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Abstract

We present a new analysis of wavelength translation in
regular, all-optical WDM networks, that is simple, compu-
tationally inexpensive, and accurate for both low and high
network loads. In a network withk wavelengths per link,
we model the output link by an auxiliaryM=M=k=k queue-
ing system. We then obtain a closed-form expression for
the probabilityPsucc that a session arriving at a node at a
random time successfully establishes a connection from its
source node to its destination node. Unlike previous analy-
ses, which use the link independence blocking assumption,
we account for the dependence between the acquisition of
wavelengths on successive links of the session’s path. Based
on the success probability, we show that the throughput per
wavelength increases superlinearly (as expected) as we in-
crease the number of wavelengths per link; however, the
extent of this superlinear increase in throughput saturates
rather quickly. This suggests some interesting possibilities
for network provisioning in an all-optical network. We ver-
ify the accuracy of our analysis via simulations for the torus
and hypercube networks.

1. Introduction

Wavelength division multiplexing (WDM) exploits the
terahertz bandwidth potential of optical fiber by dividing
the total available bandwidth into a number of narrower
channels. A critical functionality for the scalability and im-
proved performance of multihop WDM networks iswave-
length translation[2], which is the ability of network nodes
to switch data from an incoming wavelength�i to an out-
going wavelength�j; j 6= i. There are three natural classes
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of wavelength-routing nodes in this context: nodes with
full-wavelength translationcapability (see, for example [4],
[10], and [7]), which can exchange an incoming wave-
length with any outgoing wavelength, nodes withlimited-
wavelength translationcapability (see, for example [23],
[22], [16], and [18]), which can switch an incoming wave-
length to a subset of the outgoing wavelengths, and nodes
with no-wavelength translationcapability (see, for example
[5], [13], [8], [22], [6], and [20]), which can map each in-
coming wavelength only to the same outgoing wavelength;
the so called wavelength-continuityconstraint. The require-
ment of wavelength continuity restricts the routing flexibil-
ity and increases the probability of call blocking.

Recently, several researchers have examined wavelength
translation in all-optical, circuit-switched networks, with
full- or no-wavelength translation. A study of this litera-
ture reveals that although this initial work correctly identi-
fies several parameters that affect the performance of wave-
length translation (such as path length, number of wave-
lengths, switch size, network topology, and interference
length), and provides useful qualitative insights into net-
work behavior, several difficulties remain. One problem is
of accurately accounting for the load correlation between
the wavelengths on successive links of a session’s path.
Kovac̆ević and Acampora [10] provided a model to com-
pute the approximate blocking probability for Poisson in-
put traffic in all-optical networks with and without wave-
length translation. As pointed out by them, however, their
model is inappropriate for sparse networks because it uses
the link independence blocking assumption, which does not
consider the dependence between the acquisition of wave-
lengths on successive links of a session’s path. Furthermore,
their model requires the iterative solution of a set of Erlang
fixed-point equations, which is cumbersome and is known
to be computationally expensive. Barry and Humblet [4]
presented a new model that takes the link load dependence
partially into account, but they assumed that a wavelength
is used on a link independently of other wavelengths. Al-



though their simplified model makes good qualitative pre-
dictions of network behavior (predicting even some non-
obvious behavior observed in simulations [19]), it is unable
to predict the behavior of simulations with numerical accu-
racy. The analysis presented by Birman [7], on the other
hand, uses a Markov chain model with state dependent ar-
rival rates. Although moreaccurate than the previous mod-
els, its calculation of blocking probabilities involves mod-
ified reduced-load approximations and is computationally
intensive. Furthermore, the analysis is tractable only for
small networks with at most two or three hops per path and
a modest number of wavelengths per link. Yet another dif-
ficulty with the previous analyses, which are based on the
“blocked calls cleared” model, is that in addition to treating
long connections unfairly, they also tend to overestimate the
achievable throughput for a given blocking probability. The
analysis presented in [18] for limited wavelength translation
accounts partially for the link load dependence, and main-
tains fairness to all connections by retrying blocked sessions
at a later time. Although this analysis can be applied to
full-wavelength translation, the number of states grows ex-
ponentially with the degree of translation (in this case the
number of wavelengths), and is impractical for large k.

