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Abstract—We propose a new class of interconnection networks, called macro-star networks, which belong to the class of Cayley
graphs and use the star graph as a basic building module. A macro-star network can have node degree that is considerably smaller
than that of a star graph of the same size, and diameter that is sublogarithmic and asymptotically within a factor of 1.25 from a
universal lower bound (given its node degree). We show that algorithms developed for star graphs can be emulated on suitably
constructed macro-stars with asymptotically optimal slowdown. This enables us to obtain through emulation a variety of efficient
algorithms for the macro-star network, thus proving its versatility. Basic communication tasks, such as the multinode broadcast and
the total exchange, can be executed in macro-star networks in asymptotically optimal time under both the single-port and the all-port
communication models. Moreover, no interconnection network with similar node degree can perform these communication tasks in
time that is better by more than a constant factor than that required in a macro-star network. We show that macro-star networks can
embed trees, meshes, hypercubes, as well as star, bubble-sort, and complete transposition graphs with constant dilation. We
introduce several variants of the macro-star network that provide more flexibility in scaling up the number of nodes. We also discuss
implementation issues and compare the new topology with the star graph and other popular topologies.

Index Terms—Interconnection networks, Cayley graphs, star graphs, routing, algorithm emulation, multinode broadcast, total
exchange, parallel architectures.
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1 INTRODUCTION

large variety of topologies have been proposed and
analyzed in the literature [3], [11], [13], [19], [21], [24],

[31], [32], [33], [40], [41], [44], [50], [53] for the interconnec-
tion of processors in parallel computing systems. Among
them, the star graph [3], [4] has received a lot of attention as
an attractive alternative to the hypercube for parallel com-
puters. The star graph belongs to the class of Cayley graphs
[5], is symmetric and strongly hierarchical, and has diame-
ter and node degree that are superior to those of a similar-
sized hypercube. Also, it has been shown that a number of
important algorithms can be performed efficiently on the
star graph [6], [7], [8], [9], [10], [20], [36], [38], [42], [43], [45].

Even though the hypercube and the star graph have
many desirable topological, algorithmic, and fault tolerance
properties, their node degrees are large for networks of
large size. To overcome this problem, constant-degree vari-
ants of these topologies, such as the cube connected cycles
(CCC) [41], the de Bruijn graph [35], and the star connected
cycles (SCC) [32], have been proposed and shown to have
several desirable properties. Other graphs proposed as al-
ternatives to the hypercube include hypernets [25], hierar-
chical cubic networks (HCN) [21], hierarchical folded-
hypercube networks (HFN) [19], recursively connected
complete (RCC) networks [23], hierarchical swapped net-
works (HSN) [51], and cyclic networks (CN) [52], all of
which have small degrees and diameters and can efficiently
emulate hypercube algorithms.

The purpose of this paper is to develop a new family of
parallel architectures that meet the following requirements:

1)� small node degree,
2)� small diameter,
3)� symmetry properties,
4)� efficient emulation of popular topologies,
5)�balanced traffic, and
6)� suitability for VLSI implementation.

We consider the fourth requirement important because nu-
merous topologies have been proposed in the literature and
it is impractical, if not impossible, to develop all the useful
algorithms for each of them. Therefore, the emulation of
popular topologies, such as trees, meshes, hypercubes, and
star graphs, seems to be the fastest and most cost-effective
way to obtain a variety of algorithms for a new topology.
Since congestion is the limiting factor on the performance
when the network load is large, balanced utilization of the
network links (the fifth requirement) is also important.

The macro-star (MS) networks introduced in this paper
form a subclass of Cayley graphs and use the star graph as
a basic building module. MS networks are vertex-
symmetric, hierarchical, and modular, and their node de-
grees can be considerably smaller than those of similar-
sized star graphs. MS networks come at various sizes and
degrees, which are determined by parameters l and n. An
MS(l, n) network has N = (nl + 1)! nodes, degree n + l - 1,
and diameter at most equal to 2 2 2.5 log

log lognl l N
N+ − = Θ4 9 .

Routing in an MS network can be viewed as a simple game
involving “balls” and “boxes,” leading to a considerable
conceptual simplification of the routing algorithm. The di-
ameter of an MS(l, n) network with l = Q(n) (we refer to
such networks as balanced MS networks) is asymptotically
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within a factor of 1.25 from a universal lower bound (given
its node degree).

We show that an MS network can emulate a star graph
of the same size with asymptotically optimal slowdown
under several communication models. As a consequence,
we obtain through emulation many efficient algorithms for
the MS network, thus indicating its versatility. In particular,
we derive asymptotically optimal algorithms to execute
basic communication tasks, such as the multinode broad-
cast (MNB) and the total exchange (TE) [12], [48], [49], as-
suming either single-port or all-port communication. We
also show that the MNB and the TE tasks cannot be per-
formed in an interconnection network of similar node de-
gree in time that is asymptotically better by more than a
constant factor than the time required in a balanced MS
network, under both the single-port and the all-port com-
munication models. The traffic on all the links of balanced
MS networks is shown to be uniform within a constant
factor for all algorithms considered in this paper. We show
that MS networks can embed a variety of topologies, such
as trees, meshes, hypercubes, star graphs, bubble-sort
graphs [5], and complete transposition graphs [34], [35]
with constant dilation.

We introduce several variants of MS networks and pres-
ent ways to scale up MS networks using a smaller step size,
while preserving many of their original properties. These
variant topologies give us more flexibility in choosing the
number of nodes in the network, without sacrificing per-
formance or modularity in the design. We also focus on
implementation issues and make a detailed comparison
with star graphs. For example, we find that, when several
processors are placed on a single module, MS networks
require a considerably smaller number of off-module links
and pins than star graphs. Because the theoretical proper-
ties of a topology do not always predict its usefulness in
practice, we look into particular special cases and their
suitability for building multiprocessor networks of practical
size. MS networks compare favorably to many other popu-
lar topologies in terms of node degree, diameter, symmetry,
and algorithmic properties, and appear to be efficient low-
degree alternatives to star graphs for the construction of
parallel systems at reasonable cost.

The remainder of this paper is organized as follows. In
Section 2, we define MS networks and discuss their struc-
tural properties. In Section 3, we present algorithms to per-
form routing and compare MS networks to other popular
topologies. In Section 4, we present simple and efficient
algorithms for emulating star graph algorithms, and obtain
optimal algorithms to execute certain prototype communi-
cation tasks in them. We also present O(1)-dilation embed-
dings of several important topologies on MS networks. In
Section 5, we introduce several variants of MS networks
and compare MS networks and star graphs with respect to
several implementation considerations. Finally, in Section 6,
we conclude the paper.

2 MACRO-STAR NETWORKS

In this section, we define the macro-star (MS) network to-
pology and introduce some related notation. To provide

some intuition and better visualize the topology, we first
relate the MS network to a game involving “boxes” and
“balls.” The reader could visualize each distinct state of the
game as a different node of the MS network, each possible
movement in the game as a link connecting two nodes of
the MS network.

2.1 A Balls-to-Boxes Game
We are given l boxes, each of which is assigned a distinct
color in {1, 2, ..., l}, and k = nl + 1 balls. k - 1 of the balls are
partitioned into l groups of size n, each of which is assigned
a distinct color in {1, 2, ..., l}, while the remaining ball is as-
signed color 0 and does not belong to any group (see also
Fig. 2). Initially, k - 1 of the balls are mixed together in the l
boxes so that each box contains n balls (of different colors,
in general) and one ball is left outside the boxes. The goal of
the game is to rearrange the balls and the boxes so that each
ball ends up in a specific position in the box that has the
same color, except for the ball with color 0 that ends up out-
side the boxes. Also, the boxes should be sorted so that the
box of color i, i ¶ {1, 2, ..., l}, appears in the ith position from
the left. At any time in the game, the ball that is currently
outside all boxes will be called the outside ball, while the box
currently at position 1 will be called the leftmost box. At each
step, the player can take one of the following actions:

1)�Exchange the outside ball with one of the balls in the
leftmost box, or

2)�Exchange the leftmost box with any of the other
boxes.

Note that there are N = (nl + 1)! distinct placements (con-
figurations) of balls to boxes and n + l - 1 possible move-
ments from one configuration to another.

A ball that is currently in a box of color different than its
own color, or a ball that is at the wrong position in a box of
the same color, will be referred to as a dirty ball. A box that
contains at least one dirty ball will be referred to as a dirty
box. A ball or box that is not dirty will be called clean. It is
easy to verify that the following algorithm solves the Balls-
to-Boxes game.

