, the packet has to be stored in the as-
sociated output queue and waits for service. The nonidling
direct scheme proposed in [14] uses this nonidling queueing
version for dynamic broadcast.

To combine this nonidling queueing version with our pri-
ority broadcast scheme, all we have to do is assign low pri-
ority to the packets that will be forwarded over dimension-d
links (i.e., the last step along a routing path), and assign high
priority to the remaining packets. In the following subsec-
tions we will show that the resultant algorithm is asymptoti-
cally optimal and improves on the best previous algorithms
significantly.



2.2. The central idea of the priority broadcast
scheme

To intuitively illustrate the central idea of our routing
scheme, we first analyze the broadcast time using a simple
approximation, which assumes that the arrival processes of
high-priority packets and all the packets at a node can be ap-
proximated by Poisson processes.

We assume unit service time and let ρ0 be the approximate
arrival rates of low-priority and high-priority packets (they
are approximately the same). Since 2ρ0 = ρ and ρ < 1 when
the system is stable, we have ρ0< 0:5. Therefore, the queues
for high-priority packets become slotted M/D/1 queues with
arrival rate ρ0 < 0:5 and the average waiting time for a high-
priority packet can be approximated by ρ0

2(1�ρ0)
+ 1

2 < 1 =

O(1).
According to the conservation law [11], the average wait-

ing time in a queue will not be affected by assigning different
priority classes to packets when the arrival process remains
the same and the assignment of priority classes is indepen-
dent of the service time of the packets. Therefore, the av-
erage waiting time for packets (including both low-priority
and high-priority packets) in our broadcast scheme is equal
to that of a slotted M/D/1 queue with arrival rate ρ and is
equal to 1

2(1�ρ) . Thus, the average waiting time for low-

priority packets is smaller than 1
(1�ρ) .

From the broadcast algorithm given in Subsection 2.1,
we can see that a packet is forwarded as a high-priority
packet for (n�1)=2 steps and is forwarded as a low-priority
packet for 1=2 step only on the average before it is received
by a node. Therefore, an upper bound on the approximation
of the average reception delay Tp(n;ρ) is given by

Tp(n;ρ)<
3n
4

+
(n�1)ρ

4(1�ρ=2)
+

ρ
2(1�ρ)

= O

�
n+

1
1�ρ

�
;

assuming the arrival processes at each node can be approx-
imated by Poisson processes. In particular,

Tp(n;ρ ! 0)�
3n
4

; Tp(n;ρ ! 1)�
5n
4

+
1

2(1�ρ)
:

Note that when all network nodes are synchronized, a packet
can be forwarded right after it is received and the average
reception delay can be reduced.

From the above analysis, we can see that before a packet
is received by a node, it was transmitted as a low-priority
packet with large delay O( 1

1�ρ) at most once, and was trans-
mitted as a high-priority packet with small delay O(1) at
most O(n) times. Therefore, the overall delay is only O(n+

1
1�ρ). As a comparison, a packet in the nonidling direct
scheme proposed in [14] goes through O(n) queues on the
average, each with large delay O( 1

1�ρ) (when the load fac-
tor ρ is large), for a total of O( n

1�ρ). As a result, when the

average queue lengths in our priority broadcast scheme and
in the direct scheme proposed in [14] are of the same order,
our priority broadcast scheme can have performance that is
better by a factor of Θ(n) when traffic is heavy (by separat-
ing the factors O(n) (i.e., the average distance) and O( 1

1�ρ)
(i.e., the average queue length) from multiplicative factors
in the time required by the algorithm in [14] to the addictive
factors for the average reception delay required by our algo-
rithm). Our proposed algorithm is the only known algorithm
in the literature that matches the asymptotic lower bound for
any oblivious algorithm.

2.3. Analysis of the simple dynamic broadcast algo-
rithm

The approximations presented in the previous subsection
provide an intuitive explanation of the central idea of our
broadcast scheme. are not Poisson processes. In this subsec-
tion, we present a more complicated and accurate estimation
of the broadcast time by more accurately describing the ar-
rival process.

