
ICCVG 2002 Zakopane, 25-29 Sept. 2002

Nikolaos DOULAMIS, Anastasios DOULAMIS, Konstantinos DOLKAS,

Athanasios PANAGAKIS, Theodora VARVARIGOU and Emmanuel VARVARIGOS

National Technical University of Athens,

Department of Electrical and Computer Engineering

9, Heroon Polytechiou Str. Zografou 15773, Athens, Greece

ndoulam@cs.ntua.gr

NON-LINEAR PREDICTION OF RENDERING WORKLOAD FOR
GRID INFRASTRUCTURE1

Abstract.
Grid Computing clusters a wide variety of geographically distributed resources.
As a result it can be considered as a promising platform for solving large scale
intensive problems. For this reason, it can be considered as one of the hottest
issues in the computer society. A computational intensive application which can
be gained from such a Grid infrastructure is rendering, a process dealing with
creating realistic computer-generated image and with many applications ranging
from simulation to design and entertainment. To implement, however, a rendering
process in a Grid infrastructure is to perform prediction of its computational
complexity. This is addressed, in this paper, by using several neural network
modules, each of which is appropriate for a given rendering process. For this
reason, initially, a feature vector is constructed to describe with high efficiency
the parameters affected the complexity of a rendering algorithm. The feature
vector is estimated by parsing a file on a RIB format. Then, prediction is
performed using a neural network model. Prediction of three types of rendering
algorithms is examined; the Ray Tracing, the Radiosity and the Monte Carlo
irradiance analysis.

keywords : Grid computing, 3D rendering, neural networks

1 INTRODUCTION

Creating realistic computer-generated images is a very useful task for many fields and
applications, such as simulation, design, research, education, entertainment and
advertisement. Examples includes, training of air-planes pilots, designing of 3D objects, such

1 This research work was supported by the European Union under the program of Information Societies
Technology (IST) with grand No. IST-2001-33240, Grid Resources for Industrial Applications (GRIA).

N. Doulamis, A. Doulamis

as automobiles, or buildings or using molecular modeling in biological systems. Another
interesting application is the entertainment worlds both in traditional animated cartoons and in
realistic images for logos [1].

However, a fundamental difficulty in achieving total visual realism of synthetic images is
the complexity of the real world. In a real environment, there are many surface textures,
shadows, reflections and slight irregularities in the surrounding objects. Think of patterns on
wrinkled cloth, the texture of skin, tousled hair, scuff marks on the floor and chipped paint on
the wall. All these combine to create a "real" visual experience. The computational costs of
simulating these effects are high; creating such pictures can take many minutes or even hours
on powerful computers [2].

For this reason, computational Grids can be used to implement more efficiently a rendering
algorithm [3]. This is due to the fact that Grid computing clusters wide variety of
geographically distributed computational resources, including supercomputers, PC's, PDA's
and workstations, and presents them as a single unified integrated resource. Grid computing
has gained popularity in the last decade due to the rapid growth of the Internet as a medium
for global communication and the development of fast hardware devices and sophisticated
software. For this reason, it is now considered as one of the hottest issues in the computer
society [4]. As a result, the rendering problems can be solved more feasibly and in a
reasonably time and cost using a Grid infrastructure than a single resource supercomputing
scheme.

In order to implement, however, a rendering algorithm to a grid infrastructure, two main
issues should be addressed. The first refers to the parallelization of the rendering process,
while the second to the way of allocating different tasks to the available resources.
Parallelization of a rendering process can be performed in frame domain. In this case, each
frame of the generated video sequence is handled independently from the previous frames and
thus can be assigned to a different resource for processing. The second issue is solved by
applying an appropriate scheduling scheme such as the Earliest Deadline First (EDF) [5].
However, scheduling algorithms requires prediction of the task workload. Thus one of the
main issues that should be addressed before implementing a rendering algorithm to a Grid
infrastructure is to perform prediction of its computational complexity.