Balls-to-Boxes Algorithm

•� Phase 1

•� Case 1.1: If the outside ball has color 0:

•� 1.1.1: If all boxes are clean, go to Phase 2; if the
leftmost box is clean, exchange it with a dirty
box and go to Step 1.1.2.

•� 1.1.2: Exchange the outside ball (which has color
0) with any dirty ball in the leftmost box and go
to Case 1.2.

•� Case 1.2: If the outside ball has color c different
than 0:

•� 1.2.1: If the color of the leftmost box is different
than c, then swap the leftmost box with the box
of color c and go to Step 1.2.2.

•� 1.2.2: If the outside ball is of the same color as the
leftmost box, then put the outside ball at its correct
position in the leftmost box, take the ball occupy-
ing that position outside, and go to Phase 1.
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•� Phase 2: Now, all boxes are clean (they contain balls of
the correct color, placed at their correct positions), but
they may not be in the correct order. To put them in
the correct order so that box of color i is placed at po-
sition i, the following algorithm is run:

•� 2.1: If the leftmost box has color 1, then exchange it
with any box that is not at its correct position.

•� 2.2: If the leftmost box has color i ¡ 1, exchange it
with the box at the ith position.

•� 2.3: If all boxes appear in the correct order, then
stop (the goal of the algorithm has been accom-
plished); otherwise, go to Step 2.1.

2.2 Definition of Macro-Star Networks
Recall that there are (nl + 1)! distinct configurations (states)
of balls to boxes for the game involving l boxes, each hav-
ing n balls, and an outside ball. The macro-star network,
MS(l, n), is obtained by drawing the state transition graph
for the game. In other words, each of the (nl + 1)! states cor-
responds to a vertex in an MS(l, n) network, and two verti-
ces are connected if and only if one of their corresponding
states can be obtained from the other by performing one of
the n + l - 1 possible actions. In what follows, we formally
define the MS(l, n) network, each node of which will be
represented as a permutation of k = nl + 1 symbols.

A permutation of k distinct symbols in the set {1, 2, ..., k}
is represented by U = u1:k = u1u2 L uk, where ui ¶ {1, 2, ..., k}
and ui ¡ uj for i ¡ j, 1 � i, j � k. On the set of all possible per-
mutations of k symbols, we introduce the following two
types of operators, which are themselves permutations and
will be useful in defining the macro-star topology.

DEFINITION 2.1 (Transposition Generator Ti). Given a permu-
tation U = u1:k, we define the dimension-i transposition
generator Ti, i = 2, 3, ..., k, as the operator that inter-
changes symbol ui with symbol u1 in u1:k.

In other words, for i = 2, 3, ..., k,

Ti(U) = uiu2:i-1u1ui+1:k,

where the notation uj j1 2: , j1 � j2, denotes the sequence

u u uj j j1 1 21+ L .

DEFINITION 2.2 (Swap Generator Sn,i). Given a permutation
U = u1:k, we define the level-i swap generator Sn,i as the op-
erator that interchanges the sequence of symbols u(i-1)n+2:in+1
with the sequence of symbols u2:n+1 in u1:k, where 2 � i � l
and k = nl + 1.

Therefore, for i = 2, 3, ..., l, we have

Sn,i(u1:k) = u1u(i-1)n+2:in+1un+2:(i-1)n+1u2:n+1uin+2:k.

For example, for the permutation I = 1 23 45 67 89, we have

T2(I) = 2 13456789, T5(I) = 5 23416789, T8(I) = 8 23456719,

and

S2,2(I) = 1 45 23 67 89, S2,3(I) = 1 67 45 23 89,

S2,4(I) = 1 89 45 67 23.

The k-star graph [3] has k! nodes, each represented by a
permutation of the symbols in {1, 2, ..., k}, whose links are
defined by the application of generators T2, T3, ..., Tk on the
node label. It can be seen that the sequence of generators
Sn,iTjSn,i, which stands for the chain function

Sn,iTjSn,i(U) = Sn,i(Tj(Sn,i(U))),

is equivalent to the transposition generator T(i-1)n+j for j =
2, 3, ..., n + 1.

A macro-star network MS(l, n) has l levels of hierarchy
and uses the (n + 1)-star as a basic building module (to be
referred to as the nucleus). In this paper, the integer “n” is
exclusively used to signify the n in the nucleus “(n + 1)-
star”; the integer “l” is exclusively used to signify the num-
ber of hierarchical levels in the MS(l, n) network. We also let
k = nl + 1 be the number of symbols in the permutation la-
beling a node of the MS(l, n) network. In what follows, we
will use Si instead of Sn,i, suppressing the dependence on n,
unless explicitly stated otherwise.

DEFINITION 2.3 (Macro-Star MS(l, n) Networks). An l-level
macro-star network based on an (n + 1)-star is defined as
the graph MS(l, n) = (9, (), where

9�= {U = u1:k|ui, uj ¶ {1, 2, ..., k}, ui ¡ uj for i ¡ j, 1 � i, j � k}

is the set of vertices and

(�= {(U, V)|U, V ¶ 9�satisfying U = Tj(V) or U = Si(V)
for 2 � j � n + 1, 2 � i � l}

is the set of edges.

We define the ith block of node U as the sequence of
symbols at positions (i - 1)n + 2, (i - 1)n + 3, ..., in + 1 in the
permutation of node U. According to Definition 2.3, two
nodes U and V of an MS(l, n) network are connected by an
(undirected) link if and only if the permutation of node V
can be obtained from that of node U either by interchanging
the first with the jth symbol of U for some j ¶ {2, 3, ..., n + 1},
or by swapping the first and the ith block of U for some i ¶
{2, 3, ..., l}. The former corresponds to the actions of trans-
position generators, while the latter corresponds to the ac-
tions of swap generators. A link connecting node U to node
Tj(U), 2 � j � n + 1, will be referred to as a dimension-j nu-
cleus link (or Tj link). Similarly, a link connecting node U to
node Si(U), 2 � i � l, will be referred to as the level-i inter-
cluster link (or Si link). Therefore, each node in an MS(l, n)
network is connected to l + n - 1 neighboring nodes
through n nucleus links and l - 1 intercluster links.

Clearly, the MS(l, n) network is a degree-(l + n - 1) Cay-
ley graph [5] that has k! = (nl + 1)! nodes, each correspond-
ing to a permutation of {1, 2, ..., k}. Since MS networks form
a subclass of Cayley graphs, they are vertex-symmetric and
regular.

In order to better understand the structural properties of
macro-star networks, the following definitions will be useful.

DEFINITION 2.4 (Subgraph MS(l, n, uj:k)). Let uj:k be a permuta-
tion of k - j + 1 distinct symbols in {1, 2, ..., k}, where j ¶
{1, 2, ..., k}. Then, the graph MS(l, n, uj:k) is defined as the
subgraph ( , )

: :
9 (u uj k j k

 of the MS(l, n) network, where
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9uj k:
 is the set of nodes of MS(l, n) whose last k - j + 1

symbols are equal to the sequence uj:k, and (uj k:
 is the set of

links of MS(l, n) that connect nodes in 9uj k:
.

The sequence of symbols uj:k will be referred to as the
permutation or label of the subgraph MS(l, n, uj:k) within the
MS(l, n) network.

DEFINITION 2.5 (Level-i Clusters). A level-i cluster of the
MS(l n) network, i = 2, 3, ..., l, is defined as the subgraph
MS(l, n, uj:k), where j = (i - 1)n + 2, and uj:k is a permuta-
tion of k - j + 1 distinct symbols in {1, 2, ..., k}.

In other words, MS(l, n, uj:k) is the subgraph consisting of
nodes whose symbols in blocks i, i + 1, ..., l form the se-
quence uj:k. By the definition of the MS network, a level-i
cluster MS(l, n, u(i-1)n+2:k) is itself an MS(i - 1, n) network. A
nucleus of an MS(l, n) network is a level-2 cluster, which is
an MS(1, n) network and is identical to an (n + 1)-star. The
nucleus links of an MS(l, n) network correspond to the links
within its nucleus (n + 1)-stars. Also, a level-i intercluster
link of an MS(l, n) network, i � 2, corresponds to a link con-
necting two level-i clusters within the same level-(i + 1)
cluster in the MS network, where the level-(l + 1) cluster
refers to the MS(l, n) network itself. An MS(l, n) network
has k!/(k - n)! MS(l - 1, n) subgraphs as its level-l clusters,
each of which has (k - n)!/(k - 2n)! MS(l - 2, n) subgraphs
as its level-(l - 1) clusters, and so on. Thus, an MS network
can be constructed in a hierarchical way from identical
copies of smaller MS networks.