In the following analysis we assume that the random pro-
cesses are in steady-state. We follow the notation and the
method for analysis in [14]. We let Y (i)

k and Z(i)k be the num-
bers of low-priority packets and high-priority packets wait-
ing for transmissions over the dimension-i link of a node X
at the beginning of the kth slot, including the packet to be
transmitted. We let Bk be the number of packets generated
by node X during the kth slot and let C(i)

k be the number of
packets generated by node X during the kth slot that choose a
dimension other than i to partition the hypercube for broad-
casting (see Subsection 2.1). We also let P(m;i)

k and Q(m;i)
k

be the numbers of low-priority packets and high-priority
packets received by node X from its dimension-m neigh-
bor during the kth slot that have to be forwarded through
its dimension-i link. Note that random variables P(m;i)

k and

Q(m;i)
k are of Bernoulli type; that is, P(m;i)

k ;Q(m;i)
k 2 f0;1g.

Then we have

Y (i)
k+1 = [Y (i)

k �1]++Bk +
n

∑
m=1

P(m;i)
k ; for k = 1;2; : : : ;

Z(i)k+1 = [Z(i)k �1]++Ck +
n

∑
m=1

Q(m;i)
k ; for k = 1;2; : : : ; (1)

where [α]+ = max(α;0). By vertex symmetry, these ran-
dom variables for all the network nodes are the same; by
edge symmetry, these random variables for network links of
dimension i are the same for all i.

To analyze the broadcast time required by our algorithm,
we need to introduce two approximating assumptions.

� Assumption A: For any (m; i), the random variables

(P(m;i)
k )k=1;2;::: are taken to be independent and identi-



cally distributed; the random variables (Q(m;i)
k )k=1;2;:::

are also taken to be independent and identically dis-
tributed.

� Assumption B: The processes (P(1;i)
k )k=1;2;:::,

(P(2;i)
k )k=1;2;:::, . . . , (P(n;i)

k )k=1;2;:::, and (Q(1;i)
k )k=1;2;:::,

(Q(2;i)
k )k=1;2;:::, . . . , (Q(n;i)

k )k=1;2;:::, are taken mutually
independent.

These assumptions are also used in [14] for the analysis of
their nonidling direct scheme for dynamic broadcast. They
are also of similar spirit as those used in [1, 9] for different
routing problems.

Similar to the analysis given in Subsection 2.2, we need
to compute the average queue length and the queue length
of high-priority packets. Both of them can be obtained us-
ing the method in [14] for the analysis of their direct scheme.
We let ρ be the load factor; that is, a link is busy with prob-
ability ρ. Then the average waiting time of all the packets is
given by

W =
ρ

3(1�ρ)
+O

�
n

2n(1�ρ)

�

for links of any dimension as shown in [14].
In what follows, we derive the average waiting time for

high-priority packets. We let ρ0 be the load factor of high-
priority packets; that is, a link is transmitting a high-priority
packet at a given time with probability ρ0. Then the expected
value of Q(m;i)

k is equal to

E[Q(m;i)
k ] = ρ0gm;i =

ρgm;i(2n�1�1)
2n�1

;

where gm;i is the probability that a packet received from a
dimension-m link will be forwarded over a dimension-i link,

gm;i =
2m�i�1mod n�1

2n�1
for m 6= i;

and gi;i = 0. We define the random process

A(i)
k =Ck +

n

∑
m=1

Q(m;i)
k : (2)

Since (Ck)k=1;2;::: is a renewal process and is independent

of (Q(1;i)
k )k=1;2;:::, (Q

(2;i)
k )k=1;2;:::, . . . , (Q(n;i)

k )k=1;2;:::, the ran-

dom process (A(i)
k )k=1;2;::: is taken as a renewal process that

assumes the distribution of a random variable A(i) under the
approximating assumptions. Then we have

E[A(i)] =
λ(n�1)

n
+

n

∑
m=1

ρ0gm;i =
ρ
2
�O

�ρn
2n

�
:
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Figure 2. Performance of our priority broad-
cast scheme for dynamic broadcast in (a)
an 8-dimensional hypercube and (b) a 16-
dimensional hypercube with various load fac-
tors.