Workload forecasting of a rendering process is an arduous task due to the fact that many
parameters are involved in the process which affect in different way the computational cost.
Although several predictors have been proposed in the literature, each of them is appropriate
for a specific application. This is due to the fact an appropriate model should be developed
and the inherent parameters, which affects the final outcome should be identified. According
to the authors' knowledge no work has been proposed in the literature for workload prediction
of a rendering process, which is an important issue for implementing such applications in
Grid infrastructure.

In this paper several neural network modules each of which corresponds to a particular
environment (i.e., rendering algorithm) is proposed to predict the computational complexity
of rendering algorithms in creating real life synthetic world. In particular, initially a feature
vector is constructed which includes appropriate parameters of the rendering process.
Parameters have been obtained by analyzing the model used to create the rendered images.
These parameters are extracted by parsing a RIB file format, which provides a general
structure of describing a synthetic world. RIB format includes information about the object
geometric primitives (such as cylinder, cone and sphere), object transformation, object
material, number of light sources, rendering algorithm parameter so that any detail used for
creating rendered images is specified. The extracted feature vector of the RIB file is used as
input to a neural network architecture, which predicts the rendering workload. The use of the
neural network architecture is due to the fact that the rendering parameters affect the

Non-linear Prediction of Rendering Workload for Grid Infrastructure

computational cost in a non-linear and complex way. In our experiments three different
rendering algorithms are investigated, the Ray Tracing, the Radiosity and the Monte Carlo
irrandiance analysis, each of which are modeled by a different neural network architecture,
since each rendering algorithm affects the computational complexity in a different way.

2 SYSTEM OVERVIEW

An overview of the proposed architecture used to predict the computational complexity of a
rendering process is depicted in Fig. 1. As can be seen, the architecture consists of three main
parts; the attribute extraction module, the workload prediction module and the finally the
scheduler.

Attribute Selection Module: This module receives as input a file, which describes the 3D
geometrical model (i.e., the synthetic environment), the algorithm as well as the respective
parameters used for performing the rendering. The input file is encoded on the RIB format,
which provides a general framework for describing the structure of a synthetic world and uses
the minimum information required of interacting the rendering environment. In the output of
the module, a feature vector of appropriate attributes is constructed to predict the rendering
workload. The module consists of two subsystems. The first is responsible for parsing the
input file (i.e., to identify the parameters that affect the rendering process and the algorithm
used). In this way, a set of candidate attribute is constructed. The second is responsible for
selecting the most significant attributes among all candidates.

Workload Prediction module: This module predicts the workload of a rendering process
by taking into consideration the feature vector estimated from the previous module. For the
workload prediction, a feed forward neural network is used, which relates the extracted
parameters to the computational complexity of the rendering process.

Scheduler: The third module of the proposed architecture is responsible for scheduling a
rendering task to the Grid infrastructure, by exploiting information provided by the workload
prediction module. In this paper, we concentrate on the first two modules, while for the
scheduler; conventional algorithms are used, such as the Earliest Deadline First (EDF)
algorithm [5].

Parsing RIB
Files

Workload Prediction

Neural
Network
Predictor

Scheduler

Grid
Computing

x

Estimated
Workload

Attribute
Selection

Attribute Selection

Input File

Fig. 1. System Overview.

N. Doulamis, A. Doulamis

3 RENDERING

Since the workload prediction of a rendering process depends on the specific algorithm
used for creating the realistic word from the 3D geometrical primitives (models) and their
respective parameters, it is necessary initially to briefly describe the Rendering algorithms
used. Due to the complexity of the real word, several rendering techniques have been
proposed in the literature, each of which is characterized by different properties and
parameters. Some typical methods adopted are the Ray Tracing, the Radiosity and the Monte
Carlo Irradiance analysis [1].

3.1 Ray Tracing

Although Ray Tracing has been initially proposed as an algorithm for determining the
visibility of objects surfaces, it has been easily extended to rendering computer- generated
images [1], [2]. In its simplest form, the luminosity of a pixel is defined using an illumination
model at the closest intersection of eye ray with an object. For this reason, we initially
describe the illumination models adopted and then we concentrate on the ray tracing
algorithm.