Fig. 1a shows a “top view” of an MS(2, 2) network, while
Fig. 1b illustrates the details of the level-2 cluster MS(2, 2,
23), which is itself a 3-star (and also a ring), and the way it
is connected to other level-2 clusters of the MS(2, 2) net-
work. The level-2 clusters of the MS(2, 2) network are ar-
ranged along the points of a 5 � 5 grid. Clusters labeled by
permutations that have two or more identical symbols are

not present in the MS(2, 2) network. All clusters that do not
contain symbols 2 and 3 in their permutations (that is, all
the shaded clusters in Fig. 2) have a node that is connected
to some node in cluster MS(2, 2, 23).

2.3 The Routing Problem as a Game
A little thought shows that the routing problem in an MS
network is essentially equivalent to the Balls-to-Boxes game
described in Section 2.1. Symbols of the node label in the
routing problem correspond to balls, while blocks of sym-
bols corresponds to boxes. The leftmost symbol of the node
label corresponds to the ball that is currently outside the
boxes, and the ball of color 0 corresponds to symbol 1 in the
routing problem. Transmissions over intercluster links cor-
respond to the swapping of two boxes, while transmissions
over nucleus links correspond to the interchange of the out-
side ball with a ball inside the leftmost box.

To illustrate the Balls-to-Boxes routing algorithm through
an example, we show in Fig. 2 how to route a packet from
node X(0) = 6 57 23 41 to destination node I = 1234567 in an
MS(3, 2) network. We arbitrarily assign the colors for blocks
(boxes) 1, 2, and 3 of the source node to be colors 3, 1, and 2,
respectively. The color of each symbol (ball) is defined to be
the color i ¶ {1, 2, ..., l} of the block (box) at which it appears
in the destination address. In the example, the destination is
node I = 1234567 and, therefore, the color of symbol x is
equal to Ñ(x - 1)/ná. Since symbol 6 has the same color 3
with the leftmost box (Step 1.2.2 of the Balls-to-Boxes Algo-
rithm), we first interchange symbol 6 with symbol 5, which
occupies the current desired position of symbol 6. The node
holding the packet after the first hop is X(1) = 5 67 23 41. To
place symbol 5 at its desired position, we then have to in-
terchange it with symbol 1. Since there is no generator in
the MS(3, 2) network to transpose the two symbols directly,
we first swap blocks 1 and 3 of node X(1) using generator S3

(Step 1.2.1), moving the packet to node X(2) = 5 41 23 67.

Fig. 1. The structure of an MS(2, 2) network. In Fig. 1a, each circle corresponds to a level-2 cluster and consists of the set of all nodes whose two
rightmost symbols are equal to those indicated in the circle. All clusters that do not contain symbols 2 and 3 in their permutations have a node that
is connected to some node in cluster MS(2, 2, 23). Fig. 1a illustrates only the intercluster links connecting cluster MS(2, 2, 23) to other clusters,
while Fig. 1b illustrates the nucleus (internal) links of cluster MS(2, 2, 23).
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(Note that the second position of the gray block in Fig. 2 is
the desired position of symbol 5 and should remain the
desired position of symbol 5 after the boxes are swapped.)
We then interchange symbols 5 and 1 using generator T3

(Step 1.2.2), and the new location of the packet is node X(3)

= 1 45 23 67. All symbols (balls) have now been placed at
their correct position in the block (box) that has the same
color, and Phase 1 of the algorithms has been completed. In
Phase 2, the blocks (boxes) have to be rearranged so that
they appear in the correct order; this can be done simply by
swapping blocks 1 and 2 in the example of Fig. 2 (Step 2.2).
The receiving node has label I = 1 23 45 67, which is the in-
tended destination.

3 ROUTING AND TOPOLOGICAL PROPERTIES

In this section, we present algorithms for performing routing
and derive some basic properties of the MS network.

3.1 Routing in an MS Network Based on Any
Star-Graph Routing Algorithm

In this subsection, we develop MS routing algorithms based
on (any) corresponding star-graph routing algorithms.
Since the MS network is vertex symmetric, we will assume,
without loss of generality, that the destination is node I =
123 L (k - 1)k.

Recall that any permutation p of {1, 2, ..., k} can be
viewed as a set of cycles [3], [29], where a cycle is defined as
an ordered set of symbols (s1s2 L sc) such that p(s1) = s2,
p(s2) = s3, ..., p(sc) = s1, where p(x) is the xth symbol of p. In
other words, in cycle representation, each symbol’s position is

that occupied by the next symbol in the same cycle (cycli-
cally). For example, (6425371) and (371)(245)(6) are cycle
representations of permutations 6572341 and 3475261, re-
spectively. It is well-known [3], [5] that the routing algo-
rithm in a star graph (or, more generally, a Cayley graph)
can be viewed as “sorting” the symbols in the label of the
source node so that symbol j appears at position j when the
destination node is I = 123 L (k - 1)k. To describe the rout-
ing algorithm for a star graph, let a cycle representation of
the source node be

s s s s s s s s sl l c c c lc1,1 1,2 1, 1 2 1 2 2 2 1 21 2
1K K L K−4 94 9 4 9, , , , , , ,

where s1,1 is the first symbol of the source label. The sorting
of symbols can be performed by first interchanging symbol
s1,1 with symbol s1,2, and then interchanging symbol s1,2

with symbol s1,3, ¤, symbol s l1, 21 −  with symbol s l1, 11 − , and

symbol s l1, 11 −  with symbol 1. For i = 2, 3, 4, ..., c and li > 1,

we interchange symbol 1 (which always appears at position

1 at the end of an iteration) with symbol si,1 and, then, inter-

change symbol si,1 with symbol si,2, symbol si,2 with symbol

si,3, ¤, symbol si li, −1 with symbol si li, , and symbol si li,  with

symbol 1. Note that the cycles, except for the first one, can
be permuted, and the symbols in each of them can be cycli-
cally shifted to obtain alternative routing paths that have
the same length. For example, to route a packet from source
3475261 = (371)(245)(6) to node I in a star graph, we can
interchange symbol 3 with symbol 7, symbol 7 with symbol 1
(for iteration 1) and, then, interchange symbol 1 with sym-
bol 2, symbol 2 with symbol 4, symbol 4 with symbol 5,
and, finally, symbol 5 with symbol 1 (for iteration 2). An
(ln + 1)!-star has ln generators that can interchange the first
symbol with any other symbol of the node label, while an
MS(l, n) network has only l + n - 1 generators. Therefore,
some symbol interchanges that are possible in a star graph
cannot be performed in an MS network in a single step.

The following theorem shows that the MS(l, n) network
can emulate an (nl + 1)-star with a slowdown factor not
exceeding three, assuming the single-dimension communica-
tion (SDC) model, where the nodes are allowed to use only
links of the same dimension at any given time.

THEOREM 3.1. Any algorithm in an (ln + 1)-star under the SDC
model can be emulated on the MS(l, n) network with a
slowdown factor of three.

PROOF. The dimension-j links Tj in an (ln + 1)-star can be
emulated by the paths consisting of links

S T Sj j j1 0 11 2 1+ + +

in an MS(l, n) network, where j0 = j - 2 mod n and j1 =

Ó(j - 2)/nã, when j1 ¡ 0. That is, each node sends the
packet for its dimension-j neighbor via its Sj1 1+  link in

Step 1, then each node forwards the packet received
in Step 1 via its Tj0 2+  link in Step 2, and, finally, each

node forwards the packet received in Step 2 via its
Sj1 1+  link in Step 3. It can be seen that each node re-

ceives the packet from its dimension-j neighbor (in

Fig. 2. Packet routing from source node X
(0)

 = 6572341 to destination
node I. The small integers p that appear at the corners of the blocks
indicate the desired positions for symbols p, p ¶ {2, 3, ..., 7}.
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the emulated star graph) in Step 3. When j1 = 0, emu-

lating the Tj links requires only one step. o

Note that the dilation for embedding an (ln + 1)-star in an
MS(l, n) network is also equal to 3. That is, if we map each
node of the (ln + 1)-star onto a node in an MS(l, n) network,
and map each link of the (ln + 1)-star onto a path in the
MS(l, n) network, the maximum length of such paths is
equal to 3. The maximum number of such paths that are
mapped onto a link in the MS(l, n) network is called the
congestion of the embedding. The congestion for embedding
an (ln + 1)-star in an MS(l, n) network is equal to max(2n, l).
However, the congestion for embedding all the links of a
certain dimension i in an MS(l, n) network is only 2 when
i > n + 1 and is equal to 1 otherwise. Therefore, the slow-
down factor for an MS network to emulate a star-graph
algorithm under the SDC model is approximately equal to 2
if the network uses wormhole or cut-through routing or if it
uses packet switching and each node has many packets to
be sent along a certain dimension.