The analysis that we present for studying wavelength
translation in regular, all-optical WDM networks over-
comes many of the difficulties highlighted above. We first
present a general analysis applicable to any regular topol-
ogy, and then apply it to study the performance of wave-
length translation in the torus and hypercube networks. In
our model, sessions or connection requests arrive indepen-
dently at eachnode of the networkaccording to a Poisson
process with rate� per unit time, and session destinations
are uniformly distributed over the remaining nodes. A cir-
cuit between the source node and the destination node is es-
tablished by sending a setup packet along a path determined
at the source. We assume that at each attempt the setup
packet randomly chooses a route to the destination from
among the allowed shortest-path routes. If the setup packet
is successful in establishing a connection, the wavelengths
required by the session are reserved for the session duration.
Otherwise, the session is randomly assigned a new time at
which to try. This is done such that the combined arrival
process of new sessions and retrials can be approximated
by a Poisson process.

The capacity of each link is divided intok bands, where
each band corresponds to a distinct wavelength, andeach
node has full-wavelength translation capability. We model
thek wavelengths on an outgoing link of a node by an aux-
iliary M=M=k=k queueing system. Using the occupancy
distribution of this system, we derive a closed-form expres-
sion for the probabilityPsucc of successfully establishing a
circuit from a source node to a destination node. To evaluate
this probability, we do not use the link independence block-

ing assumption, but instead account partially for the depen-
dence between the acquisition of successive wavelengths on
the path followed by a session. As will be seen in Section 2,
our formulation is intuitive,analytically simple, and compu-
tationally inexpensive (it avoids, for example, Erlang fixed-
point or reduced load approximations), and scales easily for
larger network sizes and arbitraryk. We also note that our
analysis applies equally well to multi-fiber networks, with
no wavelength translation.

Using our analysis we show how, for the mesh and hy-
percube networks, the extent of improvement in achievable
throughput, for a fixedPsucc, depends on the number of
wavelengthsk per link. We find that although the through-
put per wavelength increases superlinearly withk, the incre-
mental gain in throughputper wavelength (for a fixedPsucc)
saturates rather quickly. This implies several interesting al-
ternatives for network provisioning and network expansion
in an all-optical network, some of which we discuss in Sec-
tion 3. For instance, instead of building a network in which
every node can translate betweenW wavelengths, it may be
beneficial to build a network in which every node consists
of W=k simpler switching elements operating in parallel,
each of which translates only overk wavelengths. Similarly,
a network designer may start with simple network nodes,
with a few parallel channels, and grow them incrementally
by adding more channels as network traffic increases.

The organization of the remainder of the paper is as fol-
lows. In Section 2, we first present a general analysis for
wavelength translation applicable to any regular network,
and then apply it to the torus and hypercube networks. In
Section 3, we present our results for the success probabil-
ity Psucc obtained from our analysis and compare them to
those obtained via simulations, and we discuss our results.
In Section 4, we present our conclusions.

2. Analysis For Regular Networks

In this section, we first present a general analysis for full
wavelength translation in regular networks, and then ap-
ply it to analyze the performance of full wavelength trans-
lation in the torus and hypercube networks. The general
formulation that we develop provides a method to analyze
other regular topologies that have been proposed for build-
ing all-optical networks, such as the family of banyan net-
works, e.g., shufflenet ([1], [15]), wrapped butterfly net-
works ([18]), and deBruijn networks [19].

Our choice of the mesh and hypercube topologiesreflects
our interest in analyzing two significantly different types
of networks. The torus is a sparse topology with a small
(fixed) node degree and diameter that is linear in the mesh
dimension, and is a natural choice for building wide-area
networks (WANs). The hypercube, on the other hand, is a
dense topology, with node degree and diameter that increase



logarithmically with the number of nodes, and is an attrac-
tive topology for optical interconnects, especially given the
recent advances in optical switch design (see for example,
[3], [17], [14]).