A) Illumination Models
The illumination models define how a pixel or a surface is shaded (illuminated) based on

the position orientation and surface material characteristics as well as the light sources
illuminated them. A general illumination model is given by the following relation [1]

 akIkIkII n
spdpaa coscos ⋅⋅+⋅⋅+= θ (1)

The first tem of equation (1), i.e., aakII = , corresponds to the ambient light. The ambient

light impeaches equally on all surfaces from all directions The aI factor is the ambient light
intensity and ak the ambient reflection coefficient, which is a material property [1].

The second term, i.e., θcos⋅⋅ dp kI , refers to the Lambertian Reflection also known as

diffuse reflection. In this illumination model the brightness depends only on the angle θ
between the normal vector of the surface N and the direction L to the li1ght source. This is
illustrated in Fig. 2(a) [1].

The pI is the point light source intensity and dk the diffuse-reflection coefficient ranging

from 0 to 1 and depending on the surface material.

The third term of (1), i.e., the akI n
sp cos⋅⋅ models the specular reflection, implemented by

the Phong illumination model [6]. The variable a is the angle between the view point and the

Surface

θ

N
L

Surface

θ

N
L

θa V

(a) (b)

Fig. 2. (a) Lambertian Reflection and (b) Specular reflection.

Non-linear Prediction of Rendering Workload for Grid Infrastructure

direction of reflection (see Fig. 2(b)). This rapid fall off is approximated by the factor ancos ,
where n corresponds to the material specular reflection exponent. For a perfect reflector, n is
infinite.

B) Recursive Ray Tracing

Recursive ray tracing takes into consideration the reflection and refraction of all objects in

the scene and recursively estimates the luminosity intensity of a pixel [2]. In particular,
reflection and refraction rays are considered along with the primary rays come from the eye.
Shadows can be also included in the algorithm by firing an additional ray from the point of
the intersection to each of the light sources.

Each of these reflection and refraction rays may, in term, recursively spawn shadow
reflection and refraction rays. This is explained in Fig. 3(a), where rays recursively spawn
another rays. In this way the rays form a ray tree such as that of Fig. 3(b). A branch is
determined if the reflective and refractive rays fail to intersect an object, if some user's
specified maximum depth is reached or if the system runs out of storage. The tree is evaluated
from bottom to up and each node's intensity is computed as a function of each children's
intensity [7], [8].

From the aforementioned analysis, it is clear that the basic parameters which affect a ray
tracing scheme are the following; the number of light sources since each ray is related to a
light source, and the depth of the tree (see Fig. 3(b)) used in the recursive implementation.
Beyond a predetermined limit of reflections/ refractions the rays no further spawn into other
rays. In addition, the computational complexity is also affected from the type of the material
used, which determines the type of the illumination model.

3.2 Radiosity

Although ray tracing does an excellent job of modeling specular reflection, it still makes
use of a directionless ambient lighting term to account for all other global lighting
contributions. Approaches based on thermal engineering models for the emission or reflection
of radiation eliminate the need for the ambient lighting term by providing a more accurate

Point light
Source

Viewpoint

N1

R1

N2R2

L2

T1

T2

R3

L3

L2

Viewpoint

R1

R2 L2

L1

L3

R3

T2

T1

(a) (b)

Fig. 3. (a) Rays recursively spawn other rays. (b)The ray tree constructed.

N. Doulamis, A. Doulamis

treatment of interobject reflections. In particular, all energy emitted or reflected by every
surface is accounting for by its reflection from or absorption by other surfaces. The rate at
which energy leaves a surface called its radiosity and is the sum of rates at which the surface
emits energy and reflects or transmits it from that surface to other surfaces [9], [10].