Through the emulation of routing algorithms developed
for the star graph, we can obtain simple algorithms to route
a packet between any pair of nodes in an MS(l, n) network
in at most 3Ó3nl/2ã � 4.5nl steps. In what follows, we pres-
ent a slightly more complicated algorithm, to be referred to
as the MS routing algorithm, that significantly reduces the
routing time.

The proposed MS routing algorithm consists of two
phases, both of which have similarities with routing algo-
rithms developed for star graphs. Consider any particular
path from a source node to the destination node I in an (ln + 1)-
star or, equivalently, any sequence of transposition genera-
tors that sort the source label into the destination label I. In
Phase 1 of the MS routing algorithm, we interchange sym-
bols in exactly the same order as in the (ln + 1)-star. If the
next symbol to be interchanged belongs to block 1, the trans-
position can be performed in one step using a transposition
generator (that is, sending the packet over a nucleus link); if
it belongs to block i > 1, we first swap block 1 with block i
using generator Si (that is, sending the packet over an Si link)
and, then, transpose the two symbols using a transposition
generator. When Phase 1 is completed, symbol 1 will appear
at position 1, and each block will contain symbols belonging
to a given block of destination I in ascending order. In Phase 2
of the MS routing algorithm, we use swap generators to rear-
range the blocks so that symbols appear in the order in
which they appear at destination node I. This can be done by
using any routing algorithm developed for an l-star, and
viewing the sequence of symbols belonging to block i of des-
tination node I as a “super-symbol” i.

Phase 1 of the MS routing algorithm essentially removes
the third transmission (on an Sj1 1+  link) from the direct

emulation of Theorem 3.1 and, thus, improves the execu-
tion time by a factor of approximately 1.5. This modifica-
tion may result in blocks appearing in incorrect order,
which can be corrected in at most Ó3(l - 1)/2ã steps during
Phase 2 of the algorithm.

In the following section, we show that by adding some
restrictions on the star-graph routing algorithm that is
emulated, the required time can be further improved.

3.2 Faster MS Routing Algorithms
As we have pointed out in Section 2.3, when the balls are
viewed as symbols in the permutation label of a node, and
the boxes as blocks of symbols, any algorithm that solves
the Balls-to-Boxes game immediately gives rise to a corre-
sponding algorithm for performing routing in an MS net-
work. The Balls-to-Boxes algorithm introduced in Section 2.1
is actually equivalent to imposing a special order for the
cycles of the source node and for the symbols within each
cycle such that the last element of a cycle has the same color
as the first element of the next cycle (that is, both elements
belong to the same block in the destination label), unless no
such cycle or element exists. As we will show later, this re-
striction reduces the maximum number of swap generators
(and, thus, the corresponding intercluster links) required,
reducing the routing time by approximately nl/2 steps for
the worst case scenario.

We analyze the required time for the Balls-to-Boxes algo-
rithm as follows: Again, we can assume without loss of
generality that the destination is node I = 123 L k. The
number of steps required for Phase 2 of the Balls-to-Boxes
algorithm is at most Ó1.5(l - 1)ã, which is equal to the di-
ameter of an l-star [3]. If k = ln + 1 is odd, the worst case for
Phase 1 occurs when the first symbol of the source label is 1,
and the cycle representation of the source label consists of
cycles of two symbols from different blocks of the source
label. If k is even, one of the worst cases occurs when all the
symbols form cycles consisting of two symbols from differ-
ent blocks of the source label. Thus, the total number of
steps required by this routing algorithm is at most equal to

1)�2nl steps (which is two times the maximum number
of symbols that have to be interchanged), corre-
sponding to the total count for executing Step 1.2 of
the Balls-to-Boxes algorithm, plus

2)� Ónl/2ã steps (which is -1 plus the maximum number
of cycles that have length larger than 1), correspond-
ing to the total count for Step 1.1.2, plus

3)� l - 1 steps (which is the number of blocks minus 1),
corresponding to the total count for Step 1.1.1, plus

4)� Ó1.5(l - 1)ã steps for Phase 2,

for a total of at most Ó2.5(nl + l - 1)ã steps.
Further improvements in the routing time can be ob-

tained by merging Phases 1 and 2 of the Balls-to-Boxes al-
gorithm. More precisely, after a box becomes clean, we
place it to its final position right away, rather than waiting
until Phase 2 of the Balls-to-Boxes algorithm. If this can be
done then, when all the boxes are cleaned and placed at
their correct positions, they will appear in the correct order
and we will not need the Ó1.5lã steps required by Phase 2 for
reordering the boxes. This is equivalent to adding a restric-
tion on Phase 1.1.1 of the algorithm in Section 2.1 that the
box that is exchanged is the one occupying the desired po-
sition of the current leftmost box. Note that the box to be
exchanged may be either dirty or clean. An exception oc-
curs when the leftmost box that was just cleaned or ex-
changed should finally appear in the leftmost position, in
which case we exchange it with a dirty box or a clean box
that is not at its final position. At most l - 1 exchanges of
the latter type may have to be made, for a total of at most
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2l - 2 steps. Therefore, this improved algorithm requires
2nl + Ónl/2ã + 2l - 2 steps, where 2nl + Ónl/2ã is the number
of steps required for Parts 1 and 2 in the previous analysis.

3.3 Basic Properties
In this section, we derive the diameter, node degree, and
other basic properties of MS networks and compare them
with several popular topologies.

THEOREM 3.2. The diameter of the MS(l, n) network is at most

equal to 2 5 2 2. log
log lognl l N

N+ − = Θ4 9 , where N is the

number of nodes.

PROOF. The upper bound Ó2.5nlã + 2l - 2 = Ñ2.5ká + 2l - 5 on
the diameter of MS networks follows from the analy-
sis at the end of Section 3.2. Since an MS(l, n) network
has N = k! = (nl + 1)! nodes, we have

log2 N = log2 k! = k log2 k - O(k),

where we have used Stirling’s approximation [22].
Therefore,
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Since l = O(k) for any MS(l, n) network, the diameter
is at most equal to

2 5 2 5.
log

log logk l
N

N+ − =
�
��

�
��Θ .

o

Figs. 3 and 4 show the node degrees and diameters of
various network topologies as a function of the network
size. Degree at most equal to five seems to be sufficient for
network sizes that are expected to be practical in the near
future. Although the HCN [21], RCC [23], and HSN [51]
topologies also have small node degree and diameter, and
possess several desirable algorithmic properties, they are
asymmetric and irregular, and their node degrees are in
general larger than those of MS networks. CCC [41] and
SCC [32] have degree equal to three, but their diameter and
algorithmic properties are not as good as those of MS net-
works. MS networks are also competitive in terms of the
cost measure, defined as the diameter times node degree
[13], as shown in Fig. 5.

Even though the diameter of an interconnection network
determines its delay under light load conditions, congestion
becomes the limiting factor on the performance when the
network load is large. It is therefore important that the
utilization of the links is close to uniform, at least when the
sources and destinations of the packets are uniformly dis-
tributed over all network nodes. The following corollary
shows that this is indeed the case for the MS(l, n) network
when l = Q(n).

COROLLARY 3.3. When the sources and destinations of the packets
are uniformly distributed over all nodes of an MS(l, n) net-
work with l = Q(n), and the routing algorithms described
in Sections 2.1, 3.1, and 3.2 are used, the expected traffic
on the network links is equally balanced within a constant
factor.

PROOF (ABBREVIATED). This can be shown by computing the
probability with which each link is used. The expected

Fig. 3. Comparison of the node degrees of various interconnection networks.
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traffic on all intercluster links (also, on all nucleus
links) in an MS network is the same due to symmetry.
The expected traffic on an intercluster link is inversely
proportional to l - 1, while the expected traffic on a
nucleus link is inversely proportional to n. Thus, the
expected traffic is equally balanced within a constant
factor on all network links when l = Q(n). o

The number l of hierarchical levels in an N-node MS(l, n)
network is given by

l
N

n N=
�
��

�
��Θ

log
log log .       (2)

Equation (1) together with (2) imply that the node de-
gree d = n + l - 1 of an MS(l, n) network is minimized when

l n N
N= = �� ��Θ Θ( ) log

log log , leading to the following lemma:

LEMMA 3.4. The node degree of an N-node MS(l, n) network

is minimized and is equal to Θ log
log log

N
N

�� ��  if and only if

l = Q(n).

Fig. 4. Comparison of the diameters of various interconnection networks.