In our model, external session requests are generated in-
dependently at eachnode of the networkaccording to a
Poisson process with rate�; and their destinations are uni-
formly distributed over all nodes, except the source node.
The holding time, or duration, of a session is exponentially
distributed with meanX, and connections are established
by transmitting a setup packet from the source to the des-
tination. Our routing scheme is oblivious, or non-adaptive;
that is, the path followed by the session is chosen at the
source, and fixed for the entire connection attempt. If the
setup packet is successful in establishing the circuit, the
wavelengths required by it are reserved for the duration of
the session. Otherwise, the session is blocked and is rein-
serted into the input stream so that the combined process
of exogenous arrivals and retrials can be approximated as a
Poisson process, and all sessions are eventually served. By
contrast, in the call dropping model used in previous anal-
yses, sessions with longer path lengths are dropped with a
higher probability (unfairly treating long connections), and
the maximum throughput is overstated, especially at higher
loads.

In full-wavelength translation, the switching of a new
session arriving over an incoming link of a node on a
wavelength�i; i = 1; : : : ; k or a new session originating
at that node, depends on the availability of a wavelength
�j; j = 1; : : : ; k on the desired outgoing link. A session
is blocked and scheduled to retry only if all of thek wave-
lengths on the outgoing link are unavailable. We assume
that a setup packet selects the desired outgoing wavelength
from among thek wavelengths on the link with equal prob-
ability. In the subsequent sections, we define the auxiliary
system that we use to model the outgoing link at a node,
and obtain the probabilityPsucc of successfully establish-
ing a circuit.

2.1. The Auxiliary System

We first describe a general framework for regular net-
works, and then present an analysis for the torus and hy-
percube topologies. We focus on setup packets emitted on
outgoing linkL, and define thetype� of a setup packet
according to whether it belongs to a session originating at
the node oraccording to the incoming linkupon which it
arrives. Consider a networkG where a linku at a nodev
is denoted by(u; v): A 1 � 1 functionT defined over the
set of nodes ofG will be called an automorphism if link
(u; v) 2 G is mapped to(T (u); T (v)) 2 G: T will be
called a fixed automorphism forL if it maps L to itself.
We say that two incoming linksl1 andl2 of nodes belong

to the samespatial groupwith respect toL if there exists
aT such thatT (l1) = l2: We use this mapping to partition
thed � 1 incoming links of a node (except forL) into l,
l � d � 1; different groups (or types), so that the links of
each groupl have the same spatial relationship with respect
to outgoing linkL. The total number of incoming links of
type l is denoted byMl (see Fig. 1(a)). Originating setup
packets that are emitted on linkL are defined as being of
type� = 0, while transit setup packets are defined as be-
ing of type� = 1; : : : ; l if the incoming links over which
they arrive are of type�: We also let(�) denote the rate
at which setup packets of type� are emitted on an outgoing
link.
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Figure 1. (a) We illustrate how the incoming
links are related to the outgoing link at a node
of the network, where each link has k wave-
lengths. (b) The auxiliary M=M=k=k queueing
system Q:

We denote the state of an outgoing link by the vector
S = (S0; S1; : : : ; Sl); whereS0 is the number of originat-



ing sessions on the link, andS� ; � = 1; : : : ; l; is the num-
ber of transit sessions of type� using the link. Clearly,
the set of feasible states of the outgoing link is given by
F = fS : jSj � kg; where jSj = S0 + S1 + : : : + Sl
is the cardinality ofS. We let �(S) be the steady-state
probability that an outgoing link is in stateS, and we ap-
proximate�(S) as the stationary distributionof an auxiliary
M=M=k=k queueing systemQ; defined as follows (see Fig.
1(b)). Customers of type�, � = 0; 1; : : : ; l, arrive to the
systemQ according to a Poisson process with rate�(�),
and ask for a server from among thek identical servers. If
all k servers are busy, the customer is dropped, never to ap-
pear again. We require that the rate at which customers of
type� are accepted in the auxiliary systemQ be the same
as the rate(�) at which setup packets of type� are emitted
on an outgoing link in the actual system. For this to hold,
we must have

�(�) =
(�)

1�
P

S:jSj=k �(S)
: (1)

To calculate the steady-state probabilities�(S); for all
feasible states, we write down the global balance equations
of the Markov chain that corresponds to the auxiliary sys-
temQ :

�(S) =

P
�
�(�)�(S � e�) +

P
�:jS j<k

�(S� + 1)�(S + e�)

P
�
�S� +

P
�:jSj<k

�(�)
;

(2)
wheree� is a unit vector of dimensionl whose�th com-
ponent is one, “+” corresponds to componentwise addi-
tion, andX = 1=� is the average service time. Equa-
tions (1) and (2) together with the normalization condi-
tion

P
S2F �(S) = 1; can be solved iteratively to ob-

tain the steady-state probabilities�(S) and the rates�(�),
� = 0; 1; : : : ; l. These probabilities are used in the next sec-
tion to obtain the probability of successfully establishing a
circuit.