Imagine breaking up the environment into a finite number of discrete patches, each of
which is assumed to be finite size, emitted and reflected light uniformly over each entire area.
Then, if we consider each patch to be diffuse emitter and reflector we have that

 ∑+=
≤≤

−

nj i

j
ijjiii

A

A
FBEB

1
ρ (2)

where iB , jB are the radiosities of the ith and jth patch. iE is the rate at which light is emitted

from the ith patch, iρ is the patch reflectivity and ijF
−

 is the form or configuration factor,

which specifies the fraction of energy leaving the entirety of patch j that arrives at the entirety
of patch i taking into account the shape and relative orientation of both patches and presence
of any obstructing patches. Finally, iA and jA are the respective patch areas.

Based on the previous equation, we can estimate the interaction of light among all the
patches in the environment, by solving a linear system of equations.

The finer the patch parametrization is, the better the results are at the expense of the

increased computational time for 2n , where n is the number of patch. Other parameters which
affect the computational load are the type of patches, that is if it is an emitter or transceiver
surface, and the method used for estimating the Form factors.

4 MONTE CARLO IRRADIANCE APPROACH

Finite element radiosity has some big drawbacks, almost all of which are related to the fact
that it has to pre-mesh the entire scene. First, it gets inaccuracies for some specific surfaces.
Furthermore, it can use lots of time and memory when you have many geometric primitives,
especially if your objects are made out of lots of little polygons or subdivision meshes.

The newer Monte Carlo irradiance approach has a different set of tradeoffs. Rather than
enmeshing the scene and solving the light transport up front, the Monte Carlo approach is
"pay as you go". As it is rendering, when it needs information about indirect illumination, it
will do a bunch of extra ray tracing to figure out the irradiance. It will save those irradiance
values, and try to reuse them for nearby points [11].

The Monte Carlo approach works just fine with almost all surfaces and trim curves. It does
not unpack procedural primitives until they are really needed. It takes longer than radiosity for
small scenes, but it scales better and should be cheaper for large scenes.

4.1 Other Factors Affecting Rendering Performance

A) Texture Mapping

Texture mapping is the technique to map an image, either synthesized or digitized on a

surface. The image is called a texture map and each individual elements are often called
texels. A simple approach starts by mapping the four corners of a pixel onto the surface. For
bicubic patch, this mapping naturally defines a set of points in the surface coordinates. Then,

Non-linear Prediction of Rendering Workload for Grid Infrastructure

the pixels corner points in the surface coordinate space are mapped into the texture coordinate
space [12], [13].

B) Shading

The simpler shading model for a polygon is constant shading, also known as faceted

shading. This approach applies an illumination model once to determine a single intensity
value that it is then used to shade the entire polygon.

Interpolating shading eliminates intensity discontinuities appear by constant shading. In
particular, in this technique we assume that the normal for each mesh vertex is known.
Alternatively, if the vertex normal is not stored and cannot be detected directive from the
actual surface, it can be estimated by averaging the surface normal over all polygonal facets
sharing the same vertex. Then, the vertex intensity is estimated using the vertex normal and
appropriate illumination model. Finally, each polygon is shading by linear interpolation of
vertex intensities along each edge and then between edges along each scan line [14].

5 ATTRIBUTE PARSING

One of the most important issue, affecting the prediction accuracy of the workload of a
rendering process is the attributes used for creating the realistic synthetic images. These
attributes are evaluated through an input file encoded by the RIB format which provides a
general framework for describing a synthetic environment. For this reason, in subsection 5.1,
we discuss the general concepts of the RIB format, while in subsection 5.2 we mention the
most significant attributes and their respective organization.

5.1 The RIB format

The purpose of the RIB format is to provide the general structure of a synthetic world and
to use the minimum information required of interacting the rendering environment. The RIB
format provides the possibility of describing shape, geometric primitives (e.g., a cone, a
sphere), object transformations (e.g., rotation, translation) surface material characteristics (and
thus the respective illumination model), light sources (e.g., the number and the type),
parameters of the rendering process (e.g, max number of patches in the radiosity method) and
finally other rendering characteristics such as the type of texture mapping, the shadow

Table 1. An example of a RIB file format.