Fig. 5. Comparison of the product of degree and diameter for various interconnection networks.
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Since n l nl O N
N+ − ≤ =1 log

log log4 9  for any positive integers

n and l, the node degree of an N-node MS(l, n) network can

take values in the range from Ω log
log log

N
N

�� ��  to O N
N

log
log log4 9 ,

depending on the particular choice of the parameters n and l.
As we will see later, the condition l = Q(n), which leads

to balanced traffic on all network links (Corollary 3.3) and
guarantees minimal node degree (Lemma 3.4), also results
in the best diameter to lower bound ratio (Section 3.4), and
optimal emulation of the star graph under both the single
dimension and the all-port communication models (Sec-
tion 4.2). Moreover, the expected traffic is also uniform for
algorithms emulating the star graph, assuming uniformly
generated packets for neighboring nodes (Section 4). As a
consequence, all these desirable properties can be achieved
at the same time on an MS(l, n) network with l = Q(n). In
what follows, we will informally refer to an MS(l, n) net-
work with l = Q(n) as a balanced MS network.

3.4 Near Optimal Diameter
Let G be an undirected interconnection network that has N
nodes, degree d � 3, and diameter D(G). We then have

N d d
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yielding the lower bound

D(G) > logd-1 N + logd-1 (1 - 2/d) (3)

on the diameter D(G). Note that the lower order term

c d dd( ) log= −−
∆

1 1 22 7  satisfies c(d) � -log2 3 for any d � 3
and approaches 0 very fast when d increases (for example,
c(4) < -0.631 and c(7) < -0.19). We define the universal

lower bound DL(N, d) on the diameter of a static undirected
interconnection network that has N nodes and degree d � 3 as

D N d N dL d d, log log1 6 = + −
�
��

�
��− −

def

1 1 1
2

.   (4)

For a given graph G, we define the asymptotic diameter
to lower bound ratio

a G
D G

D N dN L
0 5 0 5

1 6=
→∞

lim
,

.

Note that a(G) � 1, and small values of a(G) are desirable. A
graph G will be said to have (asymptotically) optimal di-
ameter if the ratio a(G) is a constant or, equivalently, if the
diameter of G is asymptotically within a constant factor
from the lower bound.

THEOREM 3.5. Any MS network has asymptotically optimal
diameter.

PROOF. By substituting the node degree d k O N
N< = log

log log4 9
(1) into (4), we get

D N d
N

NL ,
log

log log1 6 =
�
��

�
��Ω ,

which is of the same order of magnitude with the di-
ameter of any N-node MS network (Theorem 3.2). o

COROLLARY 3.6. The asymptotic diameter to lower bound ratio of
the MS(l, n) network is a(MS(l, n)) = 1.25, when l = Q(n)
(that is, when the MS network is balanced).

PROOF. Using (4) together with Stirling’s approximation
[22], we have
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For l = Q(n), we have log2 l = log2 n ± O(1), and the
universal lower bound on the diameter becomes

D N d
k n O

n O
k O
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By Theorem 3.2, the diameter of the MS(l, n) network
is equal to 2.5k + O(l), which gives an asymptotic di-
ameter to lower bound ratio of

a(MS(l, n)) = 2.5/2 = 1.25,

when l = Q(n). o

For l = Q(n), the N-node MS(l, n) network has node degree

d
N

N=
�
��

�
��Θ

log
log log

and diameter

2 5
2 5 2

2 2
.

. log
log log

log
log logk O k

N
N o

N
N+ = +

�
��

�
��3 8

(from (1)), both of which are sublogarithmic. The asymp-
totic diameter to lower bound ratios for the balanced MS
network and several other interconnection networks of in-
terest are summarized in Table 1.

Although diameter and average distance may be less im-
portant for networks using wormhole routing under light
traffic, they are crucial for network performance under heavy
load. The maximum throughput of a network is inversely
proportional to these parameters for any switching technol-
ogy. In [2], [17], it has been shown that lower-dimensional k-
ary n-cubes perform better than higher-dimensional ones
under the constraint of constant bisection bandwidth. In [1],
Abraham and Padmanabhan examined network perform-
ance under pin-out constraints and showed that higher-
dimensional networks performed better. Generally speaking,
low-dimensional k-ary n-cubes outperform MS networks
under the bisection-bandwidth constraint; while MS net-
works outperform k-ary n-cubes and hypercubes under con-
stant pin-out constraint. Detailed comparisons based on such
considerations are outside the scope of this paper.

4 PARALLEL ALGORITHMS IN MS NETWORKS

In this section, we show how to emulate algorithms devel-
oped for a k-dimensional star graph on an MS(l, n) network.
In our emulation algorithms, a node in the k-star is one-to-one
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mapped on the node that has the same permutation label in
the MS(l, n) network. We also present constant-dilation em-
beddings of several important topologies on MS networks.

4.1 Parallel Algorithms under the Single-Dimension
Communication Model

In this section, we assume the single-dimension communica-
tion (SDC) model, where the nodes are allowed to use only
links of the same dimension at any given time. This commu-
nication model is used in some SIMD architectures to reduce
the cost of implementation and is also suitable for parallel
systems that use wormhole routing. Many algorithms devel-
oped for the star graph fall into this category [38].

Two basic communication tasks that arise often in appli-
cations are the multinode broadcast (MNB) and the total
exchange (TE) [12], [27], [48], [49]. In the MNB, each node
has to broadcast a packet to all the other nodes of the net-
work, while, in the TE, each node has to send a different
(personalized) packet to every other node of the network.
Misic and Jovanovic [38] have proposed strictly optimal
algorithms to execute both tasks in time k! - 1 and (k + 1)! +
o((k + 1)!),1 respectively, in a k-star with single-dimension
communication. Using Theorem 3.1, the algorithms pro-
posed in [38] give rise to corresponding asymptotically op-
timal algorithms for the MS(l, n) network.

COROLLARY 4.1. The total exchange task can be performed in

time Θ N N
N

log
log log4 9  in an N-node MS network under the SDC

model. This completion time is asymptotically optimal for
the total exchange task over all interconnection networks

that have N nodes and degree O(logc N), where c = O(1),
assuming single-port communication.

PROOF. The completion time follows from Theorem 3.1
through emulating the TE algorithm given in [38]. The
lower bound can be proved by arguing that any inter-
connection network with N nodes of degree O(logc N)
has mean internodal distance of at least

Ω
log

log log
N

N
�
��

�
�� .

1. The notation f(N) = o(g(N)) means that limN��f(N)/g(N) = 0.

(The derivation is similar to that given in Section 3.4 for
the lower bound on the diameter.) Therefore, the total
number of packet transmissions required to execute

the TE task is Ω N N
N

2 log
log log
�
�

�
� . Since at most N transmis-

sions (one per node) can take place simultaneously
under the single-port communication model, the cor-
ollary follows. o

When the dimensions of the links used by an algorithm
in the star graph are consecutive, the algorithm can be
emulated even more efficiently, often with a slowdown
factor of 1 asymptotically. We present this result formally in
the following theorem.

THEOREM 4.2. Any algorithm in a k-star using links of consecu-
tive dimensions j, j + 1, ..., j + s - 1 in s consecutive steps
can be emulated on the MS(l, n) network in time s - 2a1 +
2b1 + 2c1, where a1 = Ó(j - 2)/nã, b1 = Ó(j + s - 2)/nã, and

c
if a
otherwise1

11 0
0= >%&'

;
.

PROOF. If we emulate the transmissions over two successive
dimensions j + t and j + t + 1 using the algorithm
given in Theorem 3.1, each node U has to route pack-
ets via links (from left to right)

S T S S T St t t t t t1 0 1 1 0 11 2 1 1 3 1+ + + + + +, , , , , ,

where t0 = (j + t - 2) mod n and t1 = Ó(j + t - 2)/nã, as-

suming t0 ¡ n - 1. Clearly, the third and fourth routing
steps cancel each other and can be removed, and the
emulation requires transmissions over links

S T T St t t t1 0 0 11 2 3 1+ + + +, , , .

Note that each node S Ut1 1+ ( ), which receives data

from node U in the first step, has to emulate the re-
quired computation on node U.