2.2. The Probability of Successfully Establishing a
Circuit

To determine the probabilityPsucc that a session arriving
at a random time successfully establishes a circuit from its
source node to its destination node, we first find an approx-
imate expression for the probabilityPsucc(s; d) that a ses-
sion with a given source-destination pair(s; d) is success-
ful on a particular trial. We then average over all source-
destination pairs to determine the probabilityPsucc that a
session arriving to the network at a random time success-
fully establishes a circuit.

The path followed by a session with source destination
pair (s; d); consists of an originating node followed by a
sequence of transit nodes. Thus, the probability�0 that a
wavelength on the outgoing link of the originating node is
available is simply the probability that at least one wave-
length on that link is idle, and is given by

�0 =
X

S:jSj<k

�(S): (3)

At each transitnode, the probability that a wavelength is
available on an outgoing linkL, given that a wavelength
was available on an incoming linkL � 1, and that a transit
setup packet proceeding from a wavelength onL � 1 to a
wavelength onL is of type� can be found to be

�� =

k�1P
S�=0

P
S:jSj<k

�(S)(1� S�
kM�

)

1�
kP

S�=1

P
S:jSj=k

�(S) S�
kM�

; (4)

whereM� is the number of input links of type�. The nu-
merator in Eq. (4) is the sum of all of the state probabilities
where at least one wavelength on outgoing linkL is avail-
able, conditioned on the fact that the wavelength on which
the transit setup packet arrives on linkL � 1 is available.
The multiplicative factor(1� S�=kM�) is needed because
the wavelengths in use on linkL cannot be in use by ses-
sions from the particular wavelength on linkL � 1 upon
which the transit setup packet arrives. The denominator is
one minus the sum of the probabilities of all states where
link L is unavailable, conditioned on the fact that the wave-
length on which the transit setup packet arrives on linkL�1
is available.

In writing Eqs. (3) and (4) above, we donot assume
that the probabilities of acquiring wavelengths on succes-
sive links of a session’s path are independent. Instead, we
account partially for the dependence between the acquisi-
tion of successive wavelengths on a session’s path, by us-
ing the approximation that the probability of acquiring a
wavelength on linkL depends on the availability of a wave-
length on linkL�1 (in reality this probability depends, even
though very weakly, on the availability of a wavelength on
every link1; 2; : : : ; L� 1 preceding linkL). As the simula-
tion results presented in Section 3 demonstrate, our approx-
imation is a very good one, however.

The (conditional) probability of successfully establish-
ing a circuit is then given by

Psucc(s; d) = �0

lY
�=1

�
h�(s;d)
� ;

whereh�(s; d) is the number of hops on which the tran-
sit session is of type� for a particular source-destination



pair (s; d); and the product is taken over all types�; � =
1; : : : ; l, l � d � 1, of transit sessions. For uniformly dis-
tributed destinations, the average probability of success for
a new arrivalPsucc can be written as

Psucc =
1

N (N � 1)

X
(s;d)

Psucc(s; d); (5)

whereN is the total number of nodes in the network.
In our model, sessions that are not successful in estab-

lishing a circuit are blocked and reinserted into the input
stream. Since sessions with longer path lengths are blocked
and reattempted with higher probability than sessions with
shorter paths, the destination distribution of the arrivals
(both new and reattempting sessions) may no longer be the
same as that of only new arrivals. The success probability
of a random session arrival (averaged over all trials, both
new and reattempting)P succ can be written as

P succ =
X
(s;d)

Psucc(s; d)w(s; d);

where

w(s; d) =
P�1
succ(s; d)P

(s;d) P
�1
succ(s; d)

is a weighting factor to account for the retrials, which re-
duces to

P succ =
N (N � 1)P

(s;d) P
�1
succ(s; d)

: (6)