Projection "perspective" "fov" 40
Format 200 150 1

Option "render" "integer max raylevel" [4]
 WorldBegin

 Cylinder 1 -1 1 360
 Surface "shiny" "Kd" [0.2]

 WorldEnd

N. Doulamis, A. Doulamis

algorithm and so on. Using this information, we can describe any synthetic world and extract
the basic parameters, which affect the prediction workload of a rendering algorithm.

Table 1 presents an example of a RIB file in which the synthetic world comprises only one
cylinder. The surface cylinder is characterized by diffuse reflection. As a result, ambient and
specular reflection are not represented (first and third term of (1)) in this particular example.
The statement "option" includes rendering parameters which affect the whole synthetic world.
For example, in Table 1, we define the depth level (see Fig. 3(b)) of the ray tracing algorithm.
Similar to the "option" statement is the "attribute" statement with the difference that the latter
refers to specific pieces of geometry instead of the entire rendered frame. Finally, the
"format" determines the image resolution.

5.2 Attribute selection

As can be seen from the above, the RIB format provides a general framework for extracting
and evaluating the basic attributes, which affect the workload of a rendering process. Table 2
presents some basic attributes, which can be estimated by parsing RIB format statements. In
this table the parameters have been grouped into four different categories. The first refers to
attributes which are independent from the rendering algorithm used, while the other three
corresponds to each of aforementioned described rendering techniques (see section 2).

6 WORKLOAD PREDICTION

Since the extracted attributes affect the computational load in a non-linear and complex
way, in our case, the rendering workload is modeled using a continuous non-linear function

)(xcgy = , },,{ 1 Mc ΠΠ∈ L (3)

where vector x includes the rendering attributes (some of them presented in Table 2) and y is
the respective computational cost. Index c of function)(⋅cg corresponds to a particular type of
rendering algorithm iΠ . This is due to the fact that different input-output relations are
expected for different types of rendering methods since each of them uses different
methodology for creating realistic images from the synthetic 3D models. In our experiments,
M=3 different types of rendering algorithms have been evaluated; the ray tracing, the radiosity
method and the Monte Carlo irrandiance since, as mentioned above, these are the most
common used techniques for creating a synthetic world.

The main difficulty of applying equation (3) is that function)(⋅cg is actually unknown.
Modeling of function)(⋅cg is performed through a feedforward neural network architecture,
since it can approximate any non-linear function within any degree of accuracy ([12], pp. 208-
213, 249). In our case, M feedforward neural networks are implemented, each of which
corresponds to a specific environment, i.e. to a specific rendering algorithm. In this case
function)(⋅cg is approximated by

 ∑ ⋅=

l
llc uvg)(ˆ x (4a)

with)(],[1 xWfu ⋅==

TT
quu L (4b)

Non-linear Prediction of Rendering Workload for Grid Infrastructure

where we assume one hidden layer of q neuron with activation function)(⋅f and a linear
output neuron. Weights lv connect the hidden neurons with the output ones, while lu are the
output of the hidden neurons. Matrix W includes the network weights of the hidden neurons,
while x corresponds to the attribute (feature) input vector. Finally,)(ˆ xcg indicates the
approximate of function)(⋅cg by the neural network architecture.

In order to estimate the network weights lv and W , a training set of N samples is used,
which contains pairs of the form),(ii yx . Vector ix includes the parameters of a specific
rendering environment, while iy corresponds to the respective workload obtained by these
parameters. The training algorithm minimizes the mean squared value of the error for all
samples in the training set

 ∑ −=

=

N

i
ii gyC

1

2)}({
2

1
x (5)

A second order method has been used, in our case, for training the network based on a

modification of the Marquardt-Levenberg algorithm. This method has been selected due to its
efficiency and fast convergence, since it was designed to approach second order training
speed without having to compute the Hessian matrix. To further increase the generalization
performance of the network, the cross validation method has also been applied. Particularly,
the available data are divided into two subsets; the one used for training and the one used for
evaluating the network performance (validation set). The error on the validation set is
monitored during the training process and when it increases for a number of iterations, the
training is stopped.

Table 2. Some attributes used as inputs to the neural network predictor architecture.