After some calculation, we can also obtain

var[A(i)] =
ρ
2
�

ρ2

6
�O

�
ρ2n
2n

�
;

where λ is the arrival rate of new packets to be broadcast
from a node and λ = ρn

2n
�1 .

From Eqs. (2) and (1), we have

Z(i)k+1 = [Z(i)k �1]++A(i)
k : (3)

Since the arrival process (A(i)
k )k=1;2;::: is taken as a renewal

process, it follows from Eq. (3) that (Z(i)k+1)k=1;2;::: can be ap-
proximated by the process of the queue length of a discrete-
time G=D=1 queue with unit service time. Since the average
waiting time of high-priority packets is equal to

W 0 =
var[A(i)]

2E[A(i)](1�E[A(i)])
�

1
2
;

we have

W 0 =
ρ

3(2�ρ)
�O

�
n

2n(1�ρ)

�
<

1
3
+O

�
n

2n(1�ρ)

�

for links of any dimension. Therefore, from the conserva-
tion law [11], the average waiting time of low-priority pack-
ets is given by

WL = 2W �W 0 =
ρ(3�ρ)

3(1�ρ)(2�ρ)
�O

�
n

2n(1�ρ)

�
;

WL �
2

3(1�ρ)
when ρ ! 1:

Since a packet is forwarded as a high-priority packet for
(n�1)=2 steps and is forwarded as a low-priority packet for
1=2 step on the average before it is received by a node, the
average reception delay is given by

T(n;ρ) =
(n�1)(W 0+1)

2
+

WL +1
2

+
1
2



=
n(3�ρ)
3(2�ρ)

+
ρ

3(1�ρ)(2�ρ)
+

1
2
�O

�
n2

2n(1�ρ)

�

= O

�
n+

1
1�ρ

�
:

In particular, we have

T(n;ρ ! 0)�
n
2
+

1
2

; T(n;ρ ! 1)�
2n
3

+
1

3(1�ρ)
+

1
2
:

Figure 2 shows the performance of the simple oblivi-
ous broadcast algorithm presented in Subsection 2.1 for dy-
namic broadcast in an 8-dimensional hypercube and a 16-
dimensional hypercube with various throughput factors. We
can see that the time required for dynamic broadcast us-
ing our priority broadcast scheme increases slowly when the
load factor ρ increases, until ρ is very close to 1.

When no other communication tasks are taking place, the
system is stable as long as the throughput factor ρ < 1. This
can be shown by arguing that the queues of all the network
links will not build up with time. Although the approximat-
ing assumptions may lead to error in analysis when the traf-
fic is very heavy, we can use other methods to show that
the average reception delay is O(n+ 1

1�ρ). The details will
be reported in the near future. Therefore, our algorithm im-
proves on the broadcast time required by the direct schemes
proposed in [14] by a factor of Θ(n) when the throughput
factor is close to 1, and has similar performance when the
throughput factor is close to 0.

3. A simple dynamic broadcast algorithm for k-
ary n-cubes

In this section, we generalize the algorithm given in Sec-
tion 2 for dynamic broadcast in k-ary n-cubes.

We randomly choose a dimension d, then a broadcast al-
gorithm for a k-ary n-cube under the single-port communi-
cation model can be presented as follows:

� At time 1, the source node sends the packet to be
broadcast along dimension d +1 mod n.

� At time t, t = 2;3; : : :n, each node that has a packet
forwards the packet along dimension d+ t mod n.