When t0 = n - 1, different intercluster links will be
used in the third and fourth routing steps above, for a
total of exactly 2b1 - 2a1 steps that cannot be elimi-
nated by the above method. Two steps (routing on Sa1

links) are required at the beginning and end of the

TABLE 1
ASYMPTOTIC DIAMETER TO LOWER BOUND RATIOS OF VARIOUS INTERCONNECTION NETWORKS WITH N NODES

†When N is not large, the actual diameter to lower bound ratio D(G)/DL(N, d) is larger than the asymptotic ratio a(G) indicated in
the table for star graphs and MS networks, and smaller than that for CCC networks.
‡The binary de Bruijn graph is viewed as an undirected degree-4 network.
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emulation algorithm when a1 ¡ 0. Thus, 2b1 - 2a1 + 2c1

extra steps are required to emulate the s steps of the
algorithm on the (nl + 1)-star, which completes the
proof.                                                                                 o

Using Theorem 4.2, we can emulate a number of star
graph algorithms on an MS network with a slowdown fac-
tor smaller than three. In particular, we can obtain an as-
ymptotically optimal algorithm (within a factor of one) to
execute the multinode broadcast task in an MS network by
emulating the corresponding algorithm given in [38] for
star graphs, leading to the following corollary.

COROLLARY 4.3. The multinode broadcast task can be performed
in N + o(N) time in an N-node MS network under the
SDC model.

4.2 Emulation of Star Graphs under the All-Port
Communication Model

We now consider the all-port communication model, where
a node is allowed to use all its incident links for packet
transmission and reception at the same time. The packets
transmitted on different outgoing links of a node can be
different. Given two graphs G1 and G2 of similar sizes, and
node degrees d1 and d2, a lower bound on the time required
for G1 to emulate G2 is T(d1, d2) = Ñd2/d1á. When G1 can
emulate G2 with a slowdown factor of Q(T(d1, d2)), we will
say that graph G1 can (asymptotically) optimally emulate
graph G2. In what follows, we show that an MS(l, n) net-
work can emulate a star graph of the same size with as-
ymptotically optimal slowdown.

THEOREM 4.4. Any algorithm in a k-star with all-port communi-
cation can be emulated on the MS(l, n) network with a
slowdown factor of max(2n, l + 1).

PROOF. In Theorem 3.1, we have shown that an MS(l, n)
network can emulate an (nl + 1)-star with a slowdown
factor of three under the SDC model. The emulation
algorithm with all-port communication simply per-
forms single-dimension emulation for all dimensions
at the same time with proper scheduling to minimize
the congestion. In particular, a packet for a dimen-
sion-j neighbor, j � n + 2, in the emulated star graph
will be sent through links S T Sj j j1 0 11 2 1+ + +, , , where j0 =

j - 2 mod n and j1 = Ó(j - 2)/nã. There exist several
schedules that guarantee the desired slowdown fac-
tor. In what follows, we present such a possible
schedule.

We first consider the special case where l = rn + 1
for some positive integer r.

•� At time 1, each node sends the packets for its di-
mension-j neighbors (in the emulated k-star), j = 2,
3, 4, ¤, n + 1, through links Tj.

•� At time t, t = 1, 2, 3, ¤, n, each node sends the
packets for its dimension-ui(t) neighbors, i = 2, 3, 4,
¤, l, through links Si, where ui(t) = (i - 1)n + 2 +
(i + t - 3 mod n).

•� At time t, t = sn + 2, sn + 3, sn + 4, ¤, (s + 1)n + 1
for s = 0, 1, 2, ¤, r - 1, each node forwards the

packets for dimension-vi(t) neighbors, i = sn + 2,

sn + 3, sn + 4, ¤, (s + 1)n + 1, through links

Tv t i ni ( ) ( )− −1 , where vi(t) = (i - 1)n + 2 + (i + t - 4 mod n).

•� At time t, t = n + 1, n + 2, ¤, 2n, each node for-
wards the packets for its dimension-ui(t) neighbors,
i = 2, 3, 4, ¤, n + 1, through links Si, where ui(t) =
(i - 1)n + 2 + (i + t  - 3 mod n).

•� At time t, t = sn + 3, sn + 4, sn + 5, ¤, (s + 1)n + 2
for s = 1, 2, 3, ¤, r - 1, each node forwards the
packets for dimension-ui(t) neighbors, i = sn + 2, sn
+ 3, sn + 4, ¤, (s + 1)n + 1, through links Si, where
ui(t) = (i - 1)n + 2 + (i + t - 5 mod n).

Fig. 6a shows such a schedule for emulating a 13-star
on an MS(4, 3) network.

In what follows we extend the previous schedule to
the general case where l is not of the form l = rn + 1. The
schedule for l � n can be easily obtained by removing the
unused part of the schedule for an MS(n + 1, n) network.
Other possible cases can be formulated by assuming
that l = rn - w for some integers r � 2 and 0 � w � n - 2,
in which case we can modify the schedule as follows.
We initially start with the schedule for an MS(rn + 1, n)
network. Clearly, the transmissions in the schedule that
correspond to the emulation of dimensions j > ln + 1
are not used by the MS(l, n) network. Therefore, we
can now perform each of the transmissions over links
Tj0 2+  originally scheduled for time l + 1 through rn + 1

at time earlier than l + 1 by rescheduling these trans-
missions to the unused part of the schedule. Note that
the modified part of the schedule are for the emula-
tion of some dimensions larger than (r - 1)n2 + n + 1
(that is, some of the dimensions that correspond to the
last l - (r - 1)n - 1 = n - w - 1 blocks). We then swap
generators Tj0 2+  in the modified part of the schedule

with part of the schedule for the emulation of dimen-
sions smaller than (r - 1)n2 + n + 2 (that is, for some of
the dimensions that correspond to the first (r - 1)n + 1
blocks). Due to the previous modifications, we also
have to move the schedule for some generators Sj1 1+ .

In particular, we will move the final generator Sj1 1+  in

each of the three-step single-dimension emulations
one time step after the use of Tj0 2+  generators when

possible. When l + 1 < 2n, the schedule for some gen-
erators Sj1 1+  cannot be moved before time 2n. As a re-

sult, the time required for emulation under the all-
port communication model is equal to l + 1 if l + 1 � 2n,
and is equal to 2n otherwise. Fig. 6b shows such a sched-
ule for emulating a 16-star on an MS(5, 3) network. o

By properly choosing the parameters l and n, we can
emulate a star graph with all-port communication on an
MS(l, n) network with asymptotically optimal slowdown
with respect to the node degrees.

COROLLARY 4.5. Any algorithm in a k-star with all-port commu-
nication can be emulated on the MS(l, n) network with as-
ymptotically optimal slowdown if l = Q(n) (or, equiva-

lently, if the node degree is Θ log
log log

N
N

�� �� ).
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PROOF. It follows from Lemma 3.4, Theorem 4.4, and the

fact that a graph of degree Θ log
log log

N
N

�� ��  cannot emu-

late a graph of degree Θ log
log log

N
N4 9  with a slowdown

smaller than Θ log
log log

N
N

�� �� , under the all-port commu-

nication model.                                                                o

Note that the slowdown factor of Θ log
log log

N
N

�� ��  is also the

congestion for embedding a k-star on an MS(l, n) network with
l = Q(n). Therefore, no graph that has N nodes and degree

Θ log
log log

N
N

�� ��  can embed an N-node star graph with asymp-

totically better congestion (by more than a constant factor)
than that achieved by an MS(l, n) network with l = Q(n).

Fragopoulou and Akl [20] have given optimal algo-
rithms to execute the multinode broadcast (MNB) and the
total exchange (TE) communication tasks in a k-star with
all-port communication in time Q((k - 1)!) = Q(N log log
N/log N) and Q(k!) = Q(N), respectively. Emulating their
algorithms leads to the following asymptotically optimal
algorithms for MS networks.

COROLLARY 4.6. The multinode broadcast task can be performed in

time Θ N N
N

log log
log

�� ��  in an MS(l, n) network with l = Q(n).

This completion time is asymptotically optimal for the mul-
tinode broadcast task over all interconnection networks that

have N nodes and degree Θ log
log log

N
N

�� �� , under the all-port

communication model.

COROLLARY 4.7. The total exchange task can be performed in time

Θ N N
N

log
log log

�� ��  in an MS(l, n) network with l = Q(n). This

completion time is asymptotically optimal for the total ex-
change task over all interconnection networks that have N

nodes and degree Θ log
log log

N
N

�� �� , under the all-port com-

munication model.

PROOF. Since the TE can be performed in an N-node star
graph in time Q(N) [20], it can be completed in time

O N N
N

log
log log

�� ��  in an MS(l, n) network with N nodes of

degree Θ log
log log

N
N

�� ��  through emulation (Theorem 4.4),

assuming all-port communication and l = Q(n). By ar-
guing, as in the derivation of the universal diameter

lower bound DL(d, N), we can show that the mean
internodal distance of an N-node graph with degree

Θ log
log log

N
N

�� ��  is at least Ω log
log log

N
N4 9 . The total number

of packets that have to be exchanged to perform a TE

is N2 - N, for a total of Ω N N
N

2 log
log log
�
�

�
�  packet transmis-

sions. Since at most O N N
N

log
log log

�� ��  transmissions can

take place simultaneously in an N-node interconnec-

tion network of degree Θ log
log log

N
N

�� ��  under the all-

port communication model, the time required to
complete the TE is at least

Ω Ω

N N
N

N
N

N

N
N

N

2 log
log log

log
log log

log
log log

�

�

����

�

�

����
=
�
��

�
�� .

o

4.3 Embeddings of Trees, Meshes, Hypercubes, and
Complete Transposition Graphs

In this section, we present constant-dilation embeddings of
several important graphs in MS networks. The following
corollary follows directly from Theorem 3.1.