Note thatP succ is the harmonic mean of thePsucc(s; d)
over all pairs(s; d); s 6= d:

2.3.Psucc for the Torus Network

In this section, we derive the expressions forPsucc in a
torus network. Thep� p torus consists ofN = p2 proces-
sors arranged along the points of a 2-dimensional space with
integer coordinates withp processors along each dimension.
In addition to the links connecting nodes that differ in ex-
actly one coordinate, the torus also has wraparound links
connecting the first and last node alongeach dimension.
The routing tagof a session with source nodes = (s1; s2)
and destination noded = (d1; d2); is defined ast = (t1; t2);
where

tj =

�
dj � sj ; if jdj � sj j � bp

2
c;

dj � sj � p � sgn(dj � sj); if jdj � sj j > bp2c;

for all j 2 1; 2; and wheresgn(x) is the signum function,
which is equal to+1 if x � 0; and equal to�1; otherwise.

To define the feasible states of an outgoing linkL, we
note that in the torus network, we can partition the incoming
links into two spatial types:bendtypes (� = 1), where an

incoming link is in one dimension and outgoing linkL is
in a different dimension; andstraight-throughtypes (� =
2), where the incoming link is in the same dimension as
outgoing linkL. Originating sessions that are emitted onL
are defined as being of type� = 0: Transit sessions using
L that arrive on an incoming link that is a bend type are
defined as being of type� = 1; and transit sessions using
L that arrive on an incoming link that is a straight-through
type are defined as being of type� = 2: Therefore, for the
torus network, the set of feasible states of the outgoing link
isF = fS :

P2
i=0 Si � kg:

The rates(�) can be calculated using Little’s Theorem
and the symmetry of the torus network to be

(�) =

8>>>>>>>><
>>>>>>>>:

�h(p2 � 1)

4pdp
2�1
2 e

; � = 0 (originating) ;

�h(p� 1)2

4pdp
2�1
2 e

; � = 1 (bend);

�hdp�2
2 ebp�2

2 c

4pdp
2�1
2 e

; � = 2 (straight),

(7)

whereh is the mean internodal distance of the torus and can
be calculated to be

h =

�
p=2; if p is odd;

(p=2) p2

p2�1 ; if p is even.

In the torus network, the success probability for a ses-
sion arriving to the network at a random time instant de-
pends on its routing tag(t1; t2): Using shortest-path rout-
ing, the path followed by a session with routing tag(t1; t2)
will make I(t1; t2) � 1 bends along the way, and will go
straight-through for a total ofjt1j + jt2j � I(t1; t2) steps,
where I(t1; t2) 2 f1; 2g is the number of non-zero en-
tries in(t1; t2): The probability of successfully establishing
a connection is given by

Psucc(t1; t2) = �0 ��
I(t1;t2)�1
1 � �

jt1j+jt2j�I(t1;t2)
2 ; (8)

where�0 is given by Eq. (3), and�1 and�2 are given by Eq.
(4) withM1 = 2 andM2 = 1; respectively. For uniformly
distributed destinations, the average probability of success
for a new session can be written as

Psucc =

8>>>>>>>><
>>>>>>>>:

�0

��
1 + 2�1

�1��bp=2c
2

1��2

��2
� 1
�

�1(p2 � 1)
; p odd

�0

��
1 + �1

�1��bp=2c
2

1��2

��
�1(p2 � 1))

+
�0

�
�1

�
1��

bp=2c�1
2
1��2

��2
�1
�

�1(p2�1) : p even

(9)

The average probability of success for a random arrival



(both new and reattempting) can be written as

P succ =

8>>>>>>><
>>>>>>>:

�
��
1 +

2

�1

�1� �
�bp=2c
2

1� ��1
2

��2
� 1
�
; p odd

�
��
1 +

1

�1

�1� �
�bp=2c
2

1� ��1
2

�

+ 1
�1

�1���bp=2c+1
2

1���1
2

��2
� 1
�
; p even

(10)

where� = �0(p
2�1)
�1

:

2.4.Psucc for the Hypercube Network

In this section, we give the expressions forPsucc in a hy-
percube network with crossbar switches at the nodes. Each
node of a2d-node hypercube network can be represented
by a binary string(x1; x2; : : : ; xd); where two nodes are
connected via a bidirectional link if their binary represen-
tations differ in one bit. The routing tag of a session with
sources and destinationd is just the bitwise XOR of the
binary representations of the source and destination. To de-
fine the feasible states of an outgoing linkL in the2d-node
hypercube network with crossbar switches, we observe that
due to symmetry, all of the incoming links are of the same
spatial type. Originating sessions that are emitted onL are
defined as being of type� = 0; while transit sessions using
L are defined as being of type� = 1: Therefore, for the
hypercube, the set of feasible states of the outgoing link is
F = fS : S0 + S1 � kg:

The rates(�) at which setup packets of type� are emit-
ted on a link can now be found to be

(�) =

8><
>:

�

d
; � = 0 (originating);

�[(d� 2)2d�1 + 1]

d(2d � 1)
; � = 1 (transit).

(11)

Assuming that a session at its source is at a distance of
i hops from its destination, the probability of successfully
establishing a connection is given by

Psucc(n) = �0 ��
i�1
1 ; (12)

where�0 is given by Eq. (3) and�1 is given by Eq. (4) with
M1 = d� 1:

For uniformly distributed destinations, the average prob-
ability of success for a new arrival can be written as

Psucc =
1

2d � 1

dX
i=1

�
d

i

�
Psucc(i)

=
�0

�1(2d � 1)

�
(1 + �1)d � 1

�
: (13)

The average probability of success for a random arrival
(both new and reattempting) can be written as

P succ = (2d � 1)

� dX
i=1

�
d

i

�
1

Psucc(i)

��1

=
�0(2d � 1)

�1

��
1 +

1

�1

�d
� 1

��1

: (14)

3. Analytical and Simulation Results

In this section, we present our analytical and simulation
results for full wavelength translation in the torus and hy-
percube networks.

We first compare the probability of success for a new
arrival Psucc and for a random arrivalP succ predicted by
our analysis with that obtained via simulations for the torus
and the hypercube networks, for the number of wavelengths
k ranging from 1 to 4 (see Fig. 2 and Fig. 3, respec-
tively). Each simulation point was obtained by averaging
over 2 � 106 successes, after discarding initial transients.
We observe that there is close agreement between the sim-
ulations and the analytically predicted values over the en-
tire range of applicable input rates, which is a significant
improvement over previous analyses. Despite its accuracy,
our analysis is intuitive and computationally inexpensive,
and considerably simpler than the analyses available in the
literature, which allows it to scale easily for largek.

We define�(Psucc; k) to be the throughput per node per
wavelength of a full-wavelength translation system withk
wavelengths, when the probability of success is equal to
Psucc. Similarly, we definePsucc(�; k) to be the probabil-
ity of success of a full-wavelength translation system with
k wavelengths, when the arrival rate per node per wave-
length is equal to� = �=k. To quantify the performance of
full-wavelength translation for varyingk, we also define the
incremental per-wavelength throughput gain��(k1; k2) of
a full-wavelength translation system withk2 wavelengths,
over a system withk1 wavelengths, for a givenPsucc, to be

��(k1; k2) =
�(Psucc; k2) � �(Psucc; k1)

�(Psucc; k1)
� 100%:

(15)
We also define theincremental probability of success gain
�Psucc(k1; k2) of a full-wavelength translation system
with k2 wavelengths, over a system withk1 wavelengths,
for a given�, to be

�Psucc(k1; k2) =
Psucc(�; k2)� Psucc(�; k1)

Psucc(�; k1)
� 100%:

(16)
The throughput and probability of success gains measure
the degree of improvement that a full-wavelength transla-
tion system withk2 wavelengths provides over a similar
system withk1 wavelengths.



Figure 2. Analytical and simulation results for
Psucc versus the arrival rate per wavelength
�=k, for (a) an 11 � 11 torus, and (b) 28-node
hypercube network.

In Fig. 4, we illustrate the analytically predicted proba-
bility of successPsucc versus the arrival rate per wavelength
�=k, for k ranging from 1 to 16, for both the torus and hy-
percube networks. In Table 1, we show the per-wavelength
incremental throughput gains for an11 � 11 torus network
and for a28-node hypercube network, for two values of
Psucc. For example, in the torus network, forPsucc = 0:9,
using a full-wavelength translation system with two wave-
lengths per link achieves a320% gain in throughput per
wavelength over a system with one wavelength per link (i.e,
with no wavelength translation). Likewise, a system with

four wavelengths per link achieves a114% gain in through-
put per wavelength over a system with two wavelengths per
link. (Similar results also hold for the incremental success
gains in both topologies.)