Common Parameters Ray Tracing Radiosity Monte Carlo Irrandiance
Frame Resolution Maximum number

of recursive rays
Number of

radiosity steps
Maximum error metric

Number of Samples
per pixel

Minimum shadow
bias

Minimum number
of samples per patch

(Form Factors)

Number of rays used to
estimate irradiance

Number of Light
Sources

Object visibility
(reflection,
refraction)

Patch size Maximum pixel distance
(Forces recomputation)

Surface complexity
(Number of meshes)

Surface shadow
(none, opaque,

shade)

Type of Radiosity
calculations on

surfaces
(surface receives

and/or shoots
energy)

Surface material
(specular, diffuse

reflection)

Type of Texture
mapping used

N. Doulamis, A. Doulamis

7 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed neural network architecture for
predicting the workload of rendering algorithms by applying several real life experiments. All
experiments have been obtained by parsing RIB file format corresponding to synthetic
images. The rendering engine that we have used is the BMRT2.6 for the Linux operation
platform. BMRT supports RIB format to describe a synthetic world.

The three types of the rendering algorithms, described in section 2, have been used, i.e., the
ray tracing, the radiosity and the Monte Carlo irrandiance analysis. For each rendering
algorithms the attributes of Table 2 have been used along with the common rendering
parameters, such as the image resolution, number of pixel samples, material type and so on.

Fig. 4(a) presents the computational complexity for 25 different experiments obtained using
the Ray Tracing rendering algorithm. In this figure, we have also added the predicted
computational load as obtained by the respective neural network architecture. The respective
results provided for the other two rendering algorithms are presented in Figs. 4(b,c). In all
cases the computational cost has been measured on a PC AMD Athlon 1.60GHZ of physical
memory 128MB of Linux Suse 2.4 operation system. In these Figures the computational cost
has been normalized with respect to a reference RIB file. In our implementation, the images
of Fig. 6 have been used as reference image. In all case a feedforward neural network has
been used with one hidden layer, one output neuron of linear activation function and 15
hidden neurons. As can be seen good prediction accuracy is accomplished in all cases.

An alternative way to illustrate the prediction performance is to use the fractile diagrams or
the Q-Q (Quantiles-Quantiles) plots. According to this method the actual cost is plotted versus
the predicted ones. Therefore, perfect prediction lies on a line of 450 slope. The advantage of
this method is that it shows all prediction differences with the same accuracy, regardless of
the value of actual computational cost. It can be seen in Fig. 5 that the Q-Q plots are close to
the line of perfect fit, meaning that the proposed model is good predictor of rendering
computational complexity.

Fig. 6 presents the rendered images obtained using different parameters of the Monte Carlo
irradiance method (see Figs. 6 (a,b)) and the Ray Tracing scheme (Fig. 6(c)) to show the
affect of different rendering algorithm and parameters on the visual content of the final
rendered image.

An objective measure for evaluating the prediction accuracy is to compute the relative
prediction error with respect to the actual data E ,

 100
ˆ1

1

×

−

= ∑
=

N

i i

ii

y

yy

N
E (6)

Table 3. Average prediction accuracy over all experiments conducted for the three types of
rendering algorithms.

 Ray

Tracing

Radiosity Monte Carlo

Average 8.668 10.31 8.10

Max 18.91 21.88 20.00

Non-linear Prediction of Rendering Workload for Grid Infrastructure

where N is the total number of experiments and iy , iŷ the actual and the predicted
computational cost at the ith experiment. Table 3 presents the relative prediction error for the
three types of rendering algorithms. In this Table, we have also present the maximum error
(∞=p - norm).