COROLLARY 4.8. A k-star graph can be one-to-one embedded in
an MS(l, n) network with load 1, expansion 1, and dilation 3.

A k-dimensional complete transposition graph CT(k)
[34], [35] is a Cayley graph defined with a generator set
consisting of all the generators that interchange any two of

   

(a) (b)

Fig. 6. Schedules for emulating star graphs on MS networks, under the all-port communication model. Note that a generator appears at most

once in a row, and each column j > 4 consists of generators S T Sj j j1 0 11 2 1, ,+ + + , where j0 = j - 2 mod 3 and j1 = Ó(j - 2)/3ã. (a) Emulating a 13-star

on an MS(4, 3) network. (b) Emulating a 16-star on an MS(5, 3) network. The links in the MS network are fully used during Steps 1 to 5 and are
93 percent used on the average.
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the k symbols in the label of a node. A CT(k) graph has
k! nodes, degree k(k - 1)/2, and diameter k - 1. It contains a
k-star or a k-dimensional bubble-sort network [5] as a sub-
graph and has been shown to be a rich topology that can
efficiently embed many other popular topologies, including
hypercubes, meshes, and trees. The following theorem pro-
vides O(1)-dilation embedding of complete transposition
graphs in macro-star networks.

THEOREM 4.9. A k-dimensional complete transposition graph can
be one-to-one embedded in an MS(l, n) network with load 1,
expansion 1, and dilation 5 when l = 2, or dilation 7 when
l � 3.

PROOF. Similar to Theorem 3.1, we map each node in the
CT(k) graph onto the node with the same label in the
MS(l, n) network. Therefore, the load and expansion
of the embedding are both equal to 1. We let Ti,j be the
generator that interchanges the ith and jth symbols in
the label of a node, where 1 � i < j. Then, the generator
set for a CT(k) graph consists of generators Ti,j for any
combination of integers i, j satisfying 1 � i < j � k. Letting
i0 = i - 2 mod n, i1 = Ó(i - 2)/nã, j0 = j - 2 mod n, and
j1 = Ó(j - 2)/nã, it is easy to verify the following
equivalence

T

T
S T S
TT T
TS T S T
S T T T S
S T S T S T S

i j
i j
i j
i j
i j
i j i j

i j

j

j j j

i j i

i j j j i

i i j i i

i i j j j i i

,

, ;
, ;

;
, ;

;
, , .
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%

&

KKK

'

KKK
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= >
= =
= >
= >
≠ >

%

&
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'

+ + +

+ + +

+ + + + +

+ + + + + + +

1 0 1

1 0 1

1 0 0 0 1

1 0 1 0 1 0 1

1 2 1

1 2 1

1 2 2 2 1

1 2 1 2 1 2 1

1

1

1 1

1 1

1 1

1 1 1 1

1 0
1 0

0
0 0

0
0

   when 
KKK

As a result, the dilation for embedding a CT(k) graph in
an MS(l, n) network is at most equal to seven. When l =
2, only the first five cases are possible so that the dila-
tion is equal to five for an MS(2, n) network. o

Since a k-dimensional bubble-sort network is a subgraph
of a CT(k) graph, it can also be embedded in an MS(l, n)
network with dilation 5 when l = 2, and dilation 7 when l � 3.

A variety of embedding results are available for star
graphs, bubble-sort graphs, and complete transposition
graphs [14], [28], [34], [37]. These results, when combined
with Theorem 4.9 and Corollary 4.8, give rise to a variety of
O(1)-dilation embeddings for MS networks. The following
corollaries summarize some of the results.

COROLLARY 4.10. There exists a dilation-3 embedding of the
complete binary tree of height 5 into an MS(2, 2) network.
For k � 7, there exists a dilation-3 embedding of the com-
plete binary tree of height at least equal to (1/2 + o(1))k
log2 k into an MS(l, n) network.

PROOF. In [14], it has been shown that, for k = 5 or 6, there
exists a dilation-1 embedding of the complete binary
tree of height 2k - 5 into the k-star. For k � 7, there exists
a dilation-1 embedding of the complete binary tree of
height at least equal to (1/2 + o(1))k log2 k into the k-
star. The rest of the proof follows from Corollary 4.8. o

COROLLARY 4.11. There exists a dilation-O(1) embedding of the
d-dimensional hypercube into an MS(l, n), provided

d k k
k

o k≤ − +log2

3
2 1 6.

PROOF. In [37], it has been shown that there exists a dila-
tion-O(1) embedding of the d-dimensional hypercube
into a k-star, provided that d � k log2 k - (3/2 + o(1))k.
This, combined with Corollary 4.8, completes the
proof.                                                                                 o

COROLLARY 4.12. There exists a load-1, expansion-1, and dila-
tion-5 embedding of the M1 � M2 mesh into an MS(2, n)
network, where M1 � M2 = (2n + 1)!. There exists a dila-
tion-7 and expansion-1 embedding of the M1 � M2 mesh into
an MS(l, n) network, where M1 � M2 = k! and l � 3.

PROOF. It follows from Theorem 4.9 and the fact that there
exists a dilation-1 expansion-1 embedding of M1 � M2
mesh into a CT(k) graph, where M1 � M2 = k! [34]. o

COROLLARY 4.13. There exists a dilation-O(1) expansion-1 em-
bedding of the 2 � 3 � 4 � L � (k - 1) � k mesh into an
MS(l, n) network.

PROOF. In [28], it has been shown that there exists a dilation-3
expansion-1 embedding of the 2 � 3 � 4 � L � (k - 1) � k
mesh into a k-star. This, combined with Corollary 4.8,
completes the proof.                                                        o

5 IMPLEMENTATION CONSIDERATIONS

In previous sections, we have shown various theoretical
advantages of MS networks. In this section, we address
some practical and implementation issues, and provide a
detailed comparison between MS networks and star
graphs.

5.1 Scaling Up MS Networks
An MS(l, n) network has N = (nl + 1)! nodes and degree
equal to n + l - 1. For a given N = k!, there may be more
than one MS(l, n) network with N processors, because there
may be more than one pair (l, n) for which k = nl + 1. Two
networks MS(l1, n2) and MS(l2, n2) that have the same num-
ber of nodes (i.e., l1n1 = l2n2) may have different degrees l1 +
n1 - 1 and l2 + n2 - 1 and different diameters.

For a given number of nodes N = k! = (nl + 1)!, it is gen-
erally preferable to have l = Q(n) so that the network is bal-
anced (see Sections 3 and 4). Clearly, this is not always pos-
sible (e.g., if k - 1 is prime), which implies that when scaling
up an MS(l, n) network with k! = (ln + 1)! nodes to obtain an
MS(l’, n’) network with (k + 1)! = (l’n’ + 1)! nodes, many of
the original properties may not be preserved. For example,
consider scaling up an MS(3, 4) network that has 13! nodes
to the (only) MS(13, 1) network that has 14! nodes (the im-
mediately next possible number of nodes). The MS(3, 4)
network is close to being balanced and has degree equal to 6,
while the MS(13, 1) network has degree equal to 13. Fur-
thermore, the MS(13, 1) network does not contain the MS(3, 4)
network as a subgraph. If modularity in the design is to be
preserved, the MS network should be scaled up by in-
creasing the number of levels l by one, keeping parameter n
constant.

To obtain an MS(l + 1, n) network from an MS(l, n) net-
work, n additional symbols have to be used in the node
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label, increasing the number of nodes by a factor of ( )!
( )!
nl n

nl
+ +

+
1

1 .

Such a step size may be too large for practical applications.
This problem is common to other hierarchical modular
networks, such as hypernets [25], RCC [23], and HSN [51].
In what follows, we briefly present alternative ways to scale
up an MS network with a smaller step size, while preserv-
ing most of its desirable properties, and ensuring modular-
ity in the design.