This algorithm can also be easily modified to obtain a non-
idling queueing version for dynamic broadcast under the
all-port communication model as we did in Subsection 2.1.
More precisely, in this modified algorithm all the packets are
sent along exactly the same path as the preceding broadcast
algorithm, but a packet is stored in an output queue when
the associated link is not available and is forwarded as soon
as the associated link is available. In our priority broad-
cast scheme, we simply assign low priority to the packets
that will be forwarded over dimension-d links (i.e., the last

Low-priority
traffic

High-priority
traffic

Source node X

Figure 3. Dynamic broadcast in a 5-ary 2-cube
based on the priority broadcast scheme.

bk=2c steps along a routing path), and assign high priority to
the remaining packets. Figure 3 illustrates an example for
dynamic broadcast in a k-ary n-cube based on the priority
broadcast scheme.

From the preceding dynamic broadcast algorithm, we can
see that a packet is forwarded as a high-priority packet for at
most bk=2c(n� 1) steps and is forwarded as a low-priority
packet for at most bk=2c steps before it is received by a node.
Moreover, since only (slightly less than) 1=n of the total traf-
fic is high-priority traffic, the waiting time for a high-priority
packet is a very small constant. Similar to the analysis given
in Subsection 2.3, we find that the waiting time for a low-
priority packet is O( 1

1�ρ). Therefore, the average reception
delay is given by

O

�
kn+

k
1�ρ

�
:

When k is a constant, the average reception delay is equal to
O(n+ 1

1�ρ) as an n-dimensional hypercube and is asymptot-
ically optimal. As a comparison, by generalizing the broad-
cast scheme proposed in [14] for dynamic broadcast in k-
ary n-cubes, the average reception delay is O( kn

1�ρ) and is
suboptimal. Our priority broadcast scheme, again, improves
on this time complexity and that required by the dynamic
broadcast algorithm proposed in [21] for arbitrary network
topology by a factor of Θ(n) when the load factor is large.

The algorithm proposed in this section can be easily gen-
eralized to meshes and tori for dynamic broadcast. The only
difference is that the probability for a dimension to be se-
lected is determined by the number of nodes along that di-
mension in order to balance the traffic. The details will be
reported in the near future.

4. Optimal priority assignment for dynamic
broadcast

In this section, we present several methods for assigning
priority classes to packets, including the optimal priority as-
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Figure 4. (a) The completely unbalanced
spanning tree T1 rooted at node 0 of a 4-cube.
(b) Optimal priority assignment in the com-
pletely unbalanced spanning tree T1.

signment method, which achieves the best performance in
terms of the average reception delay for dynamic broadcast.

There exist many other alternatives to the methods used
in previous sections for the assignment of priority classes to
packets. For example, we can randomly select 2 (or more)
dimensions, and partition the hypercube into four (n� 2)-
dimensional subcubes by fixing these two dimensions. We
then broadcast the packet with high priority within the (n�
2)-dimensional subcube to which the source node belongs
and forward the packets from this subcube to the other sub-
cubes with low priority. About 25% of the total packets are
high-priority packets in this case and the high-priority traf-
fic becomes a traffic load with throughput factor smaller than
0:25 when the system is stable. We can also recursively use
the priority broadcast scheme for broadcasting within a sub-
cube. In the latter case, we will assign more than 2 priority
classes to packets in the network.

These examples and the algorithm given in Subsection
2.1 are actually equivalent to selecting several spanning
trees and assigning different priority classes to the nodes
in the spanning trees. For example, the algorithm given in
Subsection 2.1 uses n completely unbalanced spanning trees
rooted at the source node X, and assign low priority to the
packets that will be forwarded to the leaves of the trees.
Figure 4a presents a completely unbalanced spanning tree
rooted at node 0 in a 4-cube. The other 3 spanning trees can
be obtained by rotating the dimensions of the links (see Sec-
tion 5). The first example in this section uses n(n�1) com-
pletely unbalanced spanning trees and assigns low priority
to the packets that will be transmitted over the two selected
dimensions.