8 CONCLUSIONS

In this paper, we apply a neural network architecture for predicting the workload of a
rendering process. Three different types of rendering algorithms have been investigated, the
Ray Tracing, the Radiosity and the Monte Carlo irrandiance. For each rendering type a
different neural network is constructed. The attributes used for the computational prediction
are extracted by parsing a RIB file format, which provides an efficient and easy way to

0 5 10 15 20 25
0

500

1000

1500

2000

Number of Experiments

C
om

pu
ta

ti
on

al
 C

os
t (

se
c)

Actual Data

Predicted Data

0 5 10 15 20 25

0

200

400

600

800

1000

1200

1400

1600

1800

Number of Experiments

C
om

pu
ta

tio
na

l C
os

t (
se

c)

Actual Data

Predicted Data

0 5 10 15 20 25

200

400

600

800

1000

1200

1400

1600

Number of Experiments

C
om

pu
ta

tio
na

l C
os

t (
se

c)

Actual Data

Predicted Data

(a) (b) (c)
Fig. 4. The actual and the predicted computational cost of various experiments for three
different types of rendering algorithms. (a) Ray Tracing algorithm, (b) Radiosity algorithm and
(c) the Monte Carlo irrandiance.

0 500 1000 1500 2000
0

500

1000

1500

2000

Actual Data

P
re

d
ic

te
d

 D
at

a

0 500 1000 1500 2000

0

500

1000

1500

2000

Actual Data

P
re

d
ic

te
d

 D
at

a

0 500 1000 1500

0

500

1000

1500

Actual Data

P
re

d
ic

te
d

 D
at

a

(a) (b) (c)
Fig. 5. The Q-Q (Quantiles-Quantiles) plots for (a) Ray Tracing algorithm, (b) Radiosity
algorithm and (c) the Monte Carlo irrandiance.

(a) (b) (c)

Fig. 6. A synthetic world using three different rendering options. (a,b) The Monte Carlo
irradiance algorithm. (c) The ray tracing algorithm.

N. Doulamis, A. Doulamis

describe a synthetic world. Simulation results illustrates a good prediction accuracy and
therefore the proposed scheme can be used as input to a scheduling process, which assigns the
rendering tasks to the Grid infrastructure.

REFERENCES

[1] J. D. Foley, A. van Dam, S. K. Feiner and J. F. Hughes, Computer Graphics: Principles
and Practice. Second Edition in C. Addison Wesley, July 1997.

[2] A. Watt and M. Watt, Advanced Animation and Rendering Techniques: theoru and
Practice. Addison Welsey, New york, 1992.

[3] Foster, I., and Kesselman, C. (editors), The Grid:Blueprint for a New Computing
Infrastructure, Morgan Kaufmann Publishers, USA, 1999.

[4] Leinberger W., Kumar V., Information Power Grid: The new frontier in parallel
computing? IEEE Concur., October-December 1999, 75-84.

[5] M. S. Fineberg and O. Serlin, "Multiprogramming for Hybrid Computation," Proc. of
IFIPS Fall Joint Computer Conference, Washington DC, 1967.

[6] B.-T. Phong, " Illumination for Computer Generated Pictures," CACM, Vol. 18, pp. 311-
317, June, 1975.

[7] A. Appel, "Some Techniques for Shading Machine Rendering of Solids," SJCC, pp. 37-
45, 1968.

[8] T. Whitted, "An Improved Illumination Model for Shaded Display," CACM, Vol. 23, No.
6, pp. 343-349, June 1983.

[9] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, "Modeling the Interaction
of Light Between Diffuse Surfaces," SIGGRAPH, pp. 213-222, 1984.

[10] J. T. Kajiya, "The Rendering Equation," SIGGRAPH, pp. 143-150, 1986.
[11] T. Theoharis and Α. Boehm, Computer Graphics: Principles and Algorithms,

Papadamis Press, Athens, 1999.
[12] S. Haykin. Neural Networks: A Comprehensive Foundation. New York: Macmillan,

1994.
[13] E. Catmull, A subdivision Algorithms for Computer Display of Curved Images. PhD.

Thesis, Computer Science Dep. University of Utah, Salt Lake City, Utah, Dec. 1974.
[14] J. F. Blinn and M. E. Newell, ""Texture and Reflection in Computer Generated

Images," CACM, Vol. 19, No. 10, pp. 542-547, Oct. 1976.
[1] H. Couraud, "Continuous Shading of Curved Surfaces," IEEE Trans. on Computers,

Vol. C-20, No. 6, pp. 623-629..