The first method is to allow more flexible connectivity at
the top level. For example, consider a network that consists
of (k + m)!/k!, 1 � m � n, identical copies of an MS(l, n) net-
work. A node in this variant network is represented by k + m
symbols, where 1 � m � n, and is connected through an ad-
ditional link to a new neighbor, obtained by swapping the
first m symbols with the last (additional) m symbols of the
node label. We call this an incomplete MS network and we
denote it by IMS((m), l + 1, n). For example, the IMS((1), 3, 3)
network has 8! nodes and generators

T T T S I2 3 4 3 2 1 567 234 8, , , , 0 5 =
def

and

S I1 3 3 1 8 34 567 20 5 0 5, , =
def

IMS((m), l + 1, n) networks have properties similar to those
of MS(l + 1, n) networks, and most of the results derived in
this paper can be applied to them either directly (for exam-
ple, the emulation algorithms presented in Section 4) or
after minor modifications (for example, the routing algo-
rithms). In particular, to extend the MS routing algorithm
introduced in Section 3 to IMS networks, we have to per-
form a complete SDC emulation (involving three steps)
when an exchange with a symbol within the rightmost
block is involved, while the rest of the algorithm remains
the same. An upper bound on the diameter of IMS((m), l, n)
networks can be shown to be 2.5nl + O(n + l). The technique
used above can be further generalized to provide more
flexibility at lower levels. For example, we can use generators
T2, T3, T4, S(2,2),3,2(I) = 1 56 4 23 78, and S(2,2),3,3(I) = 1 78 4 56 23
to obtain an incomplete MS network, IMS((2, 2), 3, 3), that
has 8! nodes and degree 5. The integer numbers in the inner
parenthesis indicate that the incomplete blocks 2 and 3 con-
sist of two symbols each, rather than three symbols. It can
also be seen that a Cayley graph [5] using generators T2, T3,

T4, S(1),3,2(I) = 1 567 234 8, and ′ =S I3 1 678 5 234( ) , as well as
other variant topologies, also have algorithms and proper-
ties similar to those of MS networks. Since the variants in-
troduced so far belong to the class of Cayley graphs, they
are all vertex-symmetric and regular. Similar to Theorem 3.1,
it can be easily shown that all of them can embed a star graph
of the same size with dilation 3. Similar to Theorem 4.9, it can
be shown that all the variants introduced so far can embed
a complete transposition graph of the same size with dila-
tion 5 when the number of hierarchy levels is equal to two,
and with dilation 7 otherwise. As a result, the parallel algo-
rithms presented in Sections 4.1 and 4.3 can be directly ap-
plied to all these variants. Also, the results of Section 4.2
can be extended to them by performing SDC emulations for
all dimensions with proper scheduling.

A second method for scaling up an MS network with an
even smaller step size uses a strategy similar to that used in
the construction of the clustered star and incomplete star [33].
More precisely, some of the level-l clusters and the corre-
sponding links are removed from the MS(l, n) network,

leaving a total of c nl
nl n∈ +

− +2 3 1
1, , , ( )!

( )!K> C  level-l clusters that

are not removed. We call the resultant topology a clustered
MS network, and we denote it by CMS((c), l, n). Clearly, all
the algorithms presented in this paper can be applied to
each of the c level-l clusters in the CMS((c), l, n) network.
The number of nodes in a CMS network can be increased
by a factor of 1 1+ c  by adding an additional level-l cluster.
This construction can be further generalized by allowing
clusters at lower levels to be removed. Also, the techniques
used in the construction of the IMS and the CMS networks
can also be combined to obtain even more flexible variant
topologies. More precisely, an MS(l, n) network can first be
scaled up to obtain an IMS((m), l + 1, n) network and, then,
some of its top-level clusters can be removed, leaving a to-

tal of c nl m
nl∈ + +

+2 3 1
1, , , ( )!

( )!K> C  top-level clusters that are not

removed. In general, the variants obtained by the second
method are not Cayley graphs, and they are not symmetric
or regular.

Techniques similar to those used in the derivation of
Cayley coset graphs [24] can also be used to obtain other
variant topologies that have a small step size.

5.2 Mapping of MS Networks onto Parallel
Architectures

With the rapid advances in VLSI technologies, the number
of transistors and the number of processors that can be put
onto a chip are expected to grow significantly. Since the
processor-memory bandwidth is one of the major bottle-
necks limiting the performance of current and future par-
allel systems, implementing processors in memory (PIM)
[30], [15] or computing in RAM [46], [47] offer a lot of
promise for the construction of future parallel computers.
Another trend in the synthesis of multicomputers is to use
off-the-shelf PC or workstation boards (or processor chips)
as building modules. In either case, the number of available
off-module (e.g., off-chip or off-board) pins is one of the
major constraints limiting the number of processors that
can be put on the module. Also, the intermodule band-
width is a potential bottleneck on the performance of the
resultant system. In what follows, we consider the case
where several nodes (processors, routers, and their memory
banks) of an MS network are implemented on a single chip,
or more generally, a single module. EXECUBE [30], [47],
hypernets [25], [26], and hierarchical shuffle-exchange net-
works (HSE) [16] are some of the architectures and net-
works that use such an approach or similar assumptions.

A natural partition of the processors (and their memory
banks and network interfaces) of an MS(l, n) network into
chips is to put all processors belonging to the same nucleus
(n + 1)-star onto the same chip. The MS(l, n) network can
then be built with identical chips, which are connected to
other chips through links. This partition also eliminates the
“number of parts” problem since it uses identical building
modules. We expect that 3-star and 4-star (or at most 5-star)
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modules will be sufficient to build MS-based multicomput-
ers for most practical purposes (see Table 2). For example,
an MS network with 7! £ 5K nodes can be implemented as
an MS(3, 2) built from identical 3-star chips, with each node
in the chip requiring two off-chip links, or an MS(2, 3) net-
work built from identical four-star chips, with each node in
the chip requiring only one off-chip link. For comparison, a
7-star built with 3-star or 4-star chips requires four or three
off-chip links per node, respectively. Since many well-known
topologies use rings as their basic building modules (e.g., the
CCC, SCC, ring of rings, hierarchical ring, and Cayley-graph-
connected cycles [39]) or contain rings as subgraphs (e.g.,
meshes, hypercubes, and tori), it is quite possible that off-
the-shelf ring modules (having a limited number of off-
module links) will be commercially available in the future.
This would make MS networks built from such modules
considerably less expensive than parallel computers built
from customer-designed modules. Since star graphs are
viewed as attractive candidates for future parallel comput-
ers, it is also possible that modules used to build small or
medium-scale star-graph will be available and could be
used to build larger-scale MS networks. For example, mul-
ticomputers based on the 6-star or larger star graphs may
be built from 4-star modules, with each node having at least
two off-module links; these 4-star modules can also be used
to build MS(3, 3) network with 10!-node or IMS networks
with 7!, 8!, or 9! nodes. Moreover, the 7!, 8!, or 9!-node IMS
networks can later be expanded to larger networks using
the same basic modules. For comparison, if we want to
build a k-star with k = 8, 9, or 10, using 4-star chips, the re-
quired numbers of off-chip links per node will be 4, 5, or 6,
respectively, resulting in larger hardware costs and may not
be commercially available. In general, k-stars with k = 6, 7,
8, 9 cannot be expanded to larger star graphs in the future
using the same modules because their node degrees in-
crease with network size.

Table 2 summarizes the above discussion by comparing
several options for building parallel computers based on
the MS, IMS, and star graph topologies in terms of imple-
mentation considerations, such as node degree, basic mod-
ules used, and the number of off-module links per node.

6 CONCLUSIONS

Desirable properties in interconnection networks for paral-
lel systems include small network diameter, symmetry,
modularity, ease of mapping efficient algorithms onto them,

and reasonable implementation cost. The hypercube and
star graph meet most of these requirements, but their node
degrees are prohibitively large for networks of large size.
The MS networks proposed in this paper form a new class
of interconnection networks for the modular construction of
parallel computers. MS networks have several desirable
algorithmic and topological properties, while using nodes
of small degree. We showed that MS networks have as-
ymptotically optimal diameter, and we presented efficient
algorithms to perform routing in them. We also developed
efficient algorithms to emulate the star graph, and asymp-
totically optimal algorithms to execute the MNB and TE
communication tasks, under both the single-port and the
all-port communication models. In all routing algorithms
presented, the expected traffic was shown to be balanced on
all links of the MS(l, n) network with l = Q(n). We presented
variants of the MS network that are more flexible to scale
up and can be more easily adjusted to the size of a particu-
lar application. We also compared MS networks and star
graphs with respect to several practical implementation
considerations. We believe that the MS network and its
variant topologies can fit the needs of high-performance
interconnection networks and appear to be efficient low-
degree alternatives to the star graph for building medium
to large-scale parallel architectures.
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