An efficient but more complicated method, called the op-
timal priority assignment, assigns a packet with higher pri-
ority if it has more descendants to be broadcast to. More
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Figure 5. Assignments of priority classes to
reduce the delay of dynamic broadcast in a
4-cube. (a) An assignment with 2 priority
classes. (b) An assignment with 3 priority
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precisely, let du and dv be the numbers of nodes in the sub-
spanning trees rooted at a node for broadcasting packets u
and v, respectively. Then packet u has higher priority at that
node if du > dv, and vice versa. Such assignment can be
easily represented when we use n completely unbalanced
spanning trees for broadcasting in hypercubes using the al-
gorithm given in Subsection 2.1. More precisely, a packet
that has to be transmitted over a dimension-i link in the jth

completely unbalanced spanning tree (i.e., the spanning tree
obtained by rotating the dimensions for j � 1 times, see
Section 5 or [10, 14] for details) is assigned priority class
( j� i�1 mod n) + 1. Figure 4b illustrates the optimal prior-
ity assignment for the first completely unbalanced spanning
tree of node 0 in a 4-cube. The average reception delay re-
quired using optimal priority assignment is smaller than that
required by the simple dynamic broadcast algorithm pre-
sented in Section 2. Actually, when the assignment of pri-
ority classes does not affect the arrival processes of packets
at any node, this assignment achieves the best possible per-
formance in terms of the average reception delay.

When two packets has the same number of descendants,
we can also assign higher priority to the packet that is older.
That is, when du = dv, packet u has higher priority if its
source is generated before that of packet v. To reduce the
broadcast delay of dynamic broadcast (that is, the average
time required for the last packet to be received in a broadcast
task), we can assign different priority to packets according
to their locations in the spanning tree. For example, we can
assign nodes in critical paths with higher priority. Figure 5
presents two possible assignments of priority classes for dy-
namic broadcast in a 4-cube with small broadcast delay.



5. Dynamic broadcast in any vertex and edge
symmetric networks

In this section, we propose a dynamic broadcast algo-
rithm that is generally applicable to any vertex and edge
symmetric network.

To obtain a broadcast algorithm for a symmetric network,
we first derive a shortest-path spanning tree T1 rooted at
node X for the network. This can be easily done by flood-
ing the network with packets from node X, and killing re-
dundant packets when applicable [4]. Then we “rotate” the
dimensions of links in this shortest-path spanning tree to de-
rive the other l � 1 shortest-path spanning trees, where l
is the degree of the network. More precisely, the shortest-
path spanning tree Ti, i = 2;3; : : : l, is obtained by replac-
ing each dimension- j link at level 0 with the dimension-
( j+ i�1 mod n) link of node X, replacing each dimension- j
link at level 1 (that was connected to theYth node at level 1 of
T1), with the dimension-( j+ i�1 mod n) link of the newly
obtained Yth node of Ti at level 1, and repeating this pro-
cess until all links of T1 are replaced. When node X gener-
ates a packet to be broadcast, it randomly selected a shortest-
path spanning tree Td and the network broadcasts the packet
along the spanning tree. By vertex and edge symmetry, we
can see that the traffic is balanced over all network nodes
and links, when the sources are uniformly distributed among
all network nodes. Note that for some networks, some of
the shortest-path spanning trees generated using this method
may be identical and can be removed. Since the packets are
broadcast along shortest-path spanning trees, the average re-
ception delay is minimized.

To combine the preceding broadcast algorithm with our
priority broadcast scheme, we will assign low priority to
packets with fewer descendants, and high priority to the re-
maining packets. A simple method is to assign low priority
to packets for the leaves, then to packets with 2 descendants,
and so on, until a constant fraction of the traffic is assigned
with low priority. We can use the optimal priority assign-
ment introduced in the previous section to optimize the per-
formance. We can also use a method that requires fewer pri-
ority classes and achieves performance between those of the
simple and optimal priority assignment methods.