Figure 3. Analytical and simulation results for
P succ versus the arrival rate per wavelength
�=k, for (a) an 11 � 11 torus, and (b) 28-node
hypercube network.

As is evident from Fig. 4 and Table 1, for a givenPsucc,
the throughput per wavelength increases with increasingk
(therefore, the network throughput increases superlinearly
with k). The linear increase in throughput is because of the
increase in capacity, while the superlinear increase is due to
the greater flexibility in establishing a circuit when a larger
number of wavelengths is available. The incremental gain



in achievable throughput per wavelength��(k1; k2), how-
ever, decreases rapidly with increasingk. This result is in
agreement with the results presented in [9] and [18], where
the authors had found that the incremental gain in through-
put per unit of capacity obtainable by using links with larger
capacity (alternately, links with a greater number of wave-
lengths) diminishes as the capacityk per link (alternately,
the number of wavelengthsk per link) increases.

Torus
Psucc ��(1; 2) ��(2; 4) ��(4; 8) ��(8; 16)
0.9 320% 114.3% 55.6% 31.43%
0.5 86.7% 46.4% 25.6% 14.6%

Hypercube
Psucc ��(1; 2) ��(2; 4) ��(4; 8) ��(8; 16)
0.9 432% 125.6% 60% 33%
0.5 107% 51.7% 27.3 % 17%

Table 1. Incremental per-wavelength through-
put gains for a 11 � 11 torus and a 28-node
hypercube.

The above observation leads to some interesting design
options when building an all-optical network. It suggests,
for example, that whenW wavelengths per link are avail-
able, simply building a network node with full wavelength
translation capability overW wavelengths may not be the
most efficient option. This is because it may be possible
to build a network node withW=k simpler switching ele-
ments operating in parallel, each switching between anon-
intersecting subset ofk wavelengths, that achieves perfor-
mance comparable to that of theW -wavelength system at a
much lower cost.

To illustrate this, we consider the general wavelength
convertible switch architecture presented in Fig. 2 of [11],
which consists of an optical switch followed by a system
of wavelength converters. The optical switch may be im-
plemented as a non-blocking crossbar switch or as a mul-
tistage switch. Alternately, the entire switch architecture
may be implemented as a single system that switches in
both the space and wavelength domains, using either a re-
arrangeably non-blocking Twisted Bene’s network, as pro-
posed by Yoo and Bala [12], or the more general archi-
tectures proposed by Thompson and Hunter [21]. Assum-
ing the implementation in [12] (to be specific) withW=k
parallel groups of wavelengths, whereeach wavelength is
able to translate only to thek wavelengths within the same
group, the component cost (in terms of elementary2 � 2
switches) isW

k
kd log(kd) � kd

2 = Wd log(kd) � kd
2 ; and

the increase in blocking probability becomes negligeable as
k increases beyond some point. This suggests that a net-
work designer may initially choose to build the network
with nodes that have a small number of parallel channels
(groups), withk wavelengths per channel, and may gradu-

ally expand the nodes as network traffic grows, by adding
more parallel channels.

Figure 4. The probability of su ccess Psucc ob-
tained from our analysis for (a) an 11 � 11
torus and (b) 28-node hypercube network, for
k varying from 1 to 16.

4. Conclusions

We presented a new general analysis for wavelength
translation in all-optical regular networks that is intuitive,
simple, and computationally inexpensive. Our analysis does
not use the link independence blocking assumption, and is
more accurate than previous analyses over a wider range of
network loads. We verified our analysis for the hypercube



and torus topologies, and found that although the through-
put per wavelength increases with an increase in the number
of wavelengths, this increase saturates quickly. This obser-
vation leads to some interesting possibilities for provision-
ing an all-optical network from a performance-cost perspec-
tive. One direction for future work could be to obtain func-
tions that can appropriately measure the cost and the control
complexity of the switch, so that different implementations
of all-optical networks may be compared in a fair manner.
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