The dynamic broadcast algorithm proposed in this sec-
tion is simple and powerful and can be applied to a variety
of important networks. In fact, the algorithms presented in
Sections 2 and 3 are special cases of this broadcast algo-
rithm, where half of the shortest-path spanning trees gen-
erated for a k-ary n-cube by the preceding method are re-
dundant and have been removed. We can apply this algo-
rithm to generalized hypercubes, and easily show that the
reception delay for dynamic broadcast in an n-dimensional
radix-r hypercube is O(n+ 1

1�ρ) = O(logr N+ 1
1�ρ), where

N is the size of the network. We can also apply this algo-

rithm to star graphs [2, 3] and show that the reception de-
lay for dynamic broadcast in an n-dimensional star graph
is O(n + 1

1�ρ ) = O( logN
loglogN + 1

1�ρ). Both algorithms for
the star graphs and generalized hypercubes are asymptoti-
cally optimal. The lower bounds can be derived as the proof
given in [14] for the lower bound on the time required by any
oblivious algorithm for dynamic broadcast in hypercubes.

We can also use other spanning trees (e.g., [8, 22]) to
execute the broadcast task. The most important criterion
for selecting the spanning trees is that the traffic should be
balanced among network nodes and links in order to maxi-
mize the maximum possible throughput. It is also important
that the routing paths are as short as possible in order to re-
duce the reception delay and broadcast delay. Moreover, it
is desirable that these spanning trees has O(N) leaves or has
O(N) nodes in the lowest few levels.

Homogeneous product networks form a subclass of prod-
uct networks with identical factor graphs [7]. More pre-
cisely, an l-level homogeneous product network is the iter-
ated Cartesian product G�G��� ��G| {z }

l

of the same graph G.

Hypercubes, k-ary n-cubes, and radix-r generalized hyper-
cubes are all examples of homogeneous product networks
whose factor graphs are the 2-node ring, k-node ring, and
r-node complete graph, respectively. Similar to the way we
generalize the dynamic broadcast algorithms for hypercubes
and k-ary n-cubes to general symmetric networks, we can
also generalize these dynamic broadcast algorithms to gen-
eral homogeneous product networks. More precisely, we
randomly select a level d, and broadcast the packet within
the (d + 1 mod l)th factor graph to which the source node
belongs, and then broadcast the packet using links of the
(d + 2 mod l)th, (d + 3 mod l)th, : : :, dth factor graphs. All
(or part) of the packets transmitted over links of the dth fac-
tor graph are assigned low priority and the remaining pack-
ets are assigned high priority. We can also use any other
method introduced in this paper, such as the optimal priority
assignment method, for the assignment of priority classes to
packets. We should use the criteria introduced in this section
for selecting spanning trees for dynamic broadcast within a
factor graph of the homogeneousproduct networks. The pri-
ority broadcast scheme proposed in this paper can also be
applied to a variety of other network topologies, such as the
macro-satr networks [26], cyclic networks [24], and hierar-
chical swapped networks [23], for dynamic broadcast with
high performance. The details will be reported in the future.

6. Conclusion

In this paper, we proposed an efficient routing scheme,
called the priority broadcast scheme, for dynamic broad-
cast in hypercubes, k-ary n-cubes, meshes, tori, star graphs,
and generalized hypercubes, as well as any symmetric net-



work or homogeneous product network. In particular, the
dynamic broadcast algorithms we proposed for hypercubes
improve the best previous algorithms significantly and are
the only known algorithms that achieve optimal O(n+ 1

1�ρ)
reception delay. In particular, our algorithms are optimal
within a factor approximately equal to 1 when the load factor
is close to 0 and within a small constant factor for any other
load factor. The proposed algorithms for k1 � k2 ��� � � kn

meshes or tori with ki = O(1), k-ary n-cubes with k = O(1),
star graphs, and generalized hypercubes are also asymptot-
ically optimal. The proposed broadcast scheme can be ap-
plied to a variety of other network topologies for efficient
dynamic broadcast. We also introduced the optimal prior-
ity assignment method for efficient assignment of priority
classes to packets, which achieves the best possible perfor-
mance for dynamic broadcast in any network topology.